
Deadline-aware Offloading for
High Throughput Accelerators

Tsung Tai Yeh, Matthew D. Sinclair,
Bradford M. Beckmann, Timothy G. Rogers

Motivation
• Emerging data center workloads

• Compute-intensive
• Highly data parallel
• Have tight deadlines
• GPUs increasingly used at data centers

• Applications
• Network processing
• DNN inference and others

• GPU streams
• Concurrent kernel execution
• Improves occupancy but difficult to

meet different deadlines

2

Data Center

GPU

CPU

…

…
Multiple requests

Motivation

• Medium parallelism
• A single job cannot fully utilize entire GPU

• GPU inefficient for latency-driven
workloads
• High host scheduling overhead

• Static priority assigned by programmers

• Requirement
• Need to carefully co-schedule requests

3

…

Applications

A B C

A

GPU

Scheduler

Additional Characteristics of GPU Applications

• Many-kernel (MK) applications (e.g., RNN inference)
• Relatively small, short kernels that have stringent deadlines

• Few-kernel (FK) applications (e.g., Personal Assistants, Network)
• Bigger kernels with longer deadlines

4

FKMKA
vg

. n
u

m
b

er
 o

f
ke

rn
el

s
p

er
 a

p
p 104

1

MK FK

A
vg

. k
er

n
el

la

te
n

cy
 (

u
s)

25

494

MK FK

A
vg

. d
ea

d
lin

e
o

f
ap

p
s

(m
s)

7

0.6

Key Challenge 1

• How to decide job priorities?
• QoS constraints for laxity-sensitive applications

• Multiple jobs contend for GPU resources

• Static priorities can be overly conservative

5

J2:K1

J2:K2

J1:K2

J3:K1

Round-Robin Scheduler

J3:K2

J3 Missed
deadline

J1:K1

Time

Job 1
arrives

Job 2
arrives

Job 3
arrives

Job 1
deadline

Job 2
deadline

Job 3
deadline

3 jobs, each with 2 kernels
A GPU can overlappingly execute 2 kernels

Key Challenge 2

• How to avoid oversubscribing the GPU?
• Slow system response complicates real-time guarantee

• Challenge 2A: How many jobs should be picked?

• Challenge 2B: Which job should be chosen?

6

K1 K2 K3 K4

K1 K2 K3

K1 K2 K3

K1 K2

Job 1

Job 2

Job 3

Job 4 St
re

am
 S

ch
e

d
u

le
r

CU

CU

CU

…

?

?

Our Goal

7

Minimize the number of jobs that miss their
deadlines while maximizing the GPU utilization

LAX: Deadline-aware Offloading

•Component 1 – Job Scheduling
• Exploit hardware information:

• Determine how much contention is occurring

• Decide how much slack each job has before its deadline

• Dynamically reprioritize jobs

•Component 2 – Queuing Delay Calculation
• Using Little’s Law to estimate the capacity of the GPU
• Predicting the time remaining of each job

8

Outline

•Motivation

•Background

• Laxity-aware Scheduling (LAX)

•Queuing Delay Estimation

• Evaluation

•Conclusion

9

GPU Stream Scheduler and Execution

10

Compute Queues
Queue 0

G
rap

h
ics

Q
u

eu
e

Job Scheduler

Work-group Scheduler

Compute Units

Queue 1 Queue n

Stream 0 Stream 1 Stream n

Compute Units Compute Units…

GPU

• Concurrent execution by GPU streams

• Each application (job) is launched by GPU streams

• The stream scheduler determines the priority of each job

Outline

•Motivation

•Background

• Laxity-aware Scheduling (LAX)

•Queuing Delay Estimation

• Evaluation

•Conclusion

11

Laxity-aware (LAX) Scheduler

• The laxity of a job determines its priority
• Laxity = Deadline – (TimeRemaining + DurationTime)

• Laxity tells us the slack in a job’s deadline

• Challenge 1: How to predict “TimeRemaining” of a job?

• Challenge 2: How often should update “Laxity”?

12

J1:K1
J2:K1 J2:K2J1:K2

J3:K1 J3:K2

Laxity-aware Scheduler

Time

Job 1
arrives

Job 2
arrives

Job 3
arrives

Job 1
deadline

Job 2
deadline

Job 3
deadline

3 jobs, each with 2 kernels,
A GPU can overlappingly execute 2 kernels

Laxity-aware Scheduling

13

JobQ[0]
of kernel = 0
Priority = INF

JobQ[1]
of kernel = 0
Priority = INF

JobQ[2]
of kernel = 0
Priority = INF

JobQ[3]
of kernel = 0
Priority = INF

Time = 0

No jobs are pushed into job queue

Laxity-aware Scheduling

14

JobQ[0]
of kernel = 4
Priority = 30

JobQ[1]
of kernel = 0
Priority = INF

JobQ[2]
of kernel = 0
Priority = INF

JobQ[3]
of kernel = 0
Priority = INF

Time = 1

Laxity-aware Scheduler

CUs

J0:K1

14

Laxity-aware Scheduling

15

JobQ[0]
of kernel = 3

Priority =

JobQ[1]
of kernel = 2
Priority = 15

JobQ[2]
of kernel = 0
Priority = INF

JobQ[3]
of kernel = 0
Priority = INF

Time = 2

Laxity-aware Scheduler

CUs

J0:K1
Completed

? ? J1:K1

30

J0:K2

?

29

15

LAX Architecture

• Adds an additional hardware table in CP’s scratchpad

• Extends the job queue scheduler

16

GPU
Command Processor (CP)

LAX’s Job
Table

LAX’s
Queuing

Delay
Estimator

LAX’s Job
Queue

Scheduler

WG Scheduler

Compute Units

LAX Job Table

• WG List
• Keep total number of workgroup

(WG) in each type of kernel used
by a job

• Kernel Profiling Table
• Record WG completion rate

(# of completed WG/ time)

• Estimate job end-to-end latency
• ∑ Total_WG_Ki /

WG_completion_rate_Ki

17

LAX’s Job Table
QID Priority WG List Deadline Start Time state

Kernel ID K1 K2 K8

Total WG

…
…

Kernel Profiling Table

Kernel ID K1 K2 K8

WG Completion Rate

Completed WG Count

…

…
…

How frequently to update priorities?

• Frequent priority updates improve performance

• Enables scheduler to quickly adjust priorities
as contention changes

• Empirically choose 100 us (priority update frequency)

18

0

0.2

0.4

0.6

0.8

1

100 us 200 us 400 us 800 us 1600 us 3200 usN
o

rm
al

iz
ed

 #
 o

f
jo

b
s

co
m

p
le

te
d

 b
y

th
e

d
ea

d
lin

e

Job priority update frequency

Outline

•Motivation

•Background

• Laxity-aware Scheduling (LAX)

•Queuing Delay Estimation

• Evaluation

•Conclusion

19

Queuing Delay Estimation

20

JobQ[0]
Priority = 10
EstTime = 7

JobQ[1]
Priority = 20
EstTime = 10

JobQ[2]
Priority = INF
EstTime = 8

JobQ[3]
Priority = INF
EstTime = INF

Job 2 is a new job and JobQ[2].deadline = 15

holdJobTime = 0 Laxity-aware Scheduler

CUs

717

holdJobTime + JobQ[2].EstTime > JobQ[2].deadline

Offload to other accelerators

20

Outline

•Motivation

•Background

• Laxity-aware Scheduling (LAX)

•Queuing Delay Estimation

• Evaluation

•Conclusion

21

Evaluation Methodology
• Simulator: gem5-APU

• 8 CUs, 4 SIMD units per CU
• 128 compute queues
• Up to 10 wavefronts per CU
• Compare LAX to 10 different job scheduling alternatives

• Workloads:
• DeepBench RNNs (Vanilla, GRU, LSTM, Hybrid)
• G-Opt (Networking: CUCKOO, IPV6)
• Lucida (IPA: GMM, Stemmer)
• Each application has different real-time deadlines
• High, medium, and low arrival rates (exponential

distribution)

22

CPU-side Scheduling Performance

23

0

2

4

6

8

10

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEAN

N
o

rm
al

iz
e

d
 n

u
m

b
e

r
o

f
co

m
p

le
te

d
 jo

b
s

RR BAT BAY PRO LAX
14 20

5.9

LAX up to 5.9X geomean better than CPU-side
schedulersat the high job arrival rate

CP-extension Scheduling Performance

24

0

5

10

15

20

LSTM GRU VAN HYBRID IPV6 CUCKOO GMM STEM GMEAN

N
o

rm
al

iz
e

d
 n

u
m

b
e

r
o

f
co

m
p

le
te

d
 jo

b
s

RR MLFQ SJF SRF LJF PREMA EDF LAX

LAX up to 4.2X geomean better than other schedulers
that extend CP at the high job arrival rate

4.2

LAX Predictions for a Sample LSTM Job

25

0

2

4

6

8

10

12

0

1

2

3

4

0
.0

0

0
.2

1

0
.4

1

0
.6

2

0
.8

2

1
.0

3

1
.2

4

1
.4

4

1
.6

5

1
.8

6

2
.0

6

2
.2

6

2
.4

6

2
.6

7

2
.8

8

3
.0

8

3
.2

9

3
.5

1

3
.7

1

3
.9

2

4
.1

3

4
.3

5

4
.5

5

P
ri

o
ri

ty
 le

ve
l

P
re

d
ic

ti
o

n
 t

im
e

(m
s)

Time (ms)

prediction time priority

True completed time = 2.47 ms

LAX’s predictions have a mean absolute error of 8%

Additional Studies in the Paper

• Other Design Considerations
• Additional LAX variants examine required level of HW support

• Sensitivity Studies
• Successful job throughput

• 99-percentile job latency

• Energy consumption

• Area estimation:
• 4240 bytes of memory for 128 compute-queues

26

Conclusion

• Emerging GPU applications have different characteristics
• Real-time constraints, medium amount of parallelism

• Opportunity
• Using stream scheduler to execute jobs simultaneously

• Problems:
• How to decide the priority of jobs?
• How many jobs should be offloaded?

• More intelligent scheduler: Laxity-aware scheduling
• Predict job completion time and queuing delay
• Dynamically change job priorities based on their laxity

• Results: Complete 1.7X – 5.9X more jobs by their deadlines

27

Copyright Disclosure

© 2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, AMD Radeon Vega, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

Disclaimer

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new
model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information

