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Overview

• Machine Learning & Deep Neural Network
• Golden Age of Microprocessor Design
• Domain Specific Accelerator
• Chiplet-based System
• Multi-tasking Computing
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Why Deep Neural Network become popular?
• DNN model outperforms human-being on the ImageNet Challenge

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf
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No free lunch on DNN computation
• AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 4



A Golden Age in Microprocessor Design
• A great leap in microprocessor speed ~106 X faster over 40 years
• Architectural innovations

• Width: 8->16->32->64 bits (~8X)
• Instruction level parallelism (ILP)
• Multicore: 1 processor to 16 cores 
• Clock rate: 3 – 4000 MHz (~1000 X through technology & architecture)

• IC technology makes it possible
• Moore’s Law: growth in transistor count (2X every 1.5 years)
• Dennard Scaling: power/transistor shrinks at the same rate as 

transistors are added
5John Hennessy, “The Future of Microprocessors”, 2017



Increasing transistors is not getting efficient
General purpose processor is 
not getting faster and power-

efficient because of
Slowdown of Moore’s 

Law and Dennard Scaling

Need Specialized/Domain-
specific accelerators to 
improve computing speed 
and energy
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Moore’s Law

• The number of transistors per chip doubles every 18-24 
months

• That has not been true for years
• It is getting to be increasingly difficult to maintain this 

exponential improvement !! Why?
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Dennard Scaling
• As the size of the transistor becomes small

• The voltage is reduced
• Circuits can be operated at higher frequency at the same power
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Power = alpha x CFV2

alpha: percent time switched
C: capacitance
F: Frequency
V: Voltage

What’s wrong on 
Dennard Scaling?

Dennard Scaling ignores “leakage current” ,”threshold voltage”

So, as transistors get small, power density increases !!

Related to 
transistor 
size



What’s Left ?

• Transistors not getting much better
• Power budget not getting much higher
• One inefficient processor/chip to N efficient processors/chip
• One of paths left is Domain Specific Architectures

• Just do a few tasks, but extremely well

9John Hennessy, “The Future of Microprocessors”, 2017



Uncover Your Brain 
• The human-being brain comprises different areas (accelerators)
• An adult brain only consumes about 23 W a day !! (Yang)

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif 10

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/
sec = 116.38 J/s = 116 W
20% x 116 W = 23.3 W

Yang, Eric. Think Dinner. Mac 
Evolution, 1998



Learn from Human Being’s Brain
• Designing “Accelerators” to boost up Machine Learning 

https://upload.wikimedia.org/wikipedia/commons/2/27/Artificial_Neural_Network_with_Chip.png

Micro-architecture

Program/Language

System Software
Algorithm
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Domain Specific Architecture (DSAs)
• Achieving higher performance by tailoring characteristics of domain 

applications to the architecture
• Need domain-specific knowledge to work out good DSAs
• Domain Specific Languages (DSLs)  + DSAs (not strict ASIC)
• Specialize to a domain of many applications

• Examples
• GPU for computer 3D graphics, virtual reality
• Neural processing unit (NPU) for machine learning
• Visual processing unit (VPU) for image processing
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Domain Specific Languages (DSL)

• DSLs target specific operations on a domain of applications
• Need vector, matrix or sparse matrix operations
• DSLs tailors for these operations

• OpenGL, TensorFlow, Halide
• Compilers are important if DSLs are architecture-independent

• Translate, schedule, map ISAs to right DSAs
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Where is Domain-Specific Accelerators ?
• Domain-Specific Accelerators are everywhere

Domain-specific 
Accelerators

Domain-specific 
AcceleratorsCPU

2019 Apple A12 
7 nm TSMC 83 mm2

42 accelerators

2014 Apple A8 
20 nm TSMC 89 mm2

28 accelerators

2010 Apple A4 
65 nm TSMC 53 mm2

4 accelerators https://edge.seas.harvard.edu/files/edge/files/alp.pdf 14



Why DSAs can win ?
• More effective parallelism for a specific domain

• SIMD vs. MIMD
• VLIW vs. Speculative, out-of-order

• More effective use of memory bandwidth
• User controlled vs. caches

• Eliminate unneeded accuracy (Quantization)
• Lower FP/INT data precision (32 bit integers -> 8 bit integers)

• Increase the hardware utilization
• Reduce the idle time on pipelining and LD/ST

https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf 15



Design Aspects of Temporal Accelerator (TA)
• Centralized control for ALUs
• ALUs can only fetch data from the 

memory hierarchy
• ALUs “cannot” communicate directly

with each other
• Why TA becomes popular? Parallelism
• Design aspects for DNN workloads

• Reduce # of multiplication -> increase
throughput

• Ordered computation (tiling) -> improve
memory subsystem 16
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Design Aspects of Spatial Accelerator (SA)
• ALUs can pass data from one to 

another directly
• ALU can have its own control logics

and local memory (registers)
• Dataflow processing

• Programmable -> dynamic vs static graphs
• Dynamic Mapping -> increase data reuse ->

energy-efficiency

• Why SA are popular on DNN workloads?
• Consume lower power & high throughput
• Why? Data reuse -> reduce data movement 17
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What is GPU?
• GPU = Graphics Processing Units
• Accelerate computer graphics rendering and rasterization
• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
• Why does GPU use GDDR memory?

• DDR RAM -> low latency access, GDDR RAM -> high bandwidth 
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CPU vs GPU Training Time Comparison
• Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
• Why the model training on GPUs is much faster than on the CPU?

19https://github.com/jcjohnson/cnn-benchmarks



CPU vs GPU
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Cores Clock 
Speed

Memory Price Throughput

CPU (Intel 
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia 
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of 
each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of each 
core is low, great for parallel tasks

6.67X



Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak 

performance
• Need to map applications on the GPU carefully (Programmers’ duties)
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CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



What is Tensor Core on GPU?
• Execute 4 x 4 x 4 matrix multiplication and addition in one 

cycle (D = A x B + C)
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Why do we need Tensor Core on GPUs ?

• Higher throughput for GEMM ?
• A CUDA (SIMT) core offers 1 single precision multiply-and-

accumulate operation per GPU cycle
• Tensor core can multiply two 4 x 4 F16 matrices and add the 

multiplication product F32 matrix per GPU cycle 
• Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the 

single precision operation
• Domain-specific Accelerator within the GPU
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Details in TPU v1
• The Matrix Unit: 64K (256 x 256)

8 bit INT multiply-accumulate
• Peak: 92T ops = 65536 x 2 x 700

MHz clock rate
• 4 MiB of 32-bit Accumulator

collects 16 bit products
• Hardware activation logics
• 2.4 MiB on-chip Unified Buffer

(Intermediate results)
• 3.5 X as much on-chip memory 

vs GPU
• 8 GiB off-chip weight DRAM 

24Jouppi et. al, ISCA 2017



TPU Instruction Set Architectures
• TPU instruction follows the CISC fashion
• Average clock cycles per instructions > 10
• No program counter and branch instruction
• In-order issue
• SW controls buffer, pipeline synchronization
• A dozen instructions overall, five key ones

• Read_Host_Memory
• Read_Weights
• MatrixMultiply/Convole
• Activate
• Write_Host_Memory
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TPU Microarchitecture 
• 4-stage overlapped execution,

1 instruction type/ stage
• Execute other instructions while

MM is busy
• Read_Weight doesn’t wait for

weights fetched from DRAM
• The MM unit uses not-ready

signal to indicate data aren’t
available in unified and Weight
FIFO buffer 

26Jouppi et. al, ISCA 2017



Performance Comparison

Processor mm2 Clock(MHz) TDP 
(Watts)

Memory 
(GB/sec)

Peak TOPS/chip
8 b INT 32b FP

CPU: 
Haswell 

(18 core)

662 2300 145 51 2.6 1.3

GPU: 
Nvidia K80

561 560 150 160 -- 2.8

TPU <331 700 75 34 91.8 --

27

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22nm process
Jouppi et. al, ISCA 2017



Why TPU can Win ?

• Large matrix multiply unit
• Substantial software-controlled on-chip memory
• Data Quantization (8-bit INT)
• Parallelism on the hardware instead of Thread-level 

parallelism on GPUs
• What else ? 

28



Chiplet-Based System

• Motivation
• Difficult to pack more functionality

on a single chip
• High cost on the large chip

• Verification cost is high
• Manufacturing defects in densely packed logic can reduce the wafer yield

• Chiplet-based system
• The integration of multiple discrete chips within the same package
• Multi-chip module & silicon interposer

29

GPU/CPU

DRAM 
Layer
Logic 
Layer

Off-chip Memory link



Multi-Tasking Computing
• Multi-tasking is everywhere

• AI inference serving
• Fintech (High Frequency 

Trading)
• Networking/database

• Goals
• High throughput
• Low latency
• High hardware resource util.

• Designs
• QoS Scheduling
• Virtualization

30



Deep Learning Inferencing Challenges
• GPU Utilization vs Inferencing latency

• GPU can tackle multiple tasks simultaneously
• Issue tasks in large batches (Util. is up, but increase task latency)
• Task arrival time can be varying
• Tasks have different length (Text sequence in RNN apps.)
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LAX GPU Multi-tasking Scheduler
• Google TPU paper indicates 7 ms inference latency constraint
• Round-robin (RR) scheduler ignores QoS of inference apps
• How to run laxity-aware scheduling on the GPU ?

• Laxity = Deadline – (TimeRemaining + DurationTime)
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Laxity-base Scheduling Challenges on GPUs

• A DNN inference job often comprises many short-running 
kernels

• Simultaneous inference job execution incurs contention
• Estimate the end-to-end inference latency is difficult
• Host-device handshaking overhead is unacceptable
• High OS-managed CPU scheduling overhead

33



LAX Overview
• How to predict the GPU task’s remaining time ?

• Hierarchical DNN models
• Command Processor parses kernels
• Workgroup-centric estimation mechanism

• How does LAX work when the task arrival rate is high ?
• Migration + pull model to determine proper # of active tasks

34

K1 K2 …

K1 K2 …

Task 1

Task 2

Command Processor

LAX Kernel scheduler

LAX Task 
Table

LAX Profiling 
logic

SM

SM

SM

SM

SM

SM

GPU



LAX QoS vs. Tail Latency 
LAX’s LSTM job QoS is 5.8 X higher 

than RR 
LAX’s LSTM job tail latency 

is 5.6 X lower than RR
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Conclusion

• Domain-specific Accelerator is
one of paths to continue the 
increase of performance and 
energy efficiency of computing 
hardware

• Domain-Specific Language + 
Accelerator

• Software defined hardware
• RTL -> parallel high level language
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Thank You!!
Q & A
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