When GPU Architecture Designs Meet Machine Learning Tsung Tai Yeh Computer Science Department of National Chiao Tung University

Acknowledgements and Disclaimer

• Slides was developed in the reference with ECE 565, Computer Architecture, Purdue University, 2018 GPGPU-Sim Tutorial, MICRO, 2012

Overview

- Revisit GPGPU Programming & execution model
- GPU Micro-architecture
- GPU Tensor Core in ML applications

What is GPU?

- GPU = Graphics Processing Units
- Accelerate computer graphics rendering and rasterization
- Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
- Why does GPU use GDDR memory?
 - DDR RAM -> low latency access, GDDR RAM -> high bandwidth

Convolutional (CONV) Layers

- 2. Convolutions takes more than **90%** of overall computation (critical path).
- 3. Optimization (software/hardware) for convolutions matters.

Training versus Inference

- Training: Determining the value of the weights in the network
 - Minimizing loss (L)
 - Loss (L): the gap between ideal correct probabilities and the probabilities computed by the DNN model
- Inference: Apply trained weights to determine output Include only forward

CPU vs GPU Training Time Comparison

- Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
- Why the model training on GPUs is much faster than on the CPU?

7

CPU vs GPU

	Cores	Clock Speed	Memory	Price	Speed
CPU (Intel Core i7- 7700k)	4	4.2 GHz	DDR4 RAM	\$385	~540 GFLOPs F32
GPU (Nvidia RTX 3090 Ti)	10496	1.7 GHz	DDR6 24 GB	\$1499	36 TFLOPs F32 6.

CPU: A **small** number of **complex** cores, the clock speed of each core is high, great for sequential tasks GPU: A **large** number of **simple** cores, the clock speed of each core is low, great for parallel tasks

Why do we use GPU for computing ?

- What is difference between CPU and GPU?
 - GPU uses a large portion of silicon on the computation against CPU
 - GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak performance
 - Need to map applications on the GPU carefully (Programmers' duties)

GPU

A Generic Modern GPU Architecture

- GPU Single-Instruction, Multiple-Threads (SIMT) operations
- A Streaming Multi-processor(SM) can serve multiple concurrent threads
- A SIMT core has its private local cache (L1/shared memory)

SIMT Core Micro-architecture

GPGPU Programming Model

- CPU offloads "kernels" consisting of multiple threads to GPU
- CPU transfer data to GPU memory (discrete GPU)
- Need to transfer result data back to CPU main memory
- CPU and GPU shares the same memory space (integrated GPU)

Could GPU spawn kernels within GPU? (Recursive calls)

Yes, CUDA dynamic parallelism

Could a GPU execute multiple kernels?

Yes, GPU supports "concurrent execution"

GPU Thread Hierarchy

- Kernel = multiple threads grouped by grid , thread block or cooperative thread array (CTA) and warp (32 threads)
- A CTA includes up to 1024 threads
- Each CTA is dispatched to a SIMT core as a unit of work
- All of warps in a CTA run in the core's pipeline until they are all done

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

SIMT Execution Model Revisited

- A thread within a warp is mapped to a ALU core in a SM
- A SM has multiple ALU core (64, 128 etc..)
- An on-chip warp buffer holds multiple warps for a SM. (Why ?)

Warp Buffer

SIMT Execution Model

- All threads in warps/wavefront execute the same instruction
- GPU runs warps/wavefront in lockstep on SIMT hardware
- Challenges: How to handle branch operations when different threads in a warp go to different path through program ?

CUDA Programming Syntax

• Declaration Specifiers

	Execution on	Callable from:
global void vadd()	Device	Host
device void bar()	Device	Device
host void func()	Host	Host

- Syntax for kernel launch
 - Foo<<<256, 128>>>(...); //256 thread blocks, 128 threads each
- Built in variables for thread identification
 - dim3 threadIdx.x, threadIdx.y, threadIdx.z;
 - dim3 blockIdx.x, blockIdx.y, blockIdx.z;
 - dim3 blockDim.x, blockDim.y, blockDim.z;

Example: SAXPY C Code

```
void saxpy_serial(int n, float a, float *x, float *y)
{
  for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}
int main() {
    // omitted: allocate and initialize memory
    saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY
    kernel
    // omitted: using result
}</pre>
```

SAXPY CUDA Code

// omitted: using result

}

```
global void saxpy(int n, float a, float *x, float *y) {
   int i = blockIdx.x * blockDim.x + threadIdx.x;
  if(i<n) y[i]=a*x[i]+y[i];
}
int main() {
 // omitted: allocate and initialize memory
  int n = 256
  int nblocks = n / 256;
  cudaMalloc((void**) &d x, n);
  cudaMalloc((void**) &d y, n);
  cudaMemcpy(d x,h x,n*sizeof(float),cudaMemcpyHostToDevice);
  cudaMemcpy(d y,h y,n*sizeof(float),cudaMemcpyHostToDevice);
  saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
  cudaMemcpy(h y,d y,n*sizeof(float),cudaMemcpyDeviceToHost);
```

```
18
```

CUDA Programming Revisited

• threadIdx.x [0 - 31], blockDim.x [32], blockIdx.x [0-15]

```
__global___void MatAdd(float A[N], float B[N], float C[N]) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if(i< N) C[i]=A[i]+B[i];
}
int main() {
    ...
    dim3 numblocks(16, 1); // # of CTAs in one grid
    dim3 threads(32, 1); // # of threads in one CTA
    MatAdd<<<numblocks, threads >>>(A, B, C);
    ...
}
```

CUDA Programming Revisited

- What is performance problem shown in this implementation?
 - Each CTA has only "1" thread -> under-utilize SIMT lanes

```
__global___void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    if(i< N && j < N) C[i][j]=A[i][j]+B[i][j];
}
int main() {
    ...
    dim3 numblocks(N, N); // total CTAs in one kernel
    dim3 threadsPerBlock(1, 1); // N x N threads in one CTA
    MatAdd<<<numblocks, threadsPerBlock>>>(A, B, C);
    ...
}
```

SIMT Pipeline	Schedule + Fetch	Decode	Register Read	Execute	Memory	Writeback	
---------------	---------------------	--------	------------------	---------	--------	-----------	--

- 5 stage In-Order SIMT pipeline
- Register values of all threads stays in core

Inside a SIMT Core

- Fetch, Warp Issue, and Operand Schedulers
- Scoreboard ->data hazard and SIMT stack->control flow
- Large register file
- Multiple SIMD functional units **SIMT Front End SIMD** Datapath Branch Target PC SIMT-Stack Fetch **Scheduler 3 Scheduler 1** Active **I-Buffer** ALU Mask Operand I-Cache → Decode Issue Collector **Scheduler 2 Score MEM** Board Done (WID) **GPGPU-Sim, MICRO**

22

Fetch + Decode

• I-Cache

- Fetch instructions of warps in a round robin manner
- Read-only, set associative
- FIFO or LRU replacement

• I-Buffer

- Store instructions fetched from I-cache
- Each warp has two I-buffer entries
- Valid bit indicates non-issued decode instructions.
- Ready bit indicates instructions are ready to be issued to the execution pipeline

GPGPU-Sim, MICRO

23

v: valid bit

Scoreboard

- Scoreboard keeps track of dependencies between instructions that have already issued
- Out-of-order execution divides ID stage
 - Issue: decode instructions, check for structural hazards
 - Read operands: wait until no data hazard, then read operands
- Instructions execute whenever no dependent on previous instructions and no hazards
- In order issue, out-of-order execution, commit (completion)
 - No register renaming

SIMT Stack

- Handle Branch Divergence
 - Top-of-stack entry is popped when a warp reaches to reconvergence point
 - Active mask indicates the diverging path of threads

One stack per warp SIMT Stack

PC	RPC	Active Mask
E	-	1111
D	E	0001
С	E	1110

Register File

- 256 KB register files on a SIMT core
- How many registers can be used by one thread ?
 - Maximum number of warps per SIMT core is 64
 - 32 threads per warp
 - 256 KB / 64 / 32 / 32-bit = 32
- Need "4 ports" (e.g. FMA) -> increase area greatly
- What is the solution ?
 - Banked single ported register file

Register Bank Conflict

- On cycle 4, issue instruction i2 after a delay due to bank conflict
- Low utilization of register banks
- Solutions ?

Bank C) Ba	nk 1	Bank 2	Bank 3
		•••		
W1:r4	W	1:r5	W1:r6	W1:r7
W1:r0	W	1:r1	W1:r2	W1:r3
W0:r4	W	0:r5	W0:r6	W0:r7
W0:r0	W	0:r1 R0:r2		W0:r3
Cyclo	\//arp	Instru	iction	

Cycle	Warp	Instr	uction	
0	W3	i1:	mad	r2, r5, r4, r6
1	W0	i2:	add	r5, r5, r1
4	W1	12:	add	r5, r5, r1

			Cycle	4	W1	I2: add	r5, r5, r1
		1	2	3	4	5	6
	0	W3:i1:r4					
ank	1	W3:i1:r5	W0:i2:r1	W0:i2:r5	W1:i2:r1	W0:i2:r5	W1:i2:r5
B	2	W3:i1:r6		W3:i1:r2			
	3						

27

Register Bank Conflict

- Swizzle banked register layout
- W0:r0 -> bank 0, W1:r0 -> bank 1, W2:r0 -> bank 2, W3:r0 -> bank 3
- Save 1 cycle against the naïve bank layout. Could we do better ?

Bank C	ank 0		nk 1	Bank 2	Bank 3
		•••			
W1:r7	W1:r7		_:r4	W1:r5	W1:r6
W1:r3	W1:r3 W1		L:r0	W1:r1	W1:r2
W0:r4	W0:r4):r5	W0:r6	W0:r7
W0:r0)	W0:r1		R0:r2	W0:r3
Cycle	W	 /arp Instru		iction	•

Cycle	Warp	Instr	uction	
0	W3	i1:	mad	r2, r5, r4, r6
1	W0	i2:	add	r5, r5, r1
4	W1	12:	add	r5, r5, r1

	1	2	3	4	5	6
0						
1	W3:i1:r5	W0:i2:r1	W0:i2:r5	W3:i1:r2		
2	W3:i1:r6			W1:i2:r1	W1:i2:r5	
3	W3:i1:r4					

Operand Collector

- A valid bit, a register identifier, a ready bit, and operand data
- Arbiter selects operand that don't conflict on a given cycle
- Writeback ? (read + write port)

ALU Pipelines

SIMD execution unit

- SP units executes ALU instructions except some special ones
- SFU units executes special functional instructions (sine, log ...)
- Different types of instructions takes varying execution cycles
- A SIMT core has one SP and SFU unit

Writeback

- Each pipeline has a result bus for writeback
- Except SP and SFU shares a result bus
- Time slots on the shared bus is pre-allocated

Warp Scheduling

- Warp scheduler selects an instruction of a warp that is ready to execute
- Instruction-level parallelism (ILP)
 - Pick instructions of the same warp
- Thread-level parallelism (TLP)
 - Choose instructions across different warps
- Multiple Warp schedulers on a SIMT Core
- Impact on the SIMT Core utilization

Greedy-Then-Oldest Scheduling

- Select instructions of a single warp until it stalls
- Then pick the oldest warp to the next
- Improve the cache locality of the greedy warp

Memory Spaces

- Global memory
 - Device DRAM, shared across blocks
- Local memory
 - Reside in global memory
 - Each thread has private local mem space
 - Store variable data consuming too many registers
- Shared memory
 - On-chip memory
- Constant/Texture memory
 - Read-only memory
- Register
 - SRAM, each thread has its private register space

Global Memory

Global memory resides in off-chip DRAM

```
Built-in align variable:
__align__(int mem_byte)
```

- Global memory is accessed via 32, 64, 128 byte memory transaction
- Misaligned/uncoalescing memory increases # of memory transaction

```
void kernel_copy(float *out, float *in,
int offset)
{
    int i = blockIdx.x * blockDim.x +
    threadIdx.x + offset;
    out[i] = in[i];
}
```

What's wrong when offset > 0 ?

Coalescing

- Combining memory access of threads in a warp into fewer transactions
 - E.g. Each thread in a warp accesses **consecutive 4-byte memory**
 - **Coalesced:** all threads in a warp access locations that fall in a single L1 data cache block (128 bytes)
 - Uncoalesced: threads within a warp access different cache blocks then multiple memory accesses need to be generated
- Coalescing reduces the number of transactions between SIMT cores and DRAM
 - Less work for interconnect, memory partition, and DRAM

Quiz I

- Supposed that a 3 x 4 matrix is shown :
- Which one is coalescing access pattern ?
 - Patten B is coalescing access pattern

Time

Local Memory

- Off-chip memory
- High latency and low bandwidth as the global memory
- When will use the local memory ?
 - Large structure or array that use too much register space
 - A kernel use too many register than available (register spilling)

Shared Memory

- 32 banks organized as 32-bit successive words
- Data shared to threads within the same CTA
- Programmable on-chip cache
- Bank conflict
 - Two or more threads access words within the same bank
 - Serialized memory access (low memory bandwidth)
- Which one is bank conflict ?
 - float i_data = shared[base + S * tid]; S = 3
 - float i_data = shared[base + S * tid]; S = 2

Which one is bank conflict ?

How to Resolve Bank Conflict ?

- Shared memory size is 16 x 16
- Each thread takes charge of each row operation
- Threads in one block access the same location (each column) -> 16-way bank conflict
- Solution ?
 - memory padding
 - Add one float at the end of each row
 - Changing access pattern
 - ____shared___ sData[TILE_SIZE][TILE_SIZE + 1]

Memory padding (blue column)

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html 40

Constant Memory

- What is the constant memory ?
 - Optimized when warp of threads read the same location
 - 4 bytes per cycle through broadcasting to threads in a warp
 - Serialized when warp of threads read in different locations
 - Very slow when constant cache miss (read data from global mem.)
- Where is the constant memory (64KB) ?
 - Data is stored in the device global memory
 - Read data through SM constant cache (8KB)
- Declaration of constant memory
 - __constant__ float c_mem[size];
 - cudaMemcpyToSymbol() // copy host data to constant memory

Texture Memory

What is the texture memory ?

- Optimized for spatial locality shown among threads in blocks
- Spatial locality implies threads of the same warp that read memory address that are close together
- Where is the texture memory ?
 - 28 128 KB texture cache per SM (Nvidia GPU arch. 8.6)
- Declaration of texture memory
 - text1D(texObj, x) // fetch from region of memory with texture object and coordinate x
 - text2D(texObj, x, y) // 2 D texture object with coordinate x and y

L1 Data Cache

- The first level cache per SM
- Non-coherent
- Single ported (128-Byte wide)
 - Take multiple cycles to service non-coalesced accesses

GPU Data Cache Problem

- GPU is cache inefficiency
 - Why L1 cache miss rate on GPU is high ?
 - Massive number of parallel threads increase the cache contention
 - Large cache can reduce the cache contention and improve the GPU performance (done ?)

Miss Status Holding Registers (MSHR)

- Tracking the status of misses in progress
- A fully-associative array
- Service a fixed number of miss requests for a single cache line
 - MSHRs are limited (configurable)
 - Memory unit stalls if cache runs out of MSHRs

L2 Cache Bank

- A unified last level cache shared by all SM
- L1 cache request cannot span across two L2 cache lines

	Local Memory	Global Memory
Write Hit	Write-back	Write-back
Write Miss	Write-no-allocate	Write-no-allocate

- What are advantages of write-back policy ?
 - Fast data write speed
- Write-no-allocate
 - The cache doesn't allocate a cache line on a write miss

GPU Micro-architecture Summary

What is Tensor Core ?

 Execute 4 x 4 x 4 matrix multiplication and addition in one cycle (D = A x B + C)

Why do we need Tensor Core on GPUs ?

- Higher throughput for GEMM ?
 - A CUDA (SIMT) core offers 1 single precision multiply-andaccumulate operation per GPU cycle
 - Tensor core can multiply two 4 x 4 F16 matrices and add the multiplication product fp32 matrix per GPU cycle
 - Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the single precision operation
 - Domain-specific Accelerator within the GPU

PTX ISAs for Tensor Core

- Two execution modes
 - FP 16 mode: All matrices are FP 16
 - Mixed precision mode: FP32 accumulator to write results back to FP32
- Warp Matrix Multiply Accumulate (wmma) instruction
 - wmma.load // Collectively load a matrix from memory
 - wmma.store // Collectively store a matrix from memory
 - wmma.mma // Perform a single matrix multiply-and-accumulate operation across a warp
 - Load_matrix_sync, store_matrix_sync and mma_sync // warp-wide barrier sync.
 - Can access wwma ISAs through cuBLAS, cuDNN and CUTLASS

WMMA Operations on Tensor Core

- Given A, B, C, and D are 16 x 16 matrices
- A warp computes a matrix multiply and accumulate
 D= A x B + C
- 32 threads in a warp are divided into "8" threadgroups
- Worktuple: 2 threadgroups

WMMA Operations

- One WMMA breaks into 4 set of HMMA (SASS)
- Each set of HMMA instruction computes a product 4 x 4 tile of A and 4 x 8 tile of B
- Two threadgroups of worktuple share 4 x 8 tile of B
- 4 x 4 tile of A is private to each theadgroup

Tensor Core Details

- Each Octet has 8 dot product (DP) units
- A DP unit can compute 4-dim vector DP per cycle
- Operand Buffer A can hold a 4 x 4 tile, buffer B holds a 4 x 8 tile
- 4 DP units compute four 4-dim DP/cycle, 8 cycles for 4 x 8 x 4 matrix mul.

Sparse Tensor Core

- Improve tensor core utilization in sparse MMA
- Sparse MMA is used in the compressed model
- Data encoding + tensor core mapping

Conclusion

- Programmable GPU accelerates apps with massive parallelism
- GPU follows SIMT execution model
- GPU Tensor Core increases the throughput of ML apps

