Accelerating Machine Learning through Software + Hardware Tsung Tai Yeh Computer Science Department of National Chiao Tung University, Taiwan

1

Overview

- Machine Learning & Deep Neural Network
- Golden Age of Microprocessor Design
- Software Optimization Techniques
- Domain Specific Accelerator
- My Research and my CAS Lab at NYCU

Machine Learning & Deep Neural Network

What is Machine Learning ?

 "Giving computers the ability to learn without being explicitly programmed" – Arthur Samuel, 1959s

Supervised Learning

• Data:(x, y)

The x is data, y is label

- Goal: Learn a function to map x from label data y
- Examples: Object detection, classification, image captioning etc..

• Problems:

• Tedious labelling work

Unsupervised Learning

- Data: x, no labels !
- Goal: Learn underlying hidden structures of the data
- Example: Clustering, feature learning, density estimation, dimensionality reduction etc..
- Problem:
 - The curse of dimensionality

2-D Density Estimation

Reinforcement Learning

- An agent interacts with the environment
- Learning from the reward signals
- Goal: Learn how to take actions to maximize the reward
- Examples: Robots control, Deep mind AlphaGo, Atari Gaming
- Problems:
 - Reliability

How does the brain work ?

- which are connected via synapses
- Dendrites receive inputs from upstream neurons via the synapses.
- Soma membrane fires inputs to an axon.
- Axons terminals transmits outputs to downstream neurons.

https://arxiv.org/pdf/2005.01467.pdf 9

bias

Neural Networks (NN)

- Hidden layer: neurons in this layer are neither inputs nor outputs, extracting input features
- To encode the **intensities** of image pixels to the input neurons
- Picking the output values > 0.5 that indicates input image is 9

What is Deep Learning ?

- DNN has more than 3 layers (more than one hidden layer)
- DNNs can learn high-level features than shallow neural networks

Why Deep Neural Network is popular?

• DNN model outperforms human-being on the ImageNet Challenge

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf

Convolutional (CONV) Layers

- 2. Convolutions takes more than **90%** of overall computation (critical path).
- 3. Optimization (software/hardware) for convolutions matters.

Training versus Inference

- Training: Determining the value of the weights in the network
 - Minimizing loss (L)
 - Loss (L): the gap between ideal correct probabilities and the probabilities computed by the DNN model
- Inference: Apply trained weights to determine output. Include only forward pass
 Class Probabilities

No free lunch on DNN computation

• AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 15

Challenges of Existing Computer Hardware

Moore's Law

- The number of transistors per chip **doubles** every 18-24 months
- The performance grows linearly with the transistor count (Before 2004)

17

A Golden Age in Microprocessor Design

- A great leap in microprocessor speed ~10³ X faster over 30 years
- Apple computer with similar prices from 1977 to 2004

Apple II		Power Macintosh G4		Power Macintosh G5	
Launch:	1977	Launch:	2000	Launch:	2004
Clock rate:	1MHz	Clock rate:	400MHz	Clock rate:	1.8GHz
Data path:	8 bits	Data path:	32 bits	Data path:	64 bits
Memory:	48 KB	Memory:	64 MB	Memory:	256 MB
Cost:	\$1,395	Cost:	\$1,599	Cost:	\$1,499

Increasing transistors isn't getting efficient

General purpose processor is not getting faster and power-efficient because of **Slowdown of Moore's** Law and Dennard Scaling

Dennard Scaling

- As the size of the transistor becomes small
 - The voltage is reduced
 - Circuits can be operated at higher frequency at the same power

Related to transistor	Power = alpha x CFV ² alpha: percent time switched			
size	 C: capacitance F: Frequency V: Voltage 	What's wrong on Dennard Scaling?		
Dennard S	caling ignores "leakage curre	ent","threshold voltage"		
So, as tran	sistors get small, power den	sity increases !! 20		

Vendor's Solution: Multi-core

- Intel Core i9 10900K (Comet Lake-S), 2020
 - 10 cores
 - 3.7 GHz
 - 20 MB L3 Cache
- In the new multi-core
 - Big multi-core processors
 - Complex cache hierarchies
 - Wide vector units
 - GPU
 - FPGA

Challenge: How to adapt the software to utilize this hardware efficiently ?

Software Optimization Techniques

Case Study: Matrix Multiplication

- Matrix Multiplication (MM) takes the majority of computation time in DNN apps
- Square-Matrix Multiplication

 $\begin{bmatrix} C_{11} & \dots & C_{1n} \\ \dots & \dots & \dots \\ C_{n1} & \dots & C_{nn} \end{bmatrix} = \begin{bmatrix} A_{11} & \dots & A_{1n} \\ \dots & \dots & \dots \\ A_{n1} & \dots & A_{nn} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & \dots & B_{1n} \\ \dots & \dots & \dots \\ B_{n1} & \dots & B_{nn} \end{bmatrix}$ $C \qquad \qquad C \qquad \qquad C_{ij} = \sum_{k=0}^{n} A_{ik} b_{jk}$

Assuming for the simplicity $n = 2^k$

AWS Machine Specs

Feature	Specification
CPU	Intel Xeon E5-2666 v3
Clock frequency	2.9 GHz
Processor chips	2
Processing cores	9 per processor chip
Hyperthreading	2 ways
Float-point units	8 double-precision operations, including fused-multiply-add, per core per cycle

Peak = (2.9 x 10⁹) x 2 (hyper-threading) x 9 (# of cores) x 2 (# of processors) x 8 (SIMD double precision) = 836 GFLOPS

Version 1: Nested Loops in Python

- Running time =
 21042 seconds ≈ 6 hours
- 2n³ = 2(2¹²)³ = 2³⁷ floating-point operations takes 2³⁷/21042 ≈ 6.25 MFLOPS
- Python gets ≈
 0.00075% of peak

```
import sys, random
from time import *
n = 4096
A = [[random.random() for row in xrange(n)] for col in xrange(n)]
B = [[random.random() for row in xrange(n)] for col in xrange(n)]
C = [[random.random() for row in xrange(n)] for col in xrange(n)]
start = time()
for i in xrange(n):
   for j in xrange(n):
     for k in xrange(n):
          C[i][j] += A[i][k] * B[k][j]
end = time()
print '0.3f' % (end - start)
```

Version 2: Java

- Running time = 2,738 seconds ≈ 46 minutes
- About 8.8 X faster than Python

```
import java.util.Random
Public class mm_java {
```

}}

```
static int n = 4096
static double [][] A = new double[n][n]
static double [][] B = new double[n][n]
static double [][] C = new double[n][n]
public static void main(string [] args )
```

```
.... // init A, B, C
long start = System.nanoTime();
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        for (int k = 0; k < n; k++) {
            C[i][j] += A[i][k] * B[k][j]; }}
long stop = System.nanoTime();
System.out.println(stop - start)</pre>
```

Version 3: C

- Running time = 1,156 seconds ≈ 19 minutes
- 2 X faster than Java codes
- ≈ 18 X faster than Python codes

```
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#define n 4096
double A[n][n], B[n][n], C[n][n];
int main(int argc, const char *argv[] ) {
       .... // init A, B, C
       struct timeval start, end;
       gettimeofday(&start, NULL);
       for (int i = 0; i < n; i++) {
          for (int j = 0; j < n; j++) {
              for (int k = 0; k < n; k++) {
                  C[i][j] += A[i][k] * B[k][j]; }}
        gettimeofday(&end, NULL);
  return 0;
```

Comparison Python, Java, C Implementation

version	Implementation	Running time (sec.)	Absolute Speedup	GFLOPS	Percent of Peak
1	Python	21041.67	1.00	0.007	0.001
2	Java	2387.32	8.81	0.058	0.007
3	С	1155.77	18.2	0.119	0.014

- Why is Python codes so slow against C?
 - Python is interpreted
 - C is compiled directly to machine code.
 - Java is compiled to byte-code, which is then interpreted and justin-time (JIT) compiled to machine codes.

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) 28

More Optimization – Loop Order

• We can change the order of the loops in MM program without affecting its correctness

Does loop order affect the performance of MM program ?

More Optimization – Loop Order

- Loop order affects running by a factor of **18** !!
- Why different loop orders can make such a big change ?

Loop Order (outer to inner)	Running time (sec.)
i, j, k	1155.77
i, k, j	177.68
J, i, k	1080.61
J, k, i	3056.63
k, i, j	179.21
k, j, i	3032.82

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) 30

Hardware Caches

- The cache sits near the processor
- The cache reduces the memory access latency of reused data
 - Cache hits accesses to data in cache fast
 - Cache misses accesses to data not in cache slow
 - Cache lines data is stored as contiguous blocks in cache

Memory Layout of Matrices

 In this matrix-multiplication code, matrices are laid out in memory in row-major order.
 Matrix

Access Pattern of Matrix Multiplication

-	Running time: 1155.77 sec. i = 0, j = 0, k = [0 4095]	<pre>for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) C[i][j] += A[i][k] * B[k][j];</pre>
C		
=		
A		
X	4096 elements	
B	In-mem	ory layout

for (int i = $0 \cdot i < n \cdot i + 1$)

Memory Access Pattern for Order i, k, j

Memory Access Pattern for Order j, k, i

Performance of Different Order

• The running time of MM is associated with cache miss rate

Loop Order (outer to inner)	Running time (sec.)	Last-level-cache miss rate
i, j, k	1155.77	7.7%
i, k, j	177.68	1.0%
J, i, k	1080.61	8.6%
J, k, i	3056.63	15.4%
k, i, j	179.21	1.0%
k, j, i	3032.82	15.4%

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) ³⁶

More optimization – Compiler Optimization

- Clang compiler includes a collection of optimization switches
- People can specify a switch to the compiler to perform code optimization

Opt. Level	Meaning	Time (sec.)
-00	Do not optimize	177.54
-01	Optimize	66.24
-02	Optimize even more	54.63
-03	Optimize yet more	55.58

6.172 Performance Engineering of Software Systems, Lecture 1: Introduction and Matrix Multiplication (mit.edu) 37

Version 5: Optimization Flags

- We only reach 0.3% of the peak performance of the machine.
- How to squeeze more performance juice of MM ?

version	Implementation	Running time (sec.)	Absolute Speedup	GFLOPS	Percent of Peak
1	Python	21041.67	1.00	0.007	0.001
2	Java	2387.32	8.81	0.058	0.007
3	С	1155.77	18.2	0.119	0.014
4	Interchange loops	177.68	118.42	0.774	0.093
5	Optimization flag	54.63	385.17	2.516	0.301

Version 6: Parallel Loops on Multi-core

- Intel E5 has 9 cores per chip, and a AWS machine has 2 chips
- We can run MM on 18 parallel cores concurrently
- We can parallelize one of these 3 loops
- OpenMP or Cilk library can help us to run MM in parallel

Version 6: Parallel Loops on Multi-core

- Using parallel loops achieves ~ 18 X speed up on 18 cores
- Disclaimer: Not all code is so easy to parallelize effectively
- However, we still use 5% of peak performance so far !!

version	Implementation	Running time (sec.)	Absolute Speedup	GFLOPS	Percent of Peak
1	Python	21041.67	1.00	0.007	0.001
2	Java	2387.32	8.81	0.058	0.007
3	С	1155.77	18.2	0.119	0.014
4	Interchange loops	177.68	118.42	0.774	0.093
5	Optimization flag	54.63	385.17	2.516	0.301
6	Parallel loops	3.04	6921.6	45.21	5.408

Version 7: Tiling on Cache

- Restructure the computation to reuse data in the cache as much as possible
- How many memory accesses of fully compute 1 row of C ?
 - 4096 x 1 = 4096 writes to C
 - 4096 x 1 = 4096 reads from A
 - 4096 x 4096 reads from B
 - 16,785,408 memory access in total

Version 7: Tiling on Cache

- Partition data in blocks which are reused in the cache
- How many memory accesses to compute 64 x 64 block of C?
 - 64 x 64 = 4096 writes to C
 - 64 x 4096 = 262,144 reads from A
 - 4096 x 64 = 262,144 reads from B
 - 528,384 memory accesses in total

Tiled Matrix Multiplication Parallel_for (int ih = 0; ih < n; ih += s) Parallel_for (int jh = 0; jh < n; jh += s) for (int kh = 0; kh < n; kh += s) for (int il = 0; il < s; ++ il) for (int kl = 0; kl < s; ++ kl) for (int jl = 0; jl < s; ++ jl) C[ih + il][jh + jl] += A[ih + il][kh + kl] * B[kh + kl][jh + jl];

Tiling block size	Running time (s)
4	6.74
8	2.76
16	2.49
32	1.74
64	2.33

Version 7: Tiling

version	Implementation	Running time (sec.)	Absolute Speedup	GFLOPS	Percent of Peak
1	Python	21041.67	1.00	0.007	0.001
2	Java	2387.32	8.81	0.058	0.007
3	С	1155.77	18.2	0.119	0.014
4	Interchange loops	177.68	118.42	0.774	0.093
5	Optimization flag	54.63	385.17	2.516	0.301
6	Parallel loops	3.04	6921.6	45.21	5.408
7	Tiling	1.74	12,092.9	72.782	9.184
Implementation		Cache reference (millions)		L1-D cache misse	s (millions)
Parallel loop		104,090		17,220	
Tiling		64,690		11,777	

The tiling reduces 38% cache reference and 32% cache misses

Further Optimization

versio n	Implementation	Running time (sec.)	Absolute Speedup	GFLOPS	Percent of Peak
1	Python	21041.67	1.00	0.007	0.001
2	Java	2387.32	8.81	0.058	0.007
3	С	1155.77	18.2	0.119	0.014
4	Interchange loops	177.68	118.42	0.774	0.093
5	Optimization flag	54.63	385.17	2.516	0.301
6	Parallel loops	3.04	6921.6	45.21	5.408
7	Tiling	1.74	12,092.9	72.782	9.184
8	Parallel divide-and-conquer	1.30	16,197	105.722	12.646
9	Vectorization	0.70	30272	196.341	23.486
10	AVX intrinsics	0.39	53292	352.408	41.677

We can gain 53,292 X faster than naïve Python codes by software optimization ! 45

What's Left ?

- Transistors not getting much better
- Power budget not getting much higher
- One inefficient processor/chip to N efficient processors/chip
- Only path left is **Domain Specific Architectures**
 - Just do a few tasks, but extremely well

Speed up Machine Learning through Domain-Specific Accelerator

Uncover Your Brain

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/ sec = 116.38 J/s = 116 W 20% x 116 W = 23.3 W

- The human-being brain comprises different areas (accelerators)
- An adult brain only consumes about 23 W a day !! (Yang)

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif

Learn from Human Being's Brain

• Designing "Accelerators" to boost up Machine Learning

https://upload.wikimedia.org/wikipedia/commons/2/27/Artificial_Neural_Network_with_Chip.png

Domain Specific Architecture (DSAs)

- Achieving higher performance by tailoring characteristics of domain applications to the architecture
 - Need domain-specific knowledge to work out good DSAs
 - Domain Specific Languages (DSLs) + DSAs (not strict ASIC)
 - Specialize to a domain of many applications
- Examples
 - GPU for computer 3D graphics, virtual reality
 - Neural processing unit (NPU) for machine learning
 - Visual processing unit (VPU) for image processing

Domain Specific Languages (DSL)

- DSLs target specific operations on a domain of applications
- Need vector, matrix or sparse matrix operations
- DSLs tailors for these operations
 - OpenGL, TensorFlow, Halide
- Compilers are important if DSLs are architecture-independent
 - Translate, schedule, map ISAs to right DSAs

Where is Domain-Specific Accelerators

• Domain-Specific Accelerators are everywhere

2010 Apple A4 65 nm TSMC 53 mm² 4 accelerators 2014 Apple A8 20 nm TSMC 89 mm² 28 accelerators 2019 Apple A12 7 nm TSMC 83 mm² 42 accelerators

https://edge.seas.harvard.edu/files/edge/files/alp.pdf

Why DSAs can win ?

- More effective parallelism for a specific domain
 - SIMD vs. MIMD
 - VLIW vs. Speculative, out-of-order
- More effective use of memory bandwidth
 - User controlled vs. caches
- Eliminate unneeded accuracy (Quantization)
 - Lower FP/INT data precision (32 bit integers -> 8 bit integers)
- Increase the hardware utilization
 - Reduce the idle time on pipelining and LD/ST

What is GPU?

- GPU = Graphics Processing Units
- Accelerate computer graphics rendering and rasterization
- Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)
- Why does GPU use GDDR memory?
 - DDR RAM -> low latency access, GDDR RAM -> high bandwidth

CPU vs GPU Training Time Comparison

- Normalized Training time on CPU and GPU (CPU has 16 cores, 32 threads)
- Why the model training on GPUs is much faster than on the CPU?

https://github.com/jcjohnson/cnn-benchmarks⁵⁵

CPU vs GPU

	Cores	Clock Speed	Memory	Price	Throughput	
CPU (Intel Core i7- 7700k)	4	4.2 GHz	DDR4 RAM	\$385	~540 GFLOPs F32	
GPU (Nvidia RTX 3090 Ti)	10496	1.7 GHz	DDR6 24 GB	\$1499	36 TFLOPs F32 6.	67X

CPU: A small number of complex cores, the clock speed of

each core is high, great for sequential tasks

GPU: A large number of simple cores, the clock speed of each

core is low, great for parallel tasks

Why do we use GPU for computing ?

- What is difference between CPU and GPU?
 - GPU uses a large portion of silicon on the computation against CPU
 - GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak performance
 - Need to map applications on the GPU carefully (Programmers' duties)

GPU

What is Tensor Core on GPU?

• Execute 4 x 4 x 4 matrix multiplication and addition in one cycle (D = A x B + C)

Why do we need Tensor Core on GPUs ?

- Higher throughput for GEMM ?
 - A CUDA (SIMT) core offers 1 single precision multiply-andaccumulate operation per GPU cycle
 - Tensor core can multiply two 4 x 4 F16 matrices and add the multiplication product F32 matrix per GPU cycle
 - Tensor core can achieve 125 Tflops/s vs 15.7 Tflops/s for the single precision operation
 - Domain-specific Accelerator within the GPU

Story in Tensor Processing Unit (TPU)

- If people use DNN speech recognition service 3 mins per day
- Need to double Google's data center to meet this requirement
- Why not quickly a customized ASIC for inference ?
 - Need to **10 X** faster than GPUs
 - Must run existing apps developed for CPUs and GPUs
- Very short development time on TPU
 - Only take **15 months** for architecture and compiler invention, hardware design, build, test, deploy

Details in TPU v1

- The Matrix Unit: 64K (256 x 256 8 bit INT multiply-accumulate
- Peak: 92T ops = 65536 x 2 x 700 MHz clock rate
- 4 MiB of 32-bit **Accumulator** collects 16 bit products
- Hardware activation logics
- 2.4 MiB **on-chip Unified Buffer** (Intermediate results)
- 3.5 X as much on-chip memory vs GPU
- 8 GiB off-chip weight DRAM

Jouppi et. al, ISCA 2017 61

Performance Comparison

Processor	mm ²	Clock(MHz)	TDP	Memory	Peak TOPS/chip	
			(Watts)	(GB/sec)	8 b INT	32b FP
CPU: Haswell (18 core)	662	2300	145	51	2.6	1.3
GPU: Nvidia K80	561	560	150	160		2.8
TPU	<331	700	75	34	91.8	

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22nm process Jouppi et. al, ISCA 2017 62

Why TPU can Win ?

- Large matrix multiply unit
- Substantial software-controlled on-chip memory
- Data Quantization (8-bit INT)
- Parallelism on the hardware instead of Thread-level parallelism on GPUs
- What else ?

My Research Work

Introducing Myself

- Lecturer: Tsung Tai Yeh
 - E-mail: <u>ttyeh@cs.nctu.edu.tw</u>
 - Office: EC 707
 - Research topics:
 - Computer architecture
 - Computer systems
 - Memory and storage systems
 - Domain-specific accelerators (GPU, Neural Processing Units)

"Hiring graduate and

under-graduate students"

My Research Work

- Performance Engineering
 - How to accelerate your applications by using software + hardware techniques ?

Computer Architecture (Expanded view) Hardware-Software Co-

Design (Algorithms to Devices)

Computer Architecture (Narrow view)

Specialize on designs of SW/HW inference and Micro-architecture

Conclusion

- Speed up "machine learning"
- Need Software Opt. + Accelerator
- Sky is the limit
- May you have a beautiful mind to explore the beautiful future
- ttyeh@cs.nctu.edu.tw

Thank You!! Q&A