
Scaling Performance
and Energy Efficiency

Through Domain-
Specific Accelerators

Tsung Tai Yeh
Computer Science Department of

National Chiao Tung University,
Taiwan

1

Overview

• Machine Learning & Deep Neural Network
• Golden Age of Microprocessor Design
• Domain Specific Accelerator
• Chiplet-based System
• Multi-tasking Computing

2

Why Deep Neural Network become popular?
• DNN model outperforms human-being on the ImageNet Challenge

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf

3

No free lunch on DNN computation
• AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 4

A Golden Age in Microprocessor Design
• A great leap in microprocessor speed ~106 X faster over 40 years
• Architectural innovations

• Width: 8->16->32->64 bits (~8X)
• Instruction level parallelism (ILP)
• Multicore: 1 processor to 16 cores
• Clock rate: 3 – 4000 MHz (~1000 X through technology & architecture)

• IC technology makes it possible
• Moore’s Law: growth in transistor count (2X every 1.5 years)
• Dennard Scaling: power/transistor shrinks at the same rate as

transistors are added
5John Hennessy, “The Future of Microprocessors”, 2017

Increasing transistors is not getting efficient
General purpose processor is
not getting faster and power-

efficient because of
Slowdown of Moore’s

Law and Dennard Scaling

Need Specialized/Domain-
specific accelerators to
improve computing speed
and energy

6

Moore’s Law

• The number of transistors per chip doubles every 18-24
months

• That has not been true for years
• It is getting to be increasingly difficult to maintain this

exponential improvement !! Why?

7

Dennard Scaling
• As the size of the transistor becomes small

• The voltage is reduced
• Circuits can be operated at higher frequency at the same power

8

Power = alpha x CFV2

alpha: percent time switched
C: capacitance
F: Frequency
V: Voltage

What’s wrong on
Dennard Scaling?

Dennard Scaling ignores “leakage current” ,”threshold voltage”

So, as transistors get small, power density increases !!

Related to
transistor
size

What’s Left ?

• Transistors not getting much better
• Power budget not getting much higher
• One inefficient processor/chip to N efficient processors/chip
• One of paths left is Domain Specific Architectures

• Just do a few tasks, but extremely well

9John Hennessy, “The Future of Microprocessors”, 2017

Uncover Your Brain
• The human-being brain comprises different areas (accelerators)
• An adult brain only consumes about 23 W a day !! (Yang)

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif 10

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/
sec = 116.38 J/s = 116 W
20% x 116 W = 23.3 W

Yang, Eric. Think Dinner. Mac
Evolution, 1998

Learn from Human Being’s Brain
• Designing “Accelerators” to boost up Machine Learning

https://upload.wikimedia.org/wikipedia/commons/2/27/Artificial_Neural_Network_with_Chip.png

Micro-architecture

Program/Language

System Software
Algorithm

11

Domain Specific Architecture (DSAs)
• Achieving higher performance by tailoring characteristics of domain

applications to the architecture
• Need domain-specific knowledge to work out good DSAs
• Domain Specific Languages (DSLs) + DSAs (not strict ASIC)
• Specialize to a domain of many applications

• Examples
• GPU for computer 3D graphics, virtual reality
• Neural processing unit (NPU) for machine learning
• Visual processing unit (VPU) for image processing

12

Domain Specific Languages (DSL)

• DSLs target specific operations on a domain of applications
• Need vector, matrix or sparse matrix operations
• DSLs tailors for these operations

• OpenGL, TensorFlow, Halide
• Compilers are important if DSLs are architecture-independent

• Translate, schedule, map ISAs to right DSAs

13

Where is Domain-Specific Accelerators ?
• Domain-Specific Accelerators are everywhere

Domain-specific
Accelerators

Domain-specific
AcceleratorsCPU

2019 Apple A12
7 nm TSMC 83 mm2

42 accelerators

2014 Apple A8
20 nm TSMC 89 mm2

28 accelerators

2010 Apple A4
65 nm TSMC 53 mm2

4 accelerators https://edge.seas.harvard.edu/files/edge/files/alp.pdf 14

Why DSAs can win ?
• More effective parallelism for a specific domain

• SIMD vs. MIMD
• VLIW vs. Speculative, out-of-order

• More effective use of memory bandwidth
• User controlled vs. caches

• Eliminate unneeded accuracy (Quantization)
• Lower FP/INT data precision (32 bit integers -> 8 bit integers)

• Increase the hardware utilization
• Reduce the idle time on pipelining and LD/ST

https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf 15

Design Aspects of Temporal Accelerator (TA)
• Centralized control for ALUs
• ALUs can only fetch data from the

memory hierarchy
• ALUs “cannot” communicate directly

with each other
• Why TA becomes popular? Parallelism
• Design aspects for DNN workloads

• Reduce # of multiplication -> increase
throughput

• Ordered computation (tiling) -> improve
memory subsystem 16

Memory Hierarchy

Register File

ALU

ALU

ALU

Control

ALU

ALU

ALU

ALU

ALU

ALU

Temporal Architecture
(SIMD/SIMT)

Design Aspects of Spatial Accelerator (SA)
• ALUs can pass data from one to

another directly
• ALU can have its own control logics

and local memory (registers)
• Dataflow processing

• Programmable -> dynamic vs static graphs
• Dynamic Mapping -> increase data reuse ->

energy-efficiency

• Why SA are popular on DNN workloads?
• Consume lower power & high throughput
• Why? Data reuse -> reduce data movement 17

Memory Hierarchy

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Spatial Architecture
(Dataflow Processing)

What is GPU?
• GPU = Graphics Processing Units
• Accelerate computer graphics rendering and rasterization
• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
• Why does GPU use GDDR memory?

• DDR RAM -> low latency access, GDDR RAM -> high bandwidth

18

System
Memory

(DDR RAM)

Graphics
Memory

(GDDR RAM)

CPU GPU

bus

CPU GPU

Cache

Memory

Discrete
GPU

Integrated
GPU

CPU vs GPU Training Time Comparison
• Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
• Why the model training on GPUs is much faster than on the CPU?

19https://github.com/jcjohnson/cnn-benchmarks

CPU vs GPU

20

Cores Clock
Speed

Memory Price Throughput

CPU (Intel
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of
each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of each
core is low, great for parallel tasks

6.67X

Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak

performance
• Need to map applications on the GPU carefully (Programmers’ duties)

21

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

What is Tensor Core on GPU?
• Execute 4 x 4 x 4 matrix multiplication and addition in one

cycle (D = A x B + C)

22

Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

L1 Data Cache/Shared memory Texture memory

Streaming Multiprocessing (SM)/ SIMT Core

Zhu
et.al.,
MICRO
2019

Why do we need Tensor Core on GPUs ?

• Higher throughput for GEMM ?
• A CUDA (SIMT) core offers 1 single precision multiply-and-

accumulate operation per GPU cycle
• Tensor core can multiply two 4 x 4 F16 matrices and add the

multiplication product F32 matrix per GPU cycle
• Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the

single precision operation
• Domain-specific Accelerator within the GPU

23

Details in TPU v1
• The Matrix Unit: 64K (256 x 256)

8 bit INT multiply-accumulate
• Peak: 92T ops = 65536 x 2 x 700

MHz clock rate
• 4 MiB of 32-bit Accumulator

collects 16 bit products
• Hardware activation logics
• 2.4 MiB on-chip Unified Buffer

(Intermediate results)
• 3.5 X as much on-chip memory

vs GPU
• 8 GiB off-chip weight DRAM

24Jouppi et. al, ISCA 2017

TPU Instruction Set Architectures
• TPU instruction follows the CISC fashion
• Average clock cycles per instructions > 10
• No program counter and branch instruction
• In-order issue
• SW controls buffer, pipeline synchronization
• A dozen instructions overall, five key ones

• Read_Host_Memory
• Read_Weights
• MatrixMultiply/Convole
• Activate
• Write_Host_Memory

25

TPU Microarchitecture
• 4-stage overlapped execution,

1 instruction type/ stage
• Execute other instructions while

MM is busy
• Read_Weight doesn’t wait for

weights fetched from DRAM
• The MM unit uses not-ready

signal to indicate data aren’t
available in unified and Weight
FIFO buffer

26Jouppi et. al, ISCA 2017

Performance Comparison

Processor mm2 Clock(MHz) TDP
(Watts)

Memory
(GB/sec)

Peak TOPS/chip
8 b INT 32b FP

CPU:
Haswell

(18 core)

662 2300 145 51 2.6 1.3

GPU:
Nvidia K80

561 560 150 160 -- 2.8

TPU <331 700 75 34 91.8 --

27

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22nm process
Jouppi et. al, ISCA 2017

Why TPU can Win ?

• Large matrix multiply unit
• Substantial software-controlled on-chip memory
• Data Quantization (8-bit INT)
• Parallelism on the hardware instead of Thread-level

parallelism on GPUs
• What else ?

28

Chiplet-Based System

• Motivation
• Difficult to pack more functionality

on a single chip
• High cost on the large chip

• Verification cost is high
• Manufacturing defects in densely packed logic can reduce the wafer yield

• Chiplet-based system
• The integration of multiple discrete chips within the same package
• Multi-chip module & silicon interposer

29

GPU/CPU

DRAM
Layer
Logic
Layer

Off-chip Memory link

Multi-Tasking Computing
• Multi-tasking is everywhere

• AI inference serving
• Fintech (High Frequency

Trading)
• Networking/database

• Goals
• High throughput
• Low latency
• High hardware resource util.

• Designs
• QoS Scheduling
• Virtualization

30

Deep Learning Inferencing Challenges
• GPU Utilization vs Inferencing latency

• GPU can tackle multiple tasks simultaneously
• Issue tasks in large batches (Util. is up, but increase task latency)
• Task arrival time can be varying
• Tasks have different length (Text sequence in RNN apps.)

31

Task 1
Task 2

Task 3

Task 1
Task 2

Task 3

Time

GPU1

GPU2

Task1
Arrives

Task2
Arrives

Task3
Arrives

Wait Time for
enough tasks
in a batch

TensorRT on NVIDIA V100 GPU

0
10
20
30
40
50
60
70
80

0
10
20
30
40
50
60
70
80
90

100

Sequential Co-located Sequential Co-located

GoogleNet FastRCNN

Ti
m

e
(m

s)

of

 in
st

an
ce

s/
se

co
nd

Throughput Tail Latency

LAX GPU Multi-tasking Scheduler
• Google TPU paper indicates 7 ms inference latency constraint
• Round-robin (RR) scheduler ignores QoS of inference apps
• How to run laxity-aware scheduling on the GPU ?

• Laxity = Deadline – (TimeRemaining + DurationTime)

32

Task priority gets high when laxity is down

24.82103.75

0

5

10

15

20

25

30

0

20

40

60

80

100

120

La
te

nc
y

(m
s)

Th
e

nu
m

be
r

of
 k

er
ne

ls

RNN tasks with varying sequence lengths in WMT '15

average number of kernels in a task averge kernel latency

L
at

en
cy

 (
us

)

Laxity-base Scheduling Challenges on GPUs

• A DNN inference job often comprises many short-running
kernels

• Simultaneous inference job execution incurs contention
• Estimate the end-to-end inference latency is difficult
• Host-device handshaking overhead is unacceptable
• High OS-managed CPU scheduling overhead

33

LAX Overview
• How to predict the GPU task’s remaining time ?

• Hierarchical DNN models
• Command Processor parses kernels
• Workgroup-centric estimation mechanism

• How does LAX work when the task arrival rate is high ?
• Migration + pull model to determine proper # of active tasks

34

K1 K2 …

K1 K2 …

Task 1

Task 2

Command Processor

LAX Kernel scheduler

LAX Task
Table

LAX Profiling
logic

SM

SM

SM

SM

SM

SM

GPU

LAX QoS vs. Tail Latency
LAX’s LSTM job QoS is 5.8 X higher

than RR
LAX’s LSTM job tail latency

is 5.6 X lower than RR

0

10

20

30

40

50

60

0
10
20
30
40
50
60
70
80
90

RR

M
LF

Q SJ
F

SR
F

LJ
F

PR
EM

A

LA
X

RR

M
LF

Q SJ
F

SR
F

LJ
F

PR
EM

A

LA
X

RR

M
LF

Q SJ
F

SR
F

LJ
F

PR
EM

A

LA
X

LSTM GRU VAN

99
%

 ta
il

la
te

nc
y

(m
s)

of

 jo
bs

 c
om

pl
et

ed
 b

y
de

ad
lin

e

QoS tail latency

Conclusion

• Domain-specific Accelerator is
one of paths to continue the
increase of performance and
energy efficiency of computing
hardware

• Domain-Specific Language +
Accelerator

• Software defined hardware
• RTL -> parallel high level language

36

Thank You!!
Q & A

37

