
Parametric Dimension Reduction by Preserving Local Structure
Chien-Hsun Lai * Ming-Feng Kuo † Yun-Hsuan Lien ‡ Kuan-An Su § Yu-Shuen Wang ¶

National Yang Ming Chiao Tung University, Taiwan

ABSTRACT

We extend a well-known dimension reduction method, t-distributed
stochastic neighbor embedding (t-SNE), from non-parametric to
parametric by training neural networks. The main advantage of a
parametric technique is the generalization of handling new data,
which is beneficial for streaming data visualization. While previ-
ous parametric methods either require a network pre-training by
the restricted Boltzmann machine or intermediate results obtained
from the traditional non-parametric t-SNE, we found that recent
network training skills can enable a direct optimization for the t-
SNE objective function. Accordingly, our method achieves high
embedding quality while enjoying generalization. Due to mini-
batch network training, our parametric dimension reduction method
is highly efficient. For evaluation, we compared our method to
several baselines on a variety of datasets. Experiment results demon-
strate the feasibility of our method. The source code is available at
https://github.com/a07458666/parametric dr.

Index Terms: Computing methodologies—Dimensionality re-
duction and manifold learning—; Human-centered computing—
Visualization toolkits—

1 INTRODUCTION

Dimension reduction (DR) techniques are widely utilized to facil-
itate data exploration and visual analysis. The goal is to project
high-dimensional data X to low-dimensional embedding Y , while
retaining either global or local data structures. Among the tech-
niques, t-distributed stochastic neighbor embedding (t-SNE) [23]
is considered a classical method, which attempts to maximize the
probability of nearby/distinct points in X to be nearby/distinct in
Y . Subsequently, several extensions were presented to improve the
performance of t-SNE because it has to update the conditional prob-
ability of each data point in the embedding space in each iteration.

T-SNE is a non-parametric DR method. The advantage of a non-
parametric method is high flexibility when determining the positions
of data points in the low-dimensional space. Without the parametric
constraint, it can effectively optimize the objective function and
obtain high-quality results [11]. On the other hand, non-parametric
methods lack generalization, which cannot apply the transformation
obtained from the given dataset to reduce the dimensionality of new
data points. To handle new data points, the methods have to merge
the old and the new datasets, and then recompute the data positions
in the embedding space. Since the goal of DR is retaining only data
structures, the results in consecutive runs could differ by a rigid
transformation. Users cannot compare results quickly in the runs
and must pay more attention when they study online or streaming
data by using non-parametric methods.

*e-mail: jxcode.tw@gmail.com
†e-mail: sunnyday90154@gmail.com
‡e-mail: sophia.yh.lien@gmail.com
§e-mail: a07458666@gmail.com
¶e-mail: yushuen@cs.nctu.edu.tw

We train a neural network to reduce data dimensionality by opti-
mizing the t-SNE objective function. The network can be considered
a function and is generalized to handle new data points. While
previous methods claim that neural networks would get stuck in
poor local minimums [37] if they are trained by directly optimizing
the t-SNE objective function, we found that recent training skills,
particularly the Adam optimizer [16] and Leaky Relu activation
function [22, 42], can effectively prevent such a problem. Accord-
ingly, the networks are trained from scratch, and the quality of
DR results improves. Furthermore, we adopt the commonly used
stochastic gradient descent method to train the network, which con-
siders only a batch of data when updating network parameters in
each iteration. The computation complexity of updating conditional
probabilities of data points in the embedding space reduces, and
the system performance increases. To evaluate the effectiveness of
our DR network, we compared the network with several parametric
methods in terms of trustworthiness, continuity, and neighborhood
hit on a variety of datasets. Experiment results show that our DR
network outperformed previous methods.

2 RELATED WORKS

Dimension Reduction. Dimension reduction algorithms project
high-dimensional data X to low-dimensional embedding Y , which
allows users to visually analyze data structures and identify out-
liers. Among the methods, principal component analysis (PCA) [34]
seeks to maximize the variance of Y in each dimension. Linear
discriminant analysis (LDA) [1] extends the PCA by incorporat-
ing data labels, which aims to optimally separate data points of
different labels. On the other hand, multi-dimensional scaling
(MDS) [3, 18, 31], isometric feature mapping (IsoMap) [36], self-
organizing map (SOM) [38], locally linear embedding (LLE) [30],
maximum variance unfolding (MVU) [40], and Laplacian eigen-
maps [2], were presented to preserve the relative distances of data
points when projecting X into Y .

Stochastic neighbor embedding (SNE) [13] models the relation-
ship between data points by a conditional probability. By minimizing
the KL divergence of data distributions in high- and low- dimen-
sional spaces, it faithfully preserves the local structure of data. Subse-
quently, t-SNE [23] extends the SNE by symmetrizing the probabil-
ity distribution and employing a heavy-tailed student t-distribution to
compute the joint probability of data points in the embedding space.
To preserve other characteristics of high-dimensional data, such as
global data distances, Im et al. [15] replaced the KL divergence
with f-divergence metrics for different types of structure discovery.
LargeVis [35] uses a similar strategy to t-SNE but eliminates the
need for normalization in the embedding space. UMAP [24] utilizes
the language of algebraic topology to preserve the local distance
structure. It achieves comparable quality to t-SNE and LargeVis,
while being able to retain the global structure of data and consume
lower computation cost.

Parametric Extensions of t-SNE and UMAP. T-SNE has
proven to work well on many real-world datasets. One drawback,
however, is the lack of an explicit mapping function to handle un-
seen data. Consequently, several methods were presented to extend
t-SNE from non-parametric to parametric at the cost of lower embed-
ding quality, which is a result of the non-flexibility of a parametric
form. One way to achieve parametric extension is to pair a part

https://github.com/a07458666/parametric_dr

of high-dimensional data and their embeddings produced by the
traditional t-SNE. Then, the methods apply local transformations
to reduce the dimensionality of unseen data according to the rela-
tive distances to those paired samples [4, 10, 11]. Another way to
reduce data dimensionality is training neural networks. Due to the
complex parameter interactions, networks often get stuck in bad
local minimums if their parameters are updated by backpropagation.
To overcome the problem, Parametric t-SNE [37] uses a stack of
restricted Boltzmann machines to pre-train a feed-forward network,
and then fine-tunes the network using the t-SNE objective func-
tion. Subsequently, dt-SEE [25] extends the parametric t-SNE with
exemplars in high-dimensional space to avoid pairwise distance cal-
culation. Espadoto et al. [7] applied the traditional t-SNE to project
high-dimensional data X to Y . Then, they trained the network on
the paired X and Y to achieve generalization. Recently, the authors
of [32] extended the non-parametric UMAP by training neural net-
works. They used negative sampling to prevent the large batch size
required by the parametric t-SNE [37] when training. While previ-
ous methods apply complex training strategies to prevent networks
from getting stuck in bad local minimums, in this study, we point
out that recent optimizer and activation functions in deep learning
can achieve the goal without additional computation.

3 PARAMETRIC DIMENSION REDUCTION USING T-SNE
3.1 Background

Given a data set X = {xi ∈ Rd} in high-dimensional space and
the embedding set Y = {yi ∈ Rs} that contains the corresponding
points in low-dimensional space. The DR method attempts to find a
mapping function that can minimize a predefined loss

argmin
Y

C(X ,Y) (1)

to retain data structures. In each iteration, the algorithm calculates
the gradient of the loss with respect to the embedding ∂C

∂yi
and moves

each yi to the desirable position. For simplicity, we use the term
embedding to denote data points in low-dimensional space in later
sections.

T-SNE attempts to maintain points that are nearby/distinct in
high-dimensional space to be nearby/distinct in low-dimensional
space. To implement this idea, it models the similarity of data points
xi and x j by the joint probability pi j . The idea can be expressed as:

pi j =
p j|i + pi| j

2
, p j|i =

exp(−||xi− x j||2/2σ2
i)

∑k!=i exp(−||xi− xk||2/2σ2
i)

, (2)

where σi is the variance determined by the neighbor perplexity. For
the corresponding points yi and y j in low-dimensional space, t-SNE
employs a heavy-tailed student t-distribution to compute a weight
wi j between them. It then normalizes the weight to obtain the joint
probability as follows:

qi j =
wi j

∑k ∑l wkl
, wi j =

1
1+ ||yi− y j||22

. (3)

Let P and Q be the joint distributions of pi j and qi j, respectively,
t-SNE minimizes the divergence of the joint probability

C = KL(P||Q) = ∑
i

∑
j

pi jlog
pi j

qi j
. (4)

Then, one can derive the gradient concerning yi to update point
positions in low-dimensional space. Namely,

∂C
∂yi

= 4∑
j

(pi j−qi j)(yi− y j)

1+ ||yi− y j||22
. (5)

Sigmoid + Adam Leaky Relu + SGDLeaky Relu + Adam

Figure 1: The activation function and optimizer are essential when
training neural networks to reduce data’s dimensionality. This experi-
ment was conducted on the MNIST dataset.

3.2 Neural Network based t-SNE
We extend the non-parametric t-SNE to a parametric t-SNE by train-
ing a deep neural network. The network fθ (xi) maps each input data
point xi to the embedding yi, where θ indicates the parameters of f .
Accordingly, Equation 1 can be written as:

argmin
θ

C(X , fθ (X)). (6)

Because our goal is to compute the function f , the unknowns are the
network parameters θ . The gradient then becomes

∂C(X , fθ (X))

∂θ
= ∑

i

∂C(xi, fθ (xi))

∂ fθ (xi)

∂ fθ (xi)

∂θ
, (7)

for updating the network. By substituting ∂C
∂ fθ (xi)

in Equation 7 with
Equation 5, we obtain

∂C
∂θ

= 4∑
i

∑
j

(pi j−qi j)(fθ (xi)− fθ (x j))

1+ || fθ (xi))− fθ (x j)||22

∂ fθ (xi)

∂θ
. (8)

for updating network parameters.
Networks may get stuck in poor local minimums if they are

trained by directly optimizing the t-SNE objective function [37]. We
accidentally found that recent network training skills, particularly
the Adam optimizer [16] and Leaky Relu activation function [22,
42], can effectively prevent such a problem. Figure 1 shows the
results achieved using different optimizers and activation functions.
Specifically, Relu and leaky Relu can avoid the gradient vanish
problem that commonly appears in the Sigmoid function; and the
Adam optimizer considers the momentum to prevent high oscillation
when partial samples are utilized to estimate the gradients.

Optimizing the network f using Equation 8 demands the compu-
tation of each joint probability qi j and fθ (xi)− fθ (x j) whenever the
network is updated. The computation complexity is O(N2), where
N is the number of data points in the whole dataset. This is also the
reason that the classical t-SNE is slow. Fortunately, the independent
and identically distributed assumption enables neural networks to
be trained by using the stochastic gradient descent method, where,
in each iteration, only a small amount of data are used to update
network parameters. Specifically, we randomly sample a batch of
data points from the dataset and then use them to compute the joint
probability qi j, where i and j are the sample indexes in a batch,
respectively. Let n be the batch size, the complexity is then reduced
from O(N2) to O(n2) in each iteration.

3.3 Training Details
We implemented the presented DR method using PyTorch [28].
Without a loss of generality, the network is composed of fully con-
nected layers. We built the layers with hidden units 1024→ 512→
256→ 128→ 2 to gradually reduce data dimensionality. We used
the Xavier initialization [12] to initialize the network parameters,

set the batch size to 256, and set the learning rate to 10−3. The
activation function in each layer is Leaky ReLU [22], and the Adam
optimizer [16] is used to update network parameters. Moreover, we
used the early exaggeration trick the same as the original t-SNE
method, in the first 250 iterations for a faster convergence.

4 EVALUATION AND EXPERIMENT RESULTS

4.1 Baselines
We compared our method to several parametric DR methods. The
goal is to transform high-dimensional data X to low-dimensional
embedding Y . Since the experiment results in the work of [8] re-
veal that t-SNE and UMAP achieved the highest quality projections,
we included their parametric extensions (i.e., Param T [37] and
Param U [32]) in the comparison. We used a GitHub implemen-
tation of Param T1 and the official implementation of Param U2.
In addition, we compared our method with autoencoder (AE) and
deep learning multidimensional projections (DLMP) because they
utilize neural networks to reduce data dimensionality as well. The
network architecture of AE’s encoder and DLMP was the same
to ours, and the AE’s decoder was symmetric to the encoder. We
also compared the well-known parametric DR method, principal
component analysis (PCA)3, in this study.

4.2 Quality Metrics
DR is an ill-posed problem because information loss is inevitable.
Often, several metrics are jointly used to evaluate the quality of DR
methods. In this study, we considered trustworthiness Mt , continuity
Mc [39], and neighborhood hit MNH [29] because the metrics are
well known and interpretable. The metrics evaluate the K-nearest
neighbors (KNNs) of each sample in the embedding and the high-
dimensional space. Note that the neighborhood hit is applicable only
to labeled datasets. It also requires data in the high-dimensional
space to be well separable into classes. Following the setting of [8],
we set k = 7 if the KNNs are needed for evaluation. The values of
Mt , Mc, and MNH are all in [0,1]. Among the metrics, 1 implies the
best quality and 0 indicates the worst. The integrated metrics can be
written as

µ = (Mt +Mc +MNH)/3. (9)

4.3 Datasets
We compared the DR methods on several real-world datasets. They
are from different domains and exhibit non-trivial data structures.
Specifically, the datasets are: Bank [26], MNIST [19], F-MNIST
[41], Cat & Dog [6], Cifar10, Cifar100 [17], IMDB [21], Hatespeech
[5], Letter [9], Norb [20], and SVHN [27]. Since the neighborhood
hit MNH requires data in the high-dimensional space to be well
separated, to achieve a meaningful experiment, we followed the
work of [7] and pre-processed the datasets prior to DR comparison.
We used the DenseNet201 [14] pre-trained on the ImageNet to
extract features from the Cat&Dog, Cifar10, Cifar100, Norb, and
SVHN datasets. All of the resulting features were 1920D because of
the maxpooling layer at the back of DenseNet201. We also applied
the term frequency-inverse document frequency (TF-IDF) [33] to
compute the 500D text features from the IMDB and the Hatespeech
datasets. Regarding the MNIST and Fashion-MNIST, we simply
flatten the images to 784D vectors. Finally, the raw data in the Bank
and the Letter datasets were directly used in the comparison.

4.4 Procedures and Experiment results
The evaluation focused on generalization. The projection parameters
were optimized on the training set and then evaluated on the testing
set. In the experiments, we randomly selected 5000 samples from

1https://github.com/luke0201/parametric-tsne-keras
2https://github.com/timsainb/ParametricUMAP paper
3https://scikit-learn.org/stable/

each dataset for training and another 15000 samples for testing. For
the methods based on neural networks, 10% of the training samples
were randomly selected for validation. The training process started
from the initialization and repeated until the validation loss stopped
decreasing (i.e., < 10−5) or the epoch number exceeds 200.

Since user-defined parameters could considerably affect projec-
tion quality, we did a grid search that could maximize Equation 9
if the method requires a parameter tuning. Specifically, we set the
perplexity to {50,150,300,500} when the variants of t-SNE were
executed. We set the number of neighbors to {5,10,15} and the min-
imum distance to {0.001,0.01,0.1,0.5}when the variants of UMAP
were executed. We also set the iteration number to {1000,3000}
when the non-parametric t-SNE was used to generate embeddings
required by the DLMP.

Visual Comparison. Figure 2 and Figure ?? in our supplemental
material show the 2D embeddings projected by the baselines and our
method. We select the embedding of each method on each dataset
that has the best quality (Equation 9). In an embedding, each dot is
a sample, and each distinct color indicates a class. Ideally, a good
embedding should retain the structure of data in the high dimensional
space. Therefore, dots in the same color should gather, and dots in
different colors should separate. As can be seen, PCA’s embeddings
were the worst because points with different colors are mixed, and
the clusters are indistinguishable. Clusters in AE’s embeddings are
separable, yet the clusters may not be compact. We suspect the
reason is that AE attempts to reconstruct high-dimensional samples.
The spread of dots in a cluster allows AE to encode individual
and unique properties of each sample. DLMP’s embeddings reveal
compact clusters in most of the datasets. However, boundaries
between clusters are slightly vague, and points around the boundaries
are in different colors. Regarding Param T and Param U, the clusters
are more distinguishable than those achieved by DLMP due to the
more compact clusters. Finally, our method generated good 2D
embeddings because of noticeable boundaries between clusters.

We do not visually compare the embeddings of Bank, IMDB,
Cifar100, and Hatespeech because of two reasons. First, the fea-
tures of Bank, IMDB, and Hatespeech are unrepresentative. Since
samples of different classes mix up in the high dimensional space,
visual comparison of embeddings is meaningless. Second, Cifar100
contains 100 classes, and finding as many distinct colors for rep-
resenting the samples is challenging. The resulting visual clutter
would prevent users from examining the embeddings.

Quantitative Evaluation. Table 1 (top) shows the results gener-
ated by the baselines and our method, where each value is achieved
by the best parameter. To evaluate whether the methods were ro-
bust to the given parameters, we also selected a parameter for each
method that can work best on all datasets. The results are shown in
Table 1 (middle). Due to the page limit, we show only the average
of the three quality metrics in Table 1 and refer readers to our sup-
plemental material (Table ??) for their respective values. Among
the methods, PCA was the worst due to its linearity constraint. AE
performed reasonably well although its objective was reconstruction.
It even outperformed DLMP in most of the datasets. We suspect the
reason could be that DLMP learned the projection from results gener-
ated by non-parametric DR methods rather than from the projection
loss. Besides, the numbers indicated that our method outperformed
the baselines in most of the datasets. Finally, we show the results of
non-parametric t-SNE for readers to understand the cost of param-
eterization. We also compared the results achieved using different
network architectures in our supplemental material (Table ??).

Performance. We compared the computation time of our method
and the baselines on the selected datasets. As indicated in Table 1
(bottom), PCA was the fastest because of its linear property. Our
method was the second-fastest because the network was trained
from scratch using the stochastic gradient descent method. We point
out that the computation time of DLMP includes the pre-process

AE DLMP PCA OursParam_T Param_U
C
if
ar
1
0

F-
M
N
IS
T

Figure 2: We project high dimensional data to planar space for visual comparison. Each dot is a sample and each distinct color indicates a class.

Method Bank Cat & Dog Cifar10 Cifar100 F-MNIST Hatespeech IMDB Letter MNIST Norb SVHN Mean

B
y

da
ta

se
t

AE 0.928 0.892 0.951 0.696 0.875 0.862 0.585 0.799 0.859 0.952 0.975 0.852
DLMP 0.899 0.885 0.916 0.622 0.864 0.822 0.608 0.812 0.820 0.957 0.952 0.832
PCA 0.898 0.879 0.749 0.574 0.807 0.823 0.539 0.693 0.715 0.877 0.800 0.759

Param T 0.929 0.894 0.942 0.681 0.881 0.862 0.662 0.827 0.883 0.958 0.972 0.863
Param U 0.921 0.892 0.959 0.690 0.880 0.858 0.653 0.850 0.905 0.962 0.972 0.867

Ours 0.935 0.898 0.963 0.698 0.884 0.862 0.639 0.861 0.909 0.972 0.974 0.872
t-SNE 0.942 0.939 0.981 0.847 0.927 0.922 0.752 0.973 0.971 0.998 0.985 0.931

B
y

m
et

ho
d

AE 0.928 0.892 0.951 0.696 0.875 0.862 0.585 0.799 0.859 0.952 0.975 0.852
DLMP 0.892 0.873 0.913 0.609 0.864 0.819 0.606 0.812 0.807 0.951 0.952 0.827
PCA 0.898 0.879 0.749 0.574 0.807 0.823 0.539 0.693 0.715 0.877 0.800 0.759

Param T 0.929 0.894 0.939 0.664 0.881 0.862 0.659 0.827 0.880 0.953 0.970 0.863
Param U 0.911 0.884 0.959 0.687 0.879 0.850 0.642 0.850 0.902 0.962 0.972 0.863

Ours 0.935 0.893 0.961 0.682 0.882 0.862 0.634 0.822 0.909 0.970 0.974 0.866
t-SNE 0.942 0.939 0.978 0.844 0.927 0.922 0.748 0.973 0.970 0.998 0.984 0.930

Ti
m

in
g

AE 134.30 479.80 319.19 301.95 255.19 198.25 272.00 171.62 315.25 454.53 229.66 284.70
DLMP 103.66 188.44 141.08 142.36 127.11 112.30 121.44 97.40 132.24 192.86 106.01 133.17
PCA 0.05 1.41 0.55 0.33 0.17 0.05 0.12 0.08 0.45 1.53 0.14 0.44

Param T 853.79 1119.44 928.89 938.10 1005.43 1032.97 1018.96 1015.88 960.89 1090.83 832.03 981.56
Param U 195.46 206.99 139.08 147.78 169.22 93.82 182.58 141.35 118.03 109.02 128.07 148.31

Ours 16.63 42.05 30.28 27.38 24.46 19.35 30.41 17.83 24.09 47.11 24.59 27.65
t-SNE 312.59 374.08 260.89 258.69 240.99 372.71 262.24 232.96 266.94 328.34 139.09 277.23

Table 1: (Top and middle) The numbers show the quality (Equation 9) of embeddings generated by the baselines and our method. Each method is
given the best parameter that can work well on each dataset (top) and on all datasets (middle), respectively. We highlight the best quality in bold
fonts. (Bottom) Timing statistics in seconds. Each number is the average of multiple runs using the grid search parameters (Section 4.4).

of traditional t-SNE since it demands the ground truth embeddings.
The training part of DLMP was as fast as our method. Regarding
AE, it took longer than our method and DLMP because it had an
additional decoder for reconstructing high-dimensional data. Finally,
both Param T and Param U demands the construction of a graph
when training the network. Specifically, for each sample i in the high
dimensional space, the two methods find the neighbors of i and apply
the attractive forces to pull the samples in positive pairs possibly
close in the embedding. They also used the repulsive forces to push
samples in negative pairs apart. It deserves noting that Table 1 shows
the training time of dimensionality reduction. All the methods can
project data to a low dimensional space instantly after the parameters
are optimized.

4.5 Limitations

We extend the non-parametric t-SNE to a parametric DR method.
Although the experiment results demonstrated the strength of our
techniques, the loss function we minimized in this study is iden-
tical to non-parametric t-SNE. While the non-parametric methods
optimize objectives by directly moving samples in the embedding

space, our parametric extension was challenging to outperform the
non-parametric techniques in terms of quality because of limited
network capacity and the parametric constraint.

5 CONCLUSIONS

We extend non-parametric t-SNE to parametric DR methods by
training neural networks. Thanks to recent training skills in deep
learning, we update network parameters by directly optimizing the t-
SNE objective function. In addition, we use a mini-batch of samples
rather than the whole dataset when training networks. The extension
enables the generalization of t-SNE and reduces its computation cost.
Finally, we release the codes for public use since our parametric
method is practical for both general and streaming data.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive comments.
This work was supported by the Ministry of Science and Technology,
Taiwan (110-2221-E-A49 -062 - and 109-2221-E-009 -097 -).

REFERENCES

[1] S. Balakrishnama and A. Ganapathiraju. Linear discriminant analysis-
a brief tutorial. In Institute for Signal and information Processing,
vol. 18, pp. 1–8, 1998.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–
1396, 2003.

[3] I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory
and Applications. Springer, 2005.

[4] K. Bunte, M. Biehl, and B. Hammer. A general framework for
dimensionality-reducing data visualization mapping. Neural Com-
putation, 24(3):771–804, 2012.

[5] T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated hate
speech detection and the problem of offensive language. In Proceedings
of Association for the Advancement of Artificial Intelligence, vol. 11,
2017.

[6] J. Elson, J. J. Douceur, J. Howell, and J. Saul. Asirra: A captcha that
exploits interest-aligned manual image categorization. In Proceedings
of ACM Conference on Computer and Communications Security, 2007.

[7] M. Espadoto, N. S. T. Hirata, and A. C. Telea. Deep learning multi-
dimensional projections. Information Visualization, 19(3):247–269,
2020.

[8] M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C. Telea.
Toward a quantitative survey of dimension reduction techniques. IEEE
transactions on visualization and computer graphics, 27(3):2153–2173,
2019.

[9] P. W. Frey and D. J. Slate. Letter recognition using holland-style
adaptive classifiers. Machine learning, 6(2):161–182, 1991.

[10] A. Gisbrecht, W. Lueks, B. Mokbel, and B. Hammer. Out-of-sample
kernel extensions for nonparametric dimensionality reduction. In Pro-
ceedings of European Symposium on Artificial Neural Networks, 2012.

[11] A. Gisbrecht, A. Schulz, and B. Hammer. Parametric nonlinear dimen-
sionality reduction using kernel t-sne. Neurocomputing, 147:71–82,
2015.

[12] X. Glorot and Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of International
Conference on Artificial Intelligence and Statistics, vol. 9, pp. 249–256,
2010.

[13] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Pro-
ceedings of Advances in neural information processing systems, pp.
857–864, 2003.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 4700–4708,
2017.

[15] D. J. Im, N. Verma, and K. Branson. Stochastic neighbor embedding
under f-divergences. arXiv preprint arXiv:1811.01247, 2018.

[16] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[17] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[18] J. Kruskal. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[19] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.
[20] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic

object recognition with invariance to pose and lighting. In Proceedings
of Computer Vision and Pattern Recognition, vol. 2, pp. II–104, 2004.

[21] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts.
Learning word vectors for sentiment analysis. In Proceedings of the
Association for Computational Linguistics: Human language technolo-
gies, pp. 142–150, 2011.

[22] A. L. Maas. Rectifier nonlinearities improve neural network acoustic
models. 2013.

[23] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9:2579–2605, 2008.

[24] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold
approximation and projection for dimension reduction, 2018.

[25] M. R. Min, H. Guo, and D. Song. Exemplar-centered supervised
shallow parametric data embedding. In Proceedings of International

Joint Conferences on Artificial Intelligence, pp. 2479–2485, 2017.
[26] S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict the

success of bank telemarketing. Decision Support Systems, 62:22–31,
2014.

[27] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature learning. In
Proceedings of NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library, 2019.

[29] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping. IEEE Transactions
on Visualization and Computer Graphics, 14(3):564–575, 2008.

[30] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. science, 290(5500):2323–2326, 2000.

[31] N. Saeed, H. Nam, M. I. U. Haq, and D. M. S. Bhatti. A survey on
multidimensional scaling. ACM Computing Surveys., 51(3):47:1–47:25,
2018.

[32] T. Sainburg, L. McInnes, and T. Q. Gentner. Parametric UMAP embed-
dings for representation and semi-supervised learning. arXiv preprint
arXiv:2009.12981, 2020.

[33] G. Salton and C. Buckley. Term-weighting approaches in automatic
text retrieval. Information processing & management, 24(5):513–523,
1988.

[34] L. I. Smith. A tutorial on principal components analysis. Technical
report, 2002.

[35] J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualizing large-scale and
high-dimensional data. In Proceedings of World Wide Web conference,
pp. 287–297. ACM, 2016.

[36] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geo-
metric framework for nonlinear dimensionality reduction. Science,
290(5500):2319, 2000.

[37] L. Van Der Maaten. Learning a parametric embedding by preserving
local structure. In Proceedings of Artificial Intelligence and Statistics,
pp. 384–391, 2009.

[38] M. M. Van Hulle. Self-organizing Maps, pp. 585–622. 2012.
[39] J. Venna and S. Kaski. Visualizing gene interaction graphs with local

multidimensional scaling. In Proceedings of European Symposium on
Artificial Neural Networks, vol. 6, pp. 557–562. Citeseer, 2006.

[40] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimen-
sionality reduction by maximum variance unfolding. In Proceedings
of Association for the Advancement of Artificial Intelligence, vol. 6, pp.
1683–1686, 2006.

[41] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms, 2017.

[42] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853,
2015.

	Introduction
	Related Works
	Parametric Dimension Reduction using t-SNE
	Background
	Neural Network based t-SNE
	Training Details

	Evaluation and Experiment Results
	Baselines
	Quality Metrics
	Datasets
	Procedures and Experiment results
	Limitations

	Conclusions

