
When Designs of 
Computer 

Architecture Meet 
Machine Learning

Tsung Tai Yeh
Computer Science Department of 

National Chiao Tung University, 
Taiwan

1



Overview

• Machine Learning & Deep Neural Network
• Golden Age of Microprocessor Design
• Domain Specific Accelerator
• My Research and my CAS Lab at NCTU
• Life @ the U.S.
• Advice for students
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Machine Learning & Deep 
Neural Network
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What is Machine Learning ?
• “Giving computers the ability to learn without being 

explicitly programmed” – Arthur Samuel, 1959s

4
https://www.ceralytics.com/3-types-of-machine-learning/



Supervised Learning
• Data:(x, y)

• Goal: Learn a function to map x from label data y
• Examples: Object

detection, 
classification, 
image captioning
etc..

• Problems: 
• Tedious labelling work

The x is data, y is label

Train data sets

Trained Model

New data

Dog    Dock5



Unsupervised Learning
• Data: x, no labels !
• Goal: Learn underlying hidden 

structures of the data
• Example: Clustering, 

feature learning, density
estimation, dimensionality
reduction etc..

• Problem:
• The curse of dimensionality

Dimension Reduction on PCA
http://www.nlpca.org/pca_principal_component_analysis.html

2-D Density Estimation
https://www.mathworks.com/matlabcentral/fileexchange/19280-bivariant-kernel-density-estimation-v2-16



Reinforcement Learning
• An agent interacts with the 

environment
• Learning from the reward

signals
• Goal: Learn how to take actions

to maximize the reward
• Examples: Robots control,

Deep mind AlphaGo, Atari Gaming
• Problems:

• Reliability

Agent

Environment Action at

Reward rt

State st
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Deep Learning

Artificial Intelligence
Machine Learning

Brain-Inspired
Spiking

Neural 
Networks

Deep 
Learning
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How does the brain work ?

• Neurons (86 B) (perception) are assembled into layers which are 
connected via synapses

• Dendrites receive inputs from upstream neurons via the synapses. 
• Soma membrane fires inputs to an axon. 
• Axons terminals transmits outputs to downstream neurons.

https://arxiv.org/pdf/2005.01467.pdf

x, w, f(), b are 
activations(input/out
put signals), weights, 
nonlinear function, 
bias
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How does neuron (perception) work?
• Frank Rosenblatt proposed this neural model in 1950-1960
• One neuron can have multiple inputs (xi)
• Weight expresses the importance of the respective inputs to the output
• The output is determined by the rule with weighted sum/threshold
• Neuron is a device that makes decisions by weighting up evidence

Neuron
http://neuralnetworksanddeeplearning.com/chap1.html 10



Neural Networks (NN)
• Hidden layer: neurons in this layer are neither inputs nor outputs, 

extracting input features
• To encode the intensities of image pixels to the input neurons
• Picking the output values > 0.5 that indicates input image is 9

Multilayer perceptrons (MLPs) https://arxiv.org/pdf/2005.01467.pdf

Probability: 0.8

Probability: 0.3
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What is Deep Learning ?
• DNN has more than 3 layers (more than one hidden layer)
• DNNs can learn high-level features than shallow neural networks

12Joel Emer, ISCA 2019



Why Deep Neural Network become popular?
• DNN model outperforms human-being on the ImageNet Challenge

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf
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Convolutional Neural Networks
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CONV
Layer

1-3 
Layers

High-Level 
FeatureCONV

Layer
FC

Layer
…

Classes

Deep CNN: 5 – 1000 Layers

Low-Level 
Feature

Image classification Pipeline: 
Input -> Processing in Deep Layers + Trained Weights -> Output (with Classes) 



Convolutional (CONV) Layers
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CONV
Layer

High-Level 
FeatureCONV

Layer
FC

Layer
…

Classes

Low-Level 
Feature

1. Convolutions mainly perform vector-and-matrix multiplication.
2. Convolutions takes more than 90% of overall computation (critical path).
3. Optimization (software/hardware) for convolutions matters. 



Training versus Inference
• Training: Determining the value of the weights in the network

• Minimizing loss (L)
• Loss (L): the gap between ideal correct probabilities and the 

probabilities computed by the DNN model 
• Inference: Apply trained weights to determine output 

Include only forward pass
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No free lunch on DNN computation
• AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 17



Speed up Machine Learning 
through Domain-Specific 

Accelerator
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A Golden Age in Microprocessor Design
• A great leap in microprocessor speed ~106 X faster over 40 years
• Architectural innovations

• Width: 8->16->32->64 bits (~8X)
• Instruction level parallelism (ILP)
• Multicore: 1 processor to 16 cores 
• Clock rate: 3 – 4000 MHz (~1000 X through technology & architecture)

• IC technology makes it possible
• Moore’s Law: growth in transistor count (2X every 1.5 years)
• Dennard Scaling: power/transistor shrinks at the same rate as 

transistors are added
19John Hennessy, “The Future of Microprocessors”, 2017



Increasing transistors is not getting efficient
General purpose processor is 
not getting faster and power-

efficient because of
Slowdown of Moore’s 

Law and Dennard Scaling

Need Specialized/Domain-
specific accelerators to 
improve computing speed 
and energy
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Moore’s Law

• The number of transistors per chip doubles every 18-24 
months

• That has not been true for years
• It is getting to be increasingly difficult to maintain this 

exponential improvement !! Why?

21



Dennard Scaling
• As the size of the transistor becomes small

• The voltage is reduced
• Circuits can be operated at higher frequency at the same power

22

Power = alpha x CFV2

alpha: percent time switched
C: capacitance
F: Frequency
V: Voltage

What’s wrong on 
Dennard Scaling?

Dennard Scaling ignores “leakage current” ,”threshold voltage”

So, as transistors get small, power density increases !!

Related to 
transistor 
size



What’s Left ?

• Transistors not getting much better
• Power budget not getting much higher
• One inefficient processor/chip to N efficient processors/chip
• Only path left is Domain Specific Architectures

• Just do a few tasks, but extremely well

23John Hennessy, “The Future of Microprocessors”, 2017



Uncover Your Brain 
• The human-being brain comprises different areas (accelerators)
• An adult brain only consumes about 23 W a day !! (Yang)

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif 24

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/
sec = 116.38 J/s = 116 W
20% x 116 W = 23.3 W

Yang, Eric. Think Dinner. Mac 
Evolution, 1998



Learn from Human Being’s Brain
• Designing “Accelerators” to boost up Machine Learning 

https://upload.wikimedia.org/wikipedia/commons/2/27/Artificial_Neural_Network_with_Chip.png

Micro-architecture

Program/Language

System Software
Algorithm

25



Domain Specific Architecture (DSAs)
• Achieving higher performance by tailoring characteristics of domain 

applications to the architecture
• Need domain-specific knowledge to work out good DSAs
• Domain Specific Languages (DSLs)  + DSAs (not strict ASIC)
• Specialize to a domain of many applications

• Examples
• GPU for computer 3D graphics, virtual reality
• Neural processing unit (NPU) for machine learning
• Visual processing unit (VPU) for image processing
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Domain Specific Languages (DSL)

• DSLs target specific operations on a domain of applications
• Need vector, matrix or sparse matrix operations
• DSLs tailors for these operations

• OpenGL, TensorFlow, Halide
• Compilers are important if DSLs are architecture-independent

• Translate, schedule, map ISAs to right DSAs

27



Where is Domain-Specific Accelerators
• Domain-Specific Accelerators are everywhere

Domain-specific 
Accelerators

Domain-specific 
AcceleratorsCPU

2019 Apple A12 
7 nm TSMC 83 mm2

42 accelerators

2014 Apple A8 
20 nm TSMC 89 mm2

28 accelerators

2010 Apple A4 
65 nm TSMC 53 mm2

4 accelerators https://edge.seas.harvard.edu/files/edge/files/alp.pdf 28



Why DSAs can win ?
• More effective parallelism for a specific domain

• SIMD vs. MIMD
• VLIW vs. Speculative, out-of-order

• More effective use of memory bandwidth
• User controlled vs. caches

• Eliminate unneeded accuracy (Quantization)
• Lower FP/INT data precision (32 bit integers -> 8 bit integers)

• Increase the hardware utilization
• Reduce the idle time on pipelining and LD/ST

https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf 29



What is GPU?
• GPU = Graphics Processing Units
• Accelerate computer graphics rendering and rasterization
• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
• Why does GPU use GDDR memory?

• DDR RAM -> low latency access, GDDR RAM -> high bandwidth 

30

System 
Memory 

(DDR RAM)

Graphics 
Memory 

(GDDR RAM)

CPU GPU

bus

CPU GPU

Cache

Memory

Discrete 
GPU

Integrated 
GPU



CPU vs GPU Training Time Comparison
• Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
• Why the model training on GPUs is much faster than on the CPU?

31https://github.com/jcjohnson/cnn-benchmarks



CPU vs GPU

32

Cores Clock 
Speed

Memory Price Throughput

CPU (Intel 
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia 
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed of 
each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of each 
core is low, great for parallel tasks

6.67X



Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak 

performance
• Need to map applications on the GPU carefully (Programmers’ duties)

33

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



What is Tensor Core on GPU?
• Execute 4 x 4 x 4 matrix multiplication and addition in one 

cycle (D = A x B + C)
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Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

SIMD Dispatch 
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SIMD Dispatch 
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SIMD Dispatch 
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SIMD Dispatch 
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Tensor 
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Tensor 
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Tensor 
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Tensor 
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FP64/32 
SP/SFU

Tensor 
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Tensor 
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LD/ST 
Unit

Register 
Files

LD/ST 
Unit

Register 
Files

LD/ST 
Unit

Register 
Files

LD/ST 
Unit

Register 
Files

L1 Data Cache/Shared memory Texture memory

Streaming Multiprocessing (SM)/ SIMT Core

Zhu 
et.al., 
MICRO 
2019



Why do we need Tensor Core on GPUs ?

• Higher throughput for GEMM ?
• A CUDA (SIMT) core offers 1 single precision multiply-and-

accumulate operation per GPU cycle
• Tensor core can multiply two 4 x 4 F16 matrices and add the 

multiplication product F32 matrix per GPU cycle 
• Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the 

single precision operation
• Domain-specific Accelerator within the GPU

35



Story in Tensor Processing Unit (TPU)

• If people use DNN speech recognition service 3 mins per day
• Need to double Google’s data center to meet this requirement
• Why not quickly a customized ASIC for inference ?

• Need to 10 X faster than GPUs
• Must run existing apps developed for CPUs and GPUs

• Very short development time on TPU
• Only take 15 months for architecture and compiler invention, 

hardware design, build, test, deploy

36



Details in TPU v1
• The Matrix Unit: 64K (256 x 256)

8 bit INT multiply-accumulate
• Peak: 92T ops = 65536 x 2 x 700

MHz clock rate
• 4 MiB of 32-bit Accumulator

collects 16 bit products
• Hardware activation logics
• 2.4 MiB on-chip Unified Buffer

(Intermediate results)
• 3.5 X as much on-chip memory 

vs GPU
• 8 GiB off-chip weight DRAM 

37Jouppi et. al, ISCA 2017



Performance Comparison

Processor mm2 Clock(MHz) TDP 
(Watts)

Memory 
(GB/sec)

Peak TOPS/chip
8 b INT 32b FP

CPU: 
Haswell 

(18 core)

662 2300 145 51 2.6 1.3

GPU: 
Nvidia K80

561 560 150 160 -- 2.8

TPU <331 700 75 34 91.8 --

38

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22nm process
Jouppi et. al, ISCA 2017



Why TPU can Win ?

• Large matrix multiply unit
• Substantial software-controlled on-chip memory
• Data Quantization (8-bit INT)
• Parallelism on the hardware instead of Thread-level 

parallelism on GPUs
• What else ? 

39



Is Machine Learning Perfect Enough ?
• Nope !!
• Many difficulties remain:
• Machine is still hard to figure out idiom
• Machine is also hard to understand common sense

40https://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture08-nmt.pdf



Problems in DNN Language Translation

• Nope !!
• Machine has biases in the training data
• Why “she” -> nurse and “he”->programmer?

41

Machine should 
specify the gender

https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be- ce1f7c8c683c



When Machine Learning System is Crazy 

• Machine does something strange on uninterpretable system

42https://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture08-nmt.pdf



Robustness of DNNs
• Adversarial Attack

• Hackers add “noises” in your data (Adversarial samples)
• Adversarial samples enable your DNN to be foolish
• Reliability problems on self-driving vehicles using DNNs

43https://openai.com/blog/adversarial-example-research/



My Research Work
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Introducing Myself

• Lecturer: Tsung Tai Yeh
• E-mail: ttyeh@cs.nctu.edu.tw
• Office: EC 707
• Research topics:

• Computer architecture
• Computer systems
• Memory and storage systems
• Domain-specific accelerators (GPU,

Neural Processing Units)

“Hiring graduate and 
under-graduate students”
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My Research Work
• To design the operational logics of computer devices
• Axiom: Improve “Energy Efficiency” and “Performance” 

46

Algorithm/Problem
Program/Language
Operating System
SW/HW Interface

Micro-architecture
Circuits

Electrons

Computer Architecture 
(Expanded view)

Hardware-Software Co-
Design (Algorithms to 
Devices)

Computer Architecture 
(Narrow view)

Specialize on designs of 
SW/HW inference and 
Micro-architecture



Computer Architecture & System (CAS) Lab
• Build better architectures and Systems
• Create hardware & software Intellectual Property (IP)

47

TSRI AI SoC 
Design Platform 
Block Diagram

https://www.tsri.org.tw/aisoc/aisoc.jsp

What we are focus !!



Multi-Tasking Computing
• Multi-tasking is everywhere

• AI inference serving
• Fintech (High Frequency 

Trading)
• Networking/database

• Goals
• High throughput
• Low latency
• High hardware resource util.

• Designs
• QoS Scheduling
• Virtualization

48



Low Power Edge GPU Architecture

• GPU acceleration on edge
devices

• Xbox, PS 5 -> Gaming
• Video surveillance 

• Goal
• Low power
• High memory bandwidth

• Design
• New Nov-volatile memory integration

49

GPU

DRAM 
Layer
Logic 
Layer

Off-chip GPU-to-Memory link

New Non-volatile Memory



Dataflow DNN Accelerator

• Neural Processing Unit
• Accelerate DNN models

• Goal
• Energy Efficiency
• Low Latency

• Design
• Scheduling & Mapping
• Network-on-Chip communication
• Tiny ML

50

Memory Hierarchy

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Spatial Architecture
(Dataflow Processing)



Robust DNN on Accelerators

• If your self-driving car cannot
recognize spotted stop sign ?

• Foolish DNN Models
• Un-labelled training data
• Malicious attack 

• Self-driving vehicles have 
response time constraint

• Design
• Defense algorithm
• Accelerate secure defense

51

CPU

GPU

NPU

Secure 
Module

SoC Chip



My Life @ U.S.
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Where am I from ?

• How far from Purdue to NCTU? (Shortest Path)
• 11777.55 km

• Taking Flight 
• 13 hrs (900 km/hr)

• Drive Car
• ~5 days (100 km/hr)

• Walk
• ~82 days 

(6 km/hr)

53



How does Purdue Look Like ?

54Purdue Union



How does Purdue Look Like ?
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Purdue alumni: Neil Armstrong 



Seasons in Purdue ?
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Beautiful Spring

Harsh Winter

Summer

Fall



Life @ Purdue
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Coursework

Study

Trail

Sport



Internship @ AMD
• Work for ML on the GPU at AMD, Bellevue

(6 months)
• Collaborate with talents around the world
• CompArch. Pub Night  
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Learn from the U.S.

• Work “Hard” and “Smart”
• Help yourself (Solving problems by yourself. Otherwise …)
• Always ask “Why” when you don’t know
• “Rejection” is not 

the end of the life
• Enjoy the “Beauty”

of the life
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Words for Students
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Advice for Freshman
• Not sure how many students read through my writing ?

61



Summary of my Advice

• Being a responsible person
• Learning to solve problems
• To find out your passion
• To learn to live with people

62

https://www.storm.mg/article/2794353



Conclusion

• The key of machine learning is
“Learning”

• Smarter “machine learning” ?
• Need Algorithm + Accelerator
• Sky is the limit
• May you have a beautiful mind

to explore the beautiful future
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Thank You!!
Q & A
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