
When GPU
Architecture

Designs Meet
Machine Learning

Tsung Tai Yeh
Computer Science Department of

National Chiao Tung University

Acknowledgements and Disclaimer
• Slides was developed in the reference with

ECE 565, Computer Architecture, Purdue University, 2018
GPGPU-Sim Tutorial , MICRO, 2012

2

Overview

• Revisit GPGPU Programming & execution model
• GPU Micro-architecture
• GPU Tensor Core in ML applications

3

What is GPU?
• GPU = Graphics Processing Units
• Accelerate computer graphics rendering and rasterization
• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
• Why does GPU use GDDR memory?

• DDR RAM -> low latency access, GDDR RAM -> high bandwidth

4

System
Memory

(DDR RAM)

Graphics
Memory

(GDDR RAM)

CPU GPU

bus

CPU GPU

Cache

Memory

Discrete
GPU

Integrated
GPU

Convolutional (CONV) Layers

5

CONV
Layer

High-Level
FeatureCONV

Layer
FC

Layer
…

Classes

Low-Level
Feature

1. Convolutions mainly perform vector-and-matrix multiplication.
2. Convolutions takes more than 90% of overall computation (critical path).
3. Optimization (software/hardware) for convolutions matters.

Training versus Inference
• Training: Determining the value of the weights in the network

• Minimizing loss (L)
• Loss (L): the gap between ideal correct probabilities and the

probabilities computed by the DNN model
• Inference: Apply trained weights to determine output

Include only forward pass

6

CPU vs GPU Training Time Comparison
• Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
• Why the model training on GPUs is much faster than on the CPU?

7https://github.com/jcjohnson/cnn-benchmarks

CPU vs GPU

8

Cores Clock
Speed

Memory Price Speed

CPU (Intel
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of
each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of each
core is low, great for parallel tasks

6.7X

Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak

performance
• Need to map applications on the GPU carefully (Programmers’ duties)

9

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

A Generic Modern GPU Architecture

• GPU Single-Instruction, Multiple-Threads (SIMT) operations
• A Streaming Multi-processor(SM) can serve multiple concurrent threads
• A SIMT core has its private local cache (L1/shared memory)

10

SIMT Core SIMT Core

SIMT Core Cluster (SM)

Interconnection Network

Local Cache
…

GPU

L2 Cache
Off-Chip DRAM

SIMT Core SIMT Core

SIMT Core Cluster (SM)

Local Cache

SIMT Core SIMT Core

SIMT Core Cluster (SM)

Local Cache

SIMT Core Micro-architecture

11

Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

L1 Data Cache/Shared memory Texture memory

Streaming Multiprocessing (SM)

Zhu
et.al.,
MICRO
2019

GPGPU Programming Model
• CPU offloads “kernels” consisting of multiple threads to GPU
• CPU transfer data to GPU memory (discrete GPU)
• Need to transfer result data back to CPU main memory
• CPU and GPU shares the same memory space (integrated GPU)

12

CPU

GPU

CPU

Push
kernels

Done

Could GPU spawn kernels within
GPU? (Recursive calls)

Yes, CUDA dynamic parallelism

Could a GPU execute multiple
kernels?
Yes, GPU supports “concurrent
execution”

GPU Thread Hierarchy
• Kernel = multiple threads grouped by grid ,

thread block or cooperative thread
array (CTA) and warp (32 threads)

• A CTA includes up to 1024 threads
• Each CTA is dispatched to a SIMT core as

a unit of work
• All of warps in a CTA run in the core’s

pipeline until they are all done

13

SM

Thread Block
(CTA)

32 Threads

32 Threads

32 Threads

Thread Block
(CTA)

Warps

…

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

SIMT Execution Model Revisited
• A thread within a warp is mapped to a ALU core in a SM
• A SM has multiple ALU core (64, 128 etc..)
• An on-chip warp buffer holds multiple warps

for a SM. (Why ?)

14

Scalar
Thread 0

Scalar
Thread 1

Scalar
Thread 31

Warp Common PC

…

Warp 7
Warp 9

Warp 0

SIMT Pipeline

Interleave warp execution hides the memory latency

…

Warp Buffer

SIMT Execution Model
• All threads in warps/wavefront execute the same instruction
• GPU runs warps/wavefront in lockstep on SIMT hardware
• Challenges: How to handle branch operations when different threads

in a warp go to different path through program ?

15

w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 5)
C: v = 1;

else
D: v = 20;
E: w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D T3 T4

E T1 T2 T3 T4

Serialize
operations in
different paths

CUDA Programming Syntax
• Declaration Specifiers

• Syntax for kernel launch
• Foo<<<256, 128>>>(…); //256 thread blocks, 128 threads each

• Built in variables for thread identification
• dim3 threadIdx.x, threadIdx.y, threadIdx.z;
• dim3 blockIdx.x, blockIdx.y, blockIdx.z;
• dim3 blockDim.x, blockDim.y, blockDim.z;

16

Execution on Callable from:
__global__ void vadd(…) Device Host
__device__ void bar(…) Device Device
__host__ void func(…) Host Host

Example: SAXPY C Code

17

void saxpy_serial(int n, float a, float *x, float *y)
{
for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];
}

int main() {
// omitted: allocate and initialize memory
saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY
kernel
// omitted: using result

}

SAXPY CUDA Code

18

__global__ void saxpy(int n, float a, float *x, float *y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i<n) y[i]=a*x[i]+y[i];

}

int main() {
// omitted: allocate and initialize memory
int n = 256
int nblocks = n / 256;
cudaMalloc((void**) &d_x, n);
cudaMalloc((void**) &d_y, n);
cudaMemcpy(d_x,h_x,n*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_y,h_y,n*sizeof(float),cudaMemcpyHostToDevice);
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
cudaMemcpy(h_y,d_y,n*sizeof(float),cudaMemcpyDeviceToHost);
// omitted: using result

}

CUDA Programming Revisited

19

__global__ void MatAdd(float A[N], float B[N], float C[N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;

if(i< N) C[i]=A[i]+B[i];
}

int main() {
…
dim3 numblocks(16, 1); // # of CTAs in one grid
dim3 threads(32, 1); // # of threads in one CTA

MatAdd<<<numblocks, threads >>>(A, B, C);
…

}

• threadIdx.x [0 - 31], blockDim.x [32], blockIdx.x [0-15]

CUDA Programming Revisited
• What is performance problem shown in this implementation?

• Each CTA has only “1” thread -> under-utilize SIMT lanes

20

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {
int i = threadIdx.x;
int j = threadIdx.y;
if(i< N && j < N) C[i][j]=A[i][j]+B[i][j];

}

int main() {
…
dim3 numblocks(N, N); // total CTAs in one kernel
dim3 threadsPerBlock(1, 1); // N x N threads in one CTA

MatAdd<<<numblocks, threadsPerBlock>>>(A, B, C);
…

}

SIMT Pipeline

• 5 stage In-Order SIMT pipeline
• Register values of all threads stays in core

21

SIMT
Front End SIMD Datapath

Fetch
Decode

Schedule
Branch

Done (Warp ID)

Memory Subsystem Icnt.
NetworkSMem L1 D$ Tex $ Const$

Reg
File

GPGPU-Sim, MICRO

Schedule
+ Fetch Decode Register

Read Execute Memory Writeback

Inside a SIMT Core
• Fetch, Warp Issue, and Operand Schedulers
• Scoreboard ->data hazard and SIMT stack->control flow
• Large register file
• Multiple SIMD functional units

22

SIMT Front End SIMD Datapath

ALUALUALU

I-Cache Decode
I-Buffer

Score
Board

Issue
Operand
Collector

MEM

ALU
Fetch SIMT-Stack

Done (WID)

Branch Target PC
Pred.Active

Mask
Scheduler 1

Scheduler 2

Scheduler 3

GPGPU-Sim, MICRO

Fetch + Decode
• I-Cache

• Fetch instructions of warps in a round
robin manner

• Read-only, set associative
• FIFO or LRU replacement

• I-Buffer
• Store instructions fetched from I-cache
• Each warp has two I-buffer entries
• Valid bit indicates non-issued decode instructions
• Ready bit indicates instructions are ready to

be issued to the execution pipeline
23

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode Score-
Board

Issue
ARB

PC1
PC2
PC3

A
R
B

SelectionT
o

I-
C

a
c

h
e

Valid[1:N]

I-Cache Decode
I-Buffer

Fetch
Valid[1:N]

v: valid bit
r: ready bit

GPGPU-Sim, MICRO

Scoreboard

• Scoreboard keeps track of dependencies between
instructions that have already issued

• Out-of-order execution divides ID stage
• Issue: decode instructions, check for structural hazards
• Read operands: wait until no data hazard, then read operands

• Instructions execute whenever no dependent on previous
instructions and no hazards

• In order issue, out-of-order execution, commit (completion)
• No register renaming

24

SIMT Stack
• Handle Branch Divergence

• Top-of-stack entry is popped when a
warp reaches to reconvergence point

• Active mask indicates the diverging
path of threads

25

w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 9)
C: v = 1;

else
D: v = 20;
E: w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D

T3

T4

E T1 T2 T3 T4

Serialize
operations in
different paths

One stack per warp
SIMT Stack

PC RPC Active Mask
E - 1111
D E 0001
C E 1110

Register File

• 256 KB register files on a SIMT core
• How many registers can be used by one thread ?

• Maximum number of warps per SIMT core is 64
• 32 threads per warp
• 256 KB / 64 / 32 / 32-bit = 32

• Need “4 ports” (e.g. FMA) -> increase area greatly
• What is the solution ?

• Banked single ported register file

26

Register Bank Conflict

• On cycle 4, issue instruction i2
after a delay due to bank
conflict

• Low utilization of register banks
• Solutions ?

27

Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r4 W1:r5 W1:r6 W1:r7
W1:r0 W1:r1 W1:r2 W1:r3
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 R0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1: mad r2, r5, r4, r6

1 W0 i2: add r5, r5, r1

4 W1 I2: add r5, r5, r1

1 2 3 4 5 6

0 W3:i1:r4

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W1:i2:r1 W0:i2:r5 W1:i2:r5

2 W3:i1:r6 W3:i1:r2

3

Ba
nk

Cycle

Register Bank Conflict

• Swizzle banked register layout
• W0:r0 -> bank 0, W1:r0 -> bank 1,

W2:r0 -> bank 2, W3:r0 -> bank 3
• Save 1 cycle against the naïve bank

layout. Could we do better ?

28

Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r7 W1:r4 W1:r5 W1:r6
W1:r3 W1:r0 W1:r1 W1:r2
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 R0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1: mad r2, r5, r4, r6

1 W0 i2: add r5, r5, r1

4 W1 I2: add r5, r5, r1

1 2 3 4 5 6

0

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W3:i1:r2

2 W3:i1:r6 W1:i2:r1 W1:i2:r5

3 W3:i1:r4

Operand Collector
• A valid bit, a register identifier, a ready bit, and operand data
• Arbiter selects operand that don’t conflict on a given cycle
• Writeback ? (read + write port)

29GPGPU-Sim, MICRO

ALU Pipelines
• SIMD execution unit

• SP units executes ALU instructions except some special ones
• SFU units executes special functional instructions (sine, log …)
• Different types of instructions takes varying execution cycles
• A SIMT core has one SP and SFU unit

• Writeback
• Each pipeline has a result bus for writeback
• Except SP and SFU shares a result bus
• Time slots on the shared bus is pre-allocated

30

Thread Block (CTA) Scheduling

• CTA scheduler dispatches CTAs
across each SM

• Scans through SMs to issue a CTA to
a SM with available resources at
the round-robin manner

• Multiple concurrent kernels
• Different kernels can be executed

across SMs

31

Host CPU

CUDA API

Sync
CUDA

Memcpy

Kernel
Launch

Stream 0

Threadblock Scheduler

SM1 SM2 SM3 …

Warp Scheduling

• Warp scheduler selects an instruction
of a warp that is ready to execute

• Instruction-level parallelism (ILP)
• Pick instructions of the same warp

• Thread-level parallelism (TLP)
• Choose instructions across different warps

• Multiple Warp schedulers on a SIMT Core
• Impact on the SIMT Core utilization

32

I-Cache

I-Buffer

Warp Scheduler

Warp 0
Warp 1

Warp 63

…

W
ar

p
Sl

ot

SIMT Core

Greedy-Then-Oldest Scheduling

• Select instructions of a single warp until it stalls
• Then pick the oldest warp to the next
• Improve the cache locality of the greedy warp

33

R N R R R N R R

Warps

Select

Execution Units

Memory Spaces
• Global memory

• Device DRAM, shared across blocks

• Local memory
• Reside in global memory
• Each thread has private local mem space
• Store variable data consuming too many registers

• Shared memory
• On-chip memory

• Constant/Texture memory
• Read-only memory

• Register
• SRAM, each thread has its private register space

34

Block (0,0)

Shared memory

Registers

Thread (0,0)

Registers

Thread (1,0)

Local Mem Local Mem

Global Mem

Block (1,0)

Constant Mem

Texture Mem

Global Memory
• Global memory resides in off-chip DRAM
• Global memory is accessed via 32, 64, 128 byte memory transaction
• Misaligned/uncoalescing memory increases # of memory transaction

35

void kernel_copy(float *out, float *in,
int offset)
{

int i = blockIdx.x * blockDim.x +
threadIdx.x + offset;

out[i] = in[i];
}

What’s wrong when offset > 0 ?

Coalesced/aligned memory access

Memory Divergent access

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Built-in align variable:
__align__(int mem_byte)

Coalescing

• Combining memory access of threads in a warp into fewer
transactions
• E.g. Each thread in a warp accesses consecutive 4-byte memory
• Coalesced: all threads in a warp access locations that fall in a

single L1 data cache block (128 bytes)
• Uncoalesced: threads within a warp access different cache blocks

then multiple memory accesses need to be generated

• Coalescing reduces the number of transactions between
SIMT cores and DRAM
• Less work for interconnect, memory partition, and DRAM

36

Quiz I
• Supposed that a 3 x 4 matrix is shown :
• Which one is coalescing access pattern ?

• Patten B is coalescing access pattern

37

1 2 3 4
5 6 7 8
9 a b c

Thread 0: 1, 2, 3
Thread 1: 4, 5, 6
Thread 2: 7, 8, 9
Thread 3: a, b, c

Thread 0: 1, 5, 9
Thread 1: 2, 6, a
Thread 2: 3, 7, b
Thread 3: 4, 8, c

Time Time

Pattern A Pattern B

Local Memory
• Off-chip memory
• High latency and low bandwidth as the global memory
• When will use the local memory ?

• Large structure or array that use too much register space
• A kernel use too many register than available (register spilling)

38

Shared Memory
• 32 banks organized as 32-bit successive words
• Data shared to threads within the same CTA
• Programmable on-chip cache
• Bank conflict

• Two or more threads access words within the
same bank

• Serialized memory access (low memory bandwidth)

• Which one is bank conflict ?
• float i_data = shared[base + S * tid]; S = 3
• float i_data = shared[base + S * tid]; S = 2

39

Which one is bank conflict ?

How to Resolve Bank Conflict ?
• Shared memory size is 16 x 16
• Each thread takes charge of each row operation
• Threads in one block access the same location

(each column) -> 16-way bank conflict
• Solution ?

• memory padding
• Add one float at the end of each row
• Changing access pattern
• __shared__ sData[TILE_SIZE][TILE_SIZE + 1]

40

Memory padding (blue column)

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

Time

Constant Memory
• What is the constant memory ?

• Optimized when warp of threads read the same location
• 4 bytes per cycle through broadcasting to threads in a warp
• Serialized when warp of threads read in different locations
• Very slow when constant cache miss (read data from global mem.)

• Where is the constant memory (64KB) ?
• Data is stored in the device global memory
• Read data through SM constant cache (8KB)

• Declaration of constant memory
• __constant__ float c_mem[size];
• cudaMemcpyToSymbol() // copy host data to constant memory

41

Texture Memory
• What is the texture memory ?

• Optimized for spatial locality shown among threads in blocks
• Spatial locality implies threads of the same warp that read

memory address that are close together
• Where is the texture memory ?

• 28 – 128 KB texture cache per SM (Nvidia GPU arch. 8.6)
• Declaration of texture memory

• text1D(texObj, x) // fetch from region of memory with texture object and
coordinate x

• text2D(texObj, x, y) // 2 D texture object with coordinate x and y

42

L1 Data Cache

• The first level cache per SM
• Non-coherent
• Single ported (128-Byte wide)

• Take multiple cycles to service non-coalesced accesses

43

GPU Data Cache Problem
• GPU is cache inefficiency

• Why L1 cache miss rate on GPU is high ?
• Massive number of parallel threads increase the cache contention
• Large cache can reduce the cache contention and improve the

GPU performance (done ?)

44

L1 Cache Reuse Count Distribution for a GPU with 32KB L1 caches

Chen et al., MICRO 2014Nearly 80% inserted cache lines are never reused before eviction

Miss Status Holding Registers (MSHR)

• Tracking the status of misses in progress
• A fully-associative array
• Service a fixed number of miss requests for a single cache

line
• MSHRs are limited (configurable)
• Memory unit stalls if cache runs out of MSHRs

45

L2 Cache Bank

• A unified last level cache shared by all SM
• L1 cache request cannot span across two L2 cache lines

• What are advantages of write-back policy ?
• Fast data write speed

• Write-no-allocate
• The cache doesn’t allocate a cache line on a write miss

46

Local Memory Global Memory
Write Hit Write-back Write-back

Write Miss Write-no-allocate Write-no-allocate

GPU Micro-architecture Summary

47http://gpgpu-sim.org/manual/index.php/Main_Page

What is Tensor Core ?
• Execute 4 x 4 x 4 matrix multiplication and addition in one

cycle (D = A x B + C)

48

Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

L1 Data Cache/Shared memory Texture memory

Streaming Multiprocessing (SM)

Zhu
et.al.,
MICRO
2019

Why do we need Tensor Core on GPUs ?

• Higher throughput for GEMM ?
• A CUDA (SIMT) core offers 1 single precision multiply-and-

accumulate operation per GPU cycle
• Tensor core can multiply two 4 x 4 F16 matrices and add the

multiplication product fp32 matrix per GPU cycle
• Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the single

precision operation
• Domain-specific Accelerator within the GPU

49

PTX ISAs for Tensor Core
• Two execution modes

• FP 16 mode: All matrices are FP 16
• Mixed precision mode: FP32 accumulator to write results back to FP32

• Warp Matrix Multiply Accumulate (wmma) instruction
• wmma.load // Collectively load a matrix from memory
• wmma.store // Collectively store a matrix from memory
• wmma.mma // Perform a single matrix multiply-and-accumulate

operation across a warp
• Load_matrix_sync, store_matrix_sync and mma_sync // warp-wide

barrier sync.
• Can access wwma ISAs through cuBLAS, cuDNN and CUTLASS

50

WMMA Operations on Tensor Core

• Given A, B, C, and D are 16 x 16 matrices
• A warp computes a matrix multiply and accumulate

D= A x B + C
• 32 threads in a warp are divided into “8” threadgroups
• Worktuple: 2 threadgroups

51

WMMA Operations

52
A x B + C = D

Set 1

Set 2

Set 3

Set 4

• One WMMA breaks into
4 set of HMMA (SASS)

• Each set of HMMA
instruction computes
a product 4 x 4 tile of
A and 4 x 8 tile of B

• Two threadgroups of
worktuple share 4 x 8
tile of B

• 4 x 4 tile of A is private
to each theadgroup

Threadgroup

Zhu et.al., MICRO 2019

Tensor Core Details
• Each Octet has 8 dot product (DP) units
• A DP unit can compute 4-dim vector DP per cycle
• Operand Buffer A can hold a 4 x 4 tile, buffer B holds a 4 x 8 tile
• 4 DP units compute four 4-dim DP/cycle, 8 cycles for 4 x 8 x 4 matrix mul.

53

Register
Operand Bus 1
Operand Bus 2
Operand Bus 3

Tensor Core

Octet 3 Octet 2
Tensor Core

Octet 1
Threadgroup 0 Threadgroup 4

A Buf A Buf

B Buf

Writeback
Octet 0

Ac
c

Bu
f Acc

Buf

Zhu et.al., MICRO 2019

Sparse Tensor Core
• Improve tensor core utilization in sparse MMA
• Sparse MMA is used in the compressed model
• Data encoding + tensor core mapping

54

Original Weight Compressed Weight

Encoded offset

Zhu et.al., MICRO 2019

Conclusion
• Programmable GPU accelerates apps with massive parallelism
• GPU follows SIMT execution model
• GPU Tensor Core increases the throughput of ML apps

55

SIMT Front End SIMD Datapath

ALUALUALU

I-Cache Decode
I-Buffer

Score
Board

Issue
Operand
Collector

MEM

ALU
Fetch SIMT-Stack

Done (WID)

Branch Target PC
Pred.Active

Mask
Scheduler 1

Scheduler 2

Scheduler 3

GPGPU-Sim Tutorial , MICRO, 2012

