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Motivation
• Emerging data center workloads

• Compute-intensive
• Highly data parallel
• Have tight deadlines
• GPUs increasingly used at data centers

• Applications
• Network processing
• DNN inference and others

• GPU streams
• Concurrent kernel execution
• Improves occupancy but difficult to 

meet different deadlines
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Motivation

• Medium parallelism
• A single job cannot fully utilize entire GPU

• GPU inefficient for latency-driven 
workloads
• High host scheduling overhead

• Static priority assigned by programmers

• Requirement
• Need to carefully co-schedule requests
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Additional Characteristics of GPU Applications

• Many-kernel (MK) applications (e.g., RNN inference)
• Relatively small, short kernels that have stringent deadlines

• Few-kernel (FK) applications (e.g., Personal Assistants, Network)
• Bigger kernels with longer deadlines
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Key Challenge 1

• How to decide job priorities?
• QoS constraints for laxity-sensitive applications

• Multiple jobs contend for GPU resources

• Static priorities can be overly conservative
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Key Challenge 2

• How to avoid oversubscribing the GPU?
• Slow system response complicates real-time guarantee

• Challenge 2A: How many jobs should be picked?

• Challenge 2B: Which job should be chosen?
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Our Goal
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Minimize the number of jobs that miss their 
deadlines while maximizing the GPU utilization



LAX: Deadline-aware Offloading

•Component 1 – Job Scheduling
• Exploit hardware information:

• Determine how much contention is occurring

• Decide how much slack each job has before its deadline

• Dynamically reprioritize jobs

•Component 2 – Queuing Delay Calculation
• Using Little’s Law to estimate the capacity of the GPU
• Predicting the time remaining of each job
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Outline

•Motivation 

•Background
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• Evaluation

•Conclusion
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GPU Stream Scheduler and Execution
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• Concurrent execution by GPU streams 

• Each application (job) is launched by GPU streams

• The stream scheduler determines the priority of each job
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Laxity-aware (LAX) Scheduler

• The laxity of a job determines its priority
• Laxity = Deadline – (TimeRemaining + DurationTime)

• Laxity tells us the slack in a job’s deadline 

• Challenge 1: How to predict “TimeRemaining” of a job?

• Challenge 2: How often should update “Laxity”?
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Laxity-aware Scheduling
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Laxity-aware Scheduling
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Laxity-aware Scheduling
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LAX Architecture

• Adds an additional hardware table in CP’s scratchpad

• Extends the job queue scheduler
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LAX Job Table

• WG List
• Keep total number of workgroup 

(WG) in each type of kernel used 
by a job

• Kernel Profiling Table
• Record WG completion rate

(# of completed WG/ time)

• Estimate job end-to-end latency
• ∑ Total_WG_Ki /

WG_completion_rate_Ki
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How frequently to update priorities?

• Frequent priority updates improve performance

• Enables scheduler to quickly adjust priorities 
as contention changes

• Empirically choose 100 us (priority update frequency)
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Queuing Delay Estimation
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Evaluation Methodology
• Simulator: gem5-APU

• 8 CUs, 4 SIMD units per CU
• 128 compute queues
• Up to 10 wavefronts per CU
• Compare LAX to 10 different job scheduling alternatives

• Workloads:
• DeepBench RNNs (Vanilla, GRU, LSTM, Hybrid)
• G-Opt (Networking: CUCKOO, IPV6)
• Lucida (IPA: GMM, Stemmer)
• Each application has different real-time deadlines
• High, medium, and low arrival rates (exponential 

distribution)
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CPU-side Scheduling Performance
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CP-extension Scheduling Performance
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LAX Predictions for a Sample LSTM Job
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Additional Studies in the Paper

• Other Design Considerations
• Additional LAX variants examine required level of HW support

• Sensitivity Studies
• Successful job throughput

• 99-percentile job latency

• Energy consumption

• Area estimation:
• 4240 bytes of memory for 128 compute-queues
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Conclusion

• Emerging GPU applications have different characteristics
• Real-time constraints, medium amount of parallelism

• Opportunity
• Using stream scheduler to execute jobs simultaneously

• Problems:
• How to decide the priority of jobs?
• How many jobs should be offloaded?

• More intelligent scheduler: Laxity-aware scheduling
• Predict job completion time and queuing delay
• Dynamically change job priorities based on their laxity

• Results: Complete 1.7X – 5.9X more jobs by their deadlines
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