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ABSTRACT

In this paper, we present a visualization system for users to study
multivariate time series data. They first identify trends or anoma-
lies from a global view and then examine details in a local view.
Specifically, we train a neural network to project high-dimensional
data to a two dimensional (2D) planar space while retaining global
data distances. By aligning the 2D points with a predefined color
map, high-dimensional data can be represented by colors. Because
perceptual color differentiation may fail to reflect data distance, we
optimize perceptual color differentiation on each map region by de-
formation. The region with large perceptual color differentiation will
expand, whereas the region with small differentiation will shrink.
Since colors do not occupy any space in visualization, we convey
the overview of multivariate time series data by a calendar view.
Cells in the view are color-coded to represent multivariate data at
different time spans. Users can observe color changes over time
to identify events of interest. Afterward, they study details of an
event by examining parallel coordinate plots. Cells in the calendar
view and the parallel coordinate plots are dynamically linked for
users to obtain insights that are barely noticeable in large datasets.
The experiment results, comparisons, conducted case studies, and
the user study indicate that our visualization system is feasible and
effective.

1 INTRODUCTION

Nowadays, abundant multivariate time series data are commonly
found in many applications, from environmental sciences, agricul-
tural monitoring, and sociological studies to economics, healthcare,
and manufacturing assembly line. The ability to glean insights from
such data is essential to critical decision making. For example, by
analyzing economic statistics of a country in the past few years, a
government can develop financial policies and strategies to increase
the future gross domestic product. Similarly, by investigating sens-
ing data collected from the production line of a factory, a director can
figure out the bottleneck of performance and find ways to increase
the overall throughput.

Studying multivariate time series data is often done by observing
a bunch of line charts that show the change of each dimension over
time, or multiple snapshots that describe multivariate data at different
time spans. However, studying multivariate time series data in this
way is challenging because of data complexity. Events of interest
may relate to only partial dimensions and time spans. Since the
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occurrence of events is unknown, users have to visually compare
and analyze a large number of elements on a screen if they attempt
to make sense of data. They can miss important events and fail to
make any useful discoveries. To address this problem, we divide
the data discovery process into two steps: 1) uncovering trends or
detecting anomalies through a global, overview of the data, and 2)
analyzing and understanding particular events and associations over
isolated, local views of the data. By switching attention between the
views, users can understand the data step by step and identify small
events that may bring big impacts.

To provide users with a global view for identifying events of in-
terest, we visualize multivariate time series data by using a calendar
view [52]. Each cell on the calendar view is the abstraction of a high-
dimensional data point. Specifically, we project high-dimensional
data points to a 2D space and then align the points with a predefined
color map. Accordingly, we represent each data point by a color.
Intuitively, cells in similar colors represent similar data attributes,
whereas cells in different colors indicate an opposite situation. By
observing color patterns in the calendar view, trends and anomalies
can be easily obtained. Next, to study the details of an event, users
can select color-coded cells on the calendar view and then switch
to parallel coordinate plots (PCPs). Each poly-line on the plot in-
dicates a high-dimensional data point, and its color is the same as
the selected cell. Under this local view, users can map a color to the
high dimensional space and reconstruct the event of a color pattern.
In addition, we provide users with several filtering tools to facilitate
data interpretation. They can fade out contextual poly-lines to reduce
visual clutter when a large amount of poly-lines are plotted.

Mapping multivariate data to colors inevitably introduces distor-
tions. Besides, users have to memorize the mapping between data
and colors when they attempt to understand an event of interest. To
minimize the distortions, we trained a neural network to retain global
data distances during the dimensionality reduction. Since users may
be familiar with some colors and their associations, to reduce the
mental load, we let users join the data-color mapping process by
selecting color maps and manipulating 2D data distributions. Both
of the distortion and manipulation constraints are optimized by the
network training. In addition, considering that neighboring colors
on a color map may not be perceptually differentiated, we optimize
perceptual color differentiation on each map region by deformation.
To achieve this goal, we represent the color map by a regular grid
mesh and then determine the perceptual color differentiation of each
local quad. The quads that have large perceptual color differentiation
are magnified while the remaining quads are shrunk.

We present a two-step discovery strategy for users to study multi-
variate time series data. To verify the feasibility of this strategy, we
tested the system on several datasets that contain long term trends
and short term events. Figures 1, 5, 6 and 7, and the accompanying
video show that important events can be easily identified on the
calendar view for further study and examination. In addition, to
faithfully represent multivariate data by colors and to let users join
the data-color mapping process, we train a neural network to retain
global data distances and satisfy color constraints simultaneously.
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Figure 1: Overview of our system. (a) Local View: parallel coordinate plots. (b) Results of the dimension reduction. (c) Global view: calendar view.
To discover data by using our system, users first identify events of interest, such as trends and anomalies, by observing color patterns in the
calendar view. Next, they select color-coded cells (highlighted by black borders) and then make sense of details by examining poly-lines on the
parallel coordinate plots. When users highlight poly-lines in the parallel coordinate plots, the corresponding data points in the calendar view are
represented by color-coded circles.

We also deform color maps to optimize perceptual color differentia-
tion of each map region such that subtle changes still can be revealed.
The comparisons and the experimental results shown in Figures 4
and 8, and Table 1 demonstrate the effectiveness of our technique.

2 RELATED WORK

Color Mapping of Data. Color is an important visual element be-
cause it can be combined with other visual representations without
using an additional display area. While mapping scalar values to
color is simple, mapping high-dimensional data to color is challeng-
ing. Cheng et al. [8] provided ColorMapND to map scalar values of
each dimension to colors, and then fuse the colors to reveal data of
all dimensions simultaneously. The pseudo colors are interpolated in
a perceptually uniform colorspace, CIEHCL, to prevent some value
differentials invisible while overly emphasizing others. Although
perceptual uniform is important when mapping data to colors, colors
that are noticeably different, device-independent, and distinct from
background should also be considered. Besides, different applica-
tions may need different color mappings, and the use of colors and
their associations are diverse between cultures. Accordingly, several
works were presented to guide color map designs and assess the
quality of color maps [2, 45, 47].

Dimension Reduction. Projecting high-dimensional data to a
low-dimensional space is widely used in data visualization because
of planar display devices and human perceptual limits in making
comparisons. There have been many methods presented to achieve
the goal. Linear methods, such as principal component analysis [43]
and linear discriminant analysis [23], attempt to maximize variance
of data along the axes after projection. Among non-linear meth-

ods, multidimensional scaling (MDS) [6, 32, 39], Isomap [46], and
Self-organizing maps [51] retain the relative distances of data when
reducing the dimensionality. Stochastic neighbor embedding [20,34]
strives to transform similar samples to nearby positions and dis-
similar samples to distant positions with high probability. An au-
toencoder [21] is trained to project high-dimensional data to low-
dimensional latent points and then reconstruct the original data. The
reconstruction optimizes the representative of latent points. Com-
parative evaluations have also been carried out [4,32, 42] between
the dimensionality reduction methods as they each have different
advantages and shortcomings.

We train a neural network to reduce data dimensionality while
retaining global data distances. The goal is similar to that of the MDS
[32, 39]. However, the trained neural network can be considered a
parametric dimensionality reduction approach. When the network
is trained, it can project unseen data directly to low dimensional
space without taking the previously seen dataset into account. This
advantage allows users to observe online multivariate time series data
or to interactively switch views at different time scales when using
our system. The benefit also allows the dimensionality reduction to
work well when the previously seen data are unavailable.

Multivariate Time Series Data Visualization. Using horizon-
tal graphs to convey the change of data over time is intuitive and
is widely used in many applications. However, the graphs may oc-
cupy a large space when multiple dimensions are visualized at the
same time. One way to compress the display area is by representing
the value by color [14, 29, 30, 38]. The price of this visualization
strategy is low precision of values due to human perceptual limits in
differentiating colors. Another way to achieve the goal is based on



graph folding and rearrangement. Themeriver [16,17] represents the
magnitude of each dimension by the width of a band, and stacks the
bands to show the change of multivariate data over time. Thakur and
Rhyne [48] presented kite diagram, which represents simple quan-
titative data by closed and symmetric graphical widgets. Few [12]
presented horizon graphs, in which negative values are flipped to the
positive side, and positive and negative values are distinguished by
colors. He further divided the chart into bands and overlay the bands
to save space. Heer et al. [18] conducted experiments to evaluate
the horizon graphs and suggested the optimal chart size for time
series visualizations. Saito et al. [40] quantized the value to several
colors and displayed the residuals by height. The charts can retain
the precision of values while reducing the display area. In addition
to reducing the height of each horizon graph, Hao and Keim [15]
arranged the space and position of each graph according to the impor-
tance of dimensions. Tominski et al. [50] wrapped horizontal graphs
to 3D helix glyphs in order to display time dependent data on maps.
Since patterns of interest may periodically appear or relate to week-
days and weekends, spirals [54] and calendar views [52] have also
been presented. Because several horizontal graphs were presented to
convey time series data, Javed et al. [25] evaluated the effectiveness
of the graphs by measuring the time taken by participants to uncover
insight in different time series representations.

In addition to visualizing a series of univariate data in a graph,
many approaches have been presented to convey the relations of
data in different dimensions. Among them, parallel coordinate
plots are widely used [22]. To prevent over-plotting when a large
amount of poly-lines are visualized, strategies related to informa-
tion filtering [1], transfer functions [27], continuous plotting [19],
stacking [11], density uncovering [24], and edge bundling [37] were
introduced. Tominski et al. [49] rearranged axes with radial layouts
to prevent large distances of axes. Claessen et al. [9] presented an in-
teractive system that allows users to define visualization by drawing
and linking axes. Johansson et al. [26] extended the standard PCP
technique by temporal density and depth cue to capture time varying
dynamics.

Studying a series of univariate data or an instance of multivariate
data from a view is less difficult because users can focus on a chart.
However, to make sense of multivariate time series data, users have
to discover multiple views back and forth because of high com-
plexity in such kind of data [5, 10, 35]. Bernard et al. [3] projected
high-dimensional data to 2D scatter points and then connected the
points that are temporally adjacent to reveal the change in data over
time. Users can click a point in the projected view to examine the
corresponding high-dimensional data from a pop up window nearby.
Because the connecting lines are visually cluttered and difficult to
trace, temporal patterns in the view can be invisible. Steiger et
al. [44] transformed a series (day) of 1D sensing data to a color by
dynamic time warping [41] and multidimensional scaling [6, 32].
Then, they showed the data in a day by using a color-coded cell in
the calendar view. Users could compare color patterns in different
days or different stations to obtain anomalies in a sensor network.

The works of [52], [44], and ours reveal the overview of datasets
by using calendar views. Although the ideas are similar, the three
visualization systems are different in nature. Specifically, Wijk et
al.’s [52] method was presented to visualize univariate time series
data, whereas Steiger et al.’s method and ours can be used to discover
multivariate time series data. Besides, while Wijk et al.’s [52] system
uses distinct colors to represent different clusters, it inherits the
drawbacks of data clustering such as the number of clusters, outliers,
and uncertainty. Regarding Steiger et al.’s [44] method, it does not
support multiresolution visualization because of the fixed time span.
Furthermore, data are limited to have the same unit. In contrast,
we represent high-dimensional data by colors. None of the above-
mentioned problems occur.

3 SYSTEM OVERVIEW AND VISUAL DATA ANALYSIS

We present a system for users to discover multivariate time series
data in two steps. They first discover events of interest from a
global view, and then examine details of an event in a local view.
Specifically, at the global view, users can observe color changes
over time or repetitive color patterns to find trends and anomalies.
Although color-coded cells are insufficient to depict the attributes
of high-dimensional data, they can convey trends and highlight
anomalies if these cells are aligned well. In the local view, data
points are visualized by PCPs. Users can examine the value of each
dimension and observe the relationships between dimensions in this
view to understand the event of interest. Figure 1 shows the overview
of our system.

Our system reduces data dimensionality while retaining global
data distances. The most commonly used method – stochastic neigh-
bor embedding (t-SNE) [20, 34] is not adopted in this application.
The goal of t-SNE is ensuring high dimensional neighboring data to
stay close but allowing global data distances to distort in the reduced
dimension. This property is harmful to reveal trends in multivariate
time series data. In addition, adjacent cells in the calendar view
may represent very different multivariate data. To highlight such a
sudden change, global data distances should be retained.

3.1 Global View: Calendar View
We draw color-coded cells on a calendar view to convey multivariate
time series data. Similar data points are visualized in similar colors
whereas different data are in different colors. Since events of interest
may cover various time spans, we implement this calendar view
at two time scales: year and month. Each color-coded cell in the
yearly and monthly scales represents the status of one day and two
hours, respectively. The scale can be easily extended if necessary.
In addition, the raw data at a coarse scale are averaged from the data
at a fine scale before the visualization. Users can zoom in and out
of the view to discover events at different time scales. To help users
interpret data on the calendar view, we label weekdays in black and
weekends in red. When the user hovers the cursor on a color-coded
cell of interest, a tooltip pops up to indicate its corresponding time.

3.2 Local View: Parallel Coordinate Plots
To understand events of interest, users can select color-coded cells
on the calendar view or a region on the color map, and then examine
the raw data in PCPs [22] to understand an event (Figure 1 (a)).
The range of each dimension is determined according to the data
visualized in the calendar view. The color of each poly-line is
the same as its low-dimensional representation. In addition, the
transparency of poly-lines can be manually controlled (αm = [0,1])
to reveal data distribution if many data points are rendered on the
plot. To closely observe the relations between two dimensions, users
can swap the order of axes/dimensions by dragging the axis. The
plots will be updated interactively.

Although there can be several alternatives for users to discover
raw data, such as line charts, our selection was PCPs because the
global and the local views should be complementary to each other.
Since the calendar view can reveal temporal change of data, we use
the PCPs to show data relationships between dimensions. Consider-
ing that temporal behavioral relationships can be important as well,
we insert a time axis into the parallel coordinate plots. By using our
provided poly-lines filtering tool, users can observe the animation to
understand the change of data attributes over time.

3.2.1 Poly-Lines Filtering
We provide users with several filtering tools to observe data. These
tools can mitigate visual clutter when a large number of poly-lines
are rendered on the PCPs. Specifically, we set α f (x) = 0.1 to the
poly-line x if it is filtered out and α f (x) = 1 otherwise. The al-
pha value of each poly-line becomes αm ·α f (x). The simplest of



Figure 2: Users can join the data-color mapping process when using
our system. Before they specify colors, they examine data histograms,
correlation matrix, scatter plots, and PCPs to make sense of data.

the interactions is data selection: on hovering on a poly-line that
represents a data point, the system highlights it and fades out the
others. Users can also select a region on one of the axes to highlight
multiple data points whose values in the dimension corresponding
to that axis falls within the selected range. Our system will fade out
the poly-lines if they do not pass the region. These highlighted data
points are represented by color-coded circles in the calendar view.
We also let users select multiple regions on the same or different
axes to filter poly-lines. The selected regions in the same axis and
in different axes are union and intersection conditions, respectively.
Figure 1 (a) shows an example. The selected regions are indicated
by the bounding boxes. Users can right click the bounding box to
cancel the filtering at that region.

Our poly-lines filtering tool can help users discover the relations
between dimensions. Specifically, they drag the bounding box up-
ward or downward along an axis and then observe the change of
poly-line distributions on the other axes of the PCPs. Besides, by
inserting a time axis into the PCPs, users can observe the change of
data attributes over time by dragging the bounding box. Because
time series data often contain repetitive patterns, we do not consider
the global time of data but the local time such as hours in a day
or days in a week, which corresponds to a column of cells in the
calendar view. Users also can set different time spans if necessary.
We refer readers to our accompanying video for realizing the way
of discovering dimension relations and data changes over time by
using our system.

3.2.2 The order of PCP axes

While dimensionality reduction inevitably introduces information
loss, the perceived color differentiation cannot reflect data distances
in each dimension. Under this circumstance, poly-lines with differ-
ent colors pass through the same region of an axis; or poly-lines
with similar colors broadly spread on an axis. These two types of
plots bring little help for data interpretation. Therefore, when using
our system, users can sort the axes of PCPs according to the distance
coherence of data in the reduced 2D color space and each dimension.
Let D be the data distance matrix and superscripts ` and x denote

Figure 3: (Top) The original color mapping. (Bottom) In this example,
users separate the two sets of data points because they are on the
two sides of a (pre-defined) threshold. As a result, the colors used to
represent these two sets of data points become distinct.

the 2D color space and data dimension x, respectively. We compute

dx = min
k
|D`− k ·Dx|, (1)

where k is an unknown and dx is the coherence of data in the 2D
space and dimension x. The lower dx indicates the higher coherence.
Our system sorts the axes according to the ascending order of dx.

3.3 Data-Color Mapping
An intuitive idea to map data points to colors is designing CIE for-
mulas to transform data points from an XY coordinate system to
a CIELAB or CIELUV color coordinate system. These two color
spaces are perceptually uniform, and they are widely used for percep-
tual estimations in the field of information visualization. However,
the quality criteria of color maps involve not only perceptual distance
but also data characteristics, tasks, users, devices, and the number
of colors covered by a map [2]. In this work, we map each data
point to a color by aligning the 2D data points with a predefined
color map (Figure 2) [47]. Considering that the use of colors and
their associations are diverse between cultures, for example, red and
green often are associated with danger and safety, respectively, we
let users select different color maps for data representations. Users
are allowed to rotate, scale, translate, and flip the distribution to map
data points to reasonable colors. If a global similarity transformation
cannot fulfill their requirement, we also let users specify colors of
specific data points, by constraining the points to locate at particular
positions on the color map. Note that, although 3D color maps
can be used as well for color mapping, they suffer from occlusion
problems and are difficult for users to interact with.

Users join the data-color mapping process after the system
projects data points to 2D. In the beginning, they observe data distri-
butions and identify clusters. Then, they hover the cursor over data
points on the color map and observe poly-lines on the PCP to study
the corresponding high dimensional attributes. All the filtering tools
mentioned-above can be used to prevent visual clutter. Besides, we
provide users with a histogram of each data dimension, scatter plots,
and a dimension correlation matrix to facilitate data examination.
When users obtain the overall idea of data, they specify the colors
by manipulating the data distribution.

Non-uniformly changing the distribution of data points results
in perceptual distortions. However, we point out that the system is
built for data scientists rather than general audience. They are aware
the side effects caused by drastic manipulation of data distributions.
For data points that are numerically alike but meaningfully different,
experts also can map the data to distinct colors before they switch
to the calendar view for observing data changes over time. Figure 3
shows an example of this.



3.4 Representative of Visual Elements

Since dimension reduction methods inevitably introduce distortions,
users should be able to check whether the colors are representative
in the calendar view and the PCPs. To achieve this goal, for each
high-dimensional data point x, we compute the representative of its
color by the mean distance error of x to the other data points. The
error is then normalized to e(x) = [0,1] according to the error range.
The higher mean distance error of the data is, the more transparent
the color-coded cell and the poly-line should be. Therefore, we set
αu(x) = (1− e(x))2. In the calendar view, the alpha of each color-
coded cell is αu(x); in the PCPs, the final alpha of each poly-line
becomes αm ·α f (x) ·αu(x).

4 METHODOLOGY

4.1 Dimension Reduction

We train a neural network to transform numerical data (categori-
cal data can be converted into numerical data [53]) from the high-
dimensional space to a 2D space while retaining global data dis-
tances. The network contains five fully-connected layers, in which
the outputs of the layers are of 128, 64, 32, 8, and 2 dimensions,
respectively. The dimensionality gradually decreases to prevent
rapid information loss caused by the transformation between con-
secutive layers. If the dimension of input data is lower than 128, its
dimension is expanded to 128 after the data undergo the first layer.
The network is built based on fully-connected layers because all the
input dimensions are correlated in our application.

The network is trained to reduce data dimensionality while retain-
ing the Euclidean distances of data and fulfilling color constraints.
Let D be the data distance matrix and superscripts h and ` denote
the high and the low dimensional spaces, respectively. We minimize

Ld = |αDh−D`|2 , (2)

where α is an unknown scale, to retain data distances. In addition,
while a similarity transformation is insufficient to fulfill data and
color mapping demanded by users, they can constrain data points
to locate at specific positions on the color map. Specifically, we
present the term

Lh = ∑
h∈H
|z′h− zh|2, (3)

where z′h are the unknowns and zh are the data positions constrained
by users. Note that the minimization of Equation 2 potentially trans-
forms data points to the same position. Under such a circumstance,
α = 0. We therefore expect a large α so that data points can occupy
as large area of the color map as possible. This strategy allows
the system to utilize as many colors during the data visualization.
Considering that data points should be within the color map, we
minimize the sum of Ld , Lh, and the regularization term

Ls =−|α|, subject to
0 < z`,x < 1, 0 < z`,y < 1. (4)

We adopt the stochastic gradient descent method to update the
network parameters. In our implementation, Adam optimizer [31]
with a learning rate 1e-3 and a batch size 64 were used. The hyper-
parameters of the network were initialized using Xavier [13]. Users
can decide whether to normalize data values by each dimension if
the dimensions are of different units. The training process repeats
and is stopped automatically if the distance loss does not decrease
for 50 iterations. Since the process typically takes between one to
two minutes to complete, we show a line chart to depict the loss over
time. Users can pause the process at an early stage or continue the
process if needed.

4.2 Color Maps Deformation
Although several existing color maps have good perceptual linearity,
separability, and equal visual importance [45], colors on the map
may not be suitable to represent data because of different purposes
of applications. Besides, the use of colors and their associations are
often diverse between cultures. Users have to pay much attention to
memorize the mapping between colors and data. While using such
carefully designed color maps results in heavy mental loads, we let
users select their preferred color maps when using our system. Since
our goal is to represent data by colors in the global view, we apply the
deformation technique to optimize perceptual color differentiation
on every local region of the map. The strategy prevents distant
2D data points from being represented by numerically different but
perceptually the same colors.

To optimize perceptual color differentiation, we represent a color
map by using a regular grid mesh with m×m vertices (m = 16 in
our implementation). Each quad on this grid mesh covers a number
of pixels on the color map. We then determine the color separability
of each quad by measuring perceived color differences of interior
pixels. Specifically, we transform colors from the RGB model to the
standardized Color Appearance Model (CIECAM02) [33, 36]. The
color gradient magnitude of each pixel is computed and summed to
determine the quad’s color separability. The quads with high color
separability are expected to magnify, whereas the quads with low
separability should be shrunk. Let G = {V,E} be the grid mesh,
where V = {v0,v1, ...,vn,}, v = (x,y) is the vertex position, and Q
is the set of quads. Formally, we present the term

Ω = ∑
q∈Q

∑
{i, j}∈q

∣∣(v′i−v′j)− sq(vi−v j)
∣∣2 , (5)

where v′ is the deformed vertex, {i, j} is an edge on a quad and sq
is a scale factor that controls the size of quad q. Let gq be the sum
of the color gradient magnitude in quad q, and the total area of the
color map be 1. Since our goal is to make the area of each quad
proportional to the quad separability, we set the scale factor by

sq = (m−1)
√

gq

∑i∈Q gi
. (6)

Note that m is the grid resolution, and the original quad area is
1/(m−1)2.

In addition to resizing quads based on color separability, the
deformed color map should retain its original shape and size. In
other words, vertices on a horizontal boundary are constrained to
slide horizontally and vertices on a vertical boundary can only slide
vertically. Let Vt , Vb, V`, and Vr be the set of vertices on the top,
bottom, left, and right boundaries, respectively. To make sure we
get a square color map after the deformation, a hard constraint

vi,x =

{
0 ∀ vi ∈ V`
1 ∀ vi ∈ Vr

, vi,y =

{
0 ∀ vi ∈ Vt
1 ∀ vi ∈ Vb

(7)

is added to the system. We also prevent the edge-flipping problem
by the inequality constraint

(v′i−v′j) · (vi−v j)> 0, ∀{i, j} ∈ E. (8)

To solve the deformed mesh, we minimize Ω in a least-squares sense
subject to the boundary and edge-flipping constraints. In most of
the cases, where scale factors are of similar values, the mesh can be
solved in one step because Ω is a quadratic term. Otherwise, edges
may flip, and the system iteratively updates the mesh until the in-
equality edge-flipping constraints are fulfilled. For the optimization
details, we refer readers to the work of Madsen and Nielsen [28].
Once the deformed mesh is obtained, we update the color map by
linear interpolation.



(a) (b) (c)

Figure 4: Top rows are the color maps. We show the original color maps on the left and their deformed versions on the right of (a), (b), and (c). The
bottom rows are the heat maps used to visualize the perceptual color differentiation of each local region. As can be seen, visually indistinguishable
regions are minimized.

Theoretically, the deformed color maps have the optimum per-
ceptual color differentiation. However, because the mesh structure
prevents the color map from being highly deformed, experimentally,
we found that deforming a color map multiple times can achieve the
best result. In other words, we consider the deformed color map as
a new map and repeat the deformation process until the mean vertex
movement is smaller than a threshold. The color maps in the paper
and the supplemental material were deformed fewer than five times.

5 RESULTS AND EVALUATIONS

We have implemented our system as a web application. The front
end is implemented in Javascript using the Vue.js, D3.js and Pixi.js
libraries. The backend is implemented in Python using Flask for han-
dling REST API queries and PyTorch for building the network. The
system achieves interactive performance during the data discovery
step. In our experimental datasets, the system took roughly 1 to 2
minutes to perform the dimensionality reduction for color mapping.
Note that the neural network can be pre-trained and used to reduce
the dimensionality of unseen data.

5.1 Case Studies
We applied our visualization system to observe several multivariate
time series datasets. The results and findings are described in this
section.

Bike Sharing Data. Bike sharing is becoming popular in recent
years because users can rent a bike from a particular position and
return back at another position. To study user behaviors in terms
of weather, we visualize the bike sharing dataset that records the
rental process in Washington D.C., USA, from 2011 to 2012. In
total, there are 17 dimensions. We selected 6 dimensions from them
because the remains are label-like attributes, such as season, holiday,
and weekday.

We show the visualization results in Figure 5. At first glance,
we observe that color-coded cells in summer and winter are close
to dark purple and brown, respectively (Figure 5 (b)). We also
notice many other colors in the calendar view. To understand the
meaning of these colors, we select several regions on the color map
and then examine poly-lines on the PCPs (Figure 5 (a)). The PCPs
show that dark yellow corresponds to low temperature, slightly high
wind speed, and a few bike users; blue indicates high temperature,
middle to low humidity, and usually many casual users; and purple
corresponds to high humidity and much more registered users than
casual users. Based on this domain knowledge and the color patterns

(a)

(b)

(c)

Figure 5: (a) We first select several regions (highlighted by the white
dots) on the color map and study the meaning of the color repre-
sentations by examining the PCPs. (b) The status of weather and
bike sharing in 2011 and 2012. (c) By zooming in to the monthly
calendar view, we realize that registered users rent bikes for weekday
commutes and casual users rent bikes for weekend activities.

in Figure 5 (c), we realize that registered bike users usually appear
between 6 to 10 AM and 4 to 8 PM on weekdays, whereas casual
bike users appear at 10 AM to 2 PM on weekends. We also notice
that the registered bike users were less affected by weather. They
rode the bike to work at high humidity (90%) as usual, although
public transportation service in Washington D.C was convenient. In
addition to user behaviors, the weather conditions can be observed
in the calendar view as well. For example, the weather on March
13-25 was unreasonably warm; and on May 10-11 was relatively
cool.

Prices of Crude Oil and its Byproducts. Crude oil is a natural
yellowish-black liquid that can be refined into various types of fuels
and byproducts. The change of its price often directly impacts to
our daily lives. To understand the effects of this natural resource,
we applied our system to visualize the prices of crude oil and its
byproducts. The dataset contains 20 dimensions.
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Figure 6: (a) and (b) are the PCPs that show the prices of crude oil
and the byproducts in 2008-2009 and in 2014-2015, respectively. (c)
The global view of the prices. Cells in white imply that the market was
closed.

Figure 6 shows that the crude oil related markets changed sim-
ilarly in 2008-2009 and in 2014-2015 because the colors in the
calendar view change from blue to brown. However, the color
changes more rapidly in 2008-2009 than in 2014-2015. To study the
difference in these two events, we first selected color-coded cells in
2008-2009 and then switch the view to PCPs. The poly-lines show
that the price of crude oil decreased from 140 USD per barrel in
July to 40 USD per barrel in Dec. 2008. We also observe that the
price of crude oil influenced the prices of its byproducts differently.
For example, when the price of crude oil decreased, the prices of
nylon, polypropylene (PP), polyvinyl chloride (PVC), low-density
polyethylene (LDPE), and high-density polyethylene (HDPE) stayed
stable in the beginning but drastically decreased in the last few weeks
of 2008. To study the data in 2014-2015, similarly, we selected the
color-coded cells and then examined the PCPs. The price of crude oil
decreased in these two years, too. When comparing the two events,
interestingly, the poly-lines in Figure 6 (a) intersect more than the
poly-lines in Figure 6 (b). It means that the price of crude oil was
more consistent to the prices of its by-produces in 2014-2015 than
in 2008-2009. Since the sudden drop of product price usually results
in large business loss, we suspect that the downstream industries had
learned a lesson from the loss in 2008 and strove to hedge against
possible losses in 2014.

Taipei Metro Service. Citizens in an urban city often move
from one place to another using public transportation. To study their

(c)

(a) (b)

(e)

(d)

(f)

Figure 7: Taipei metro dataset in 2016. (a)(b) The poly-lines in PCPs
represent the data points selected from (c). (c)-(f) Patterns of interest,
such as weekdays, weekends, holidays in a raw, and during a typhoon,
can be easily discovered by observing color patterns in the calendar
view.

mobility, we visualize the dataset released by Taipei Metro, which
recorded the numbers of passengers who entered and left the stations
every two hours. The metro service stops between 1 - 5 AM each
day. We focus on the entrances of all stations (108 dimensions) in
the visualization.

We show several events of interest that were discovered by using
our system. First, rush hours in the morning and in the evening are
represented by different colors (Figure 7 (c)). To study the event, we
selected all the cells in January and then switched the view to PCPs.
The height of poly-lines (Figure 7 (a)) indicates that people went to
some stations in the morning but went to the others in the evening.
The view helps us identify the residential and industrial/business
stations. Second, large numbers of passengers entered train stations
at midnight of Jan. 1st (Figure 7 (b) (c)) because they just ended
the New Year celebration and wanted to go home. Third, human
mobility in different days of Lunar Chinese New Year was different
– the volume on the New Year’s Eve (Feb. 7th, Figure 7 (d)) was
much less than the volumes on the other days of the vacation. This
phenomenon was reasonable because the New Year’s eve is for
families to stay together. The chart confirms that most of the citizens
stayed home during the day. Fourth, human behavior can change
suddenly due to external factors such as weather. On Sep. 27th, the
green cells in a column indicate that very few passengers entered
train stations (Figure 7 (e)). By checking the news in 2016, we found
that Megi typhoon struck the north part of Taiwan on Sep. 27th.
Later, on September 28th, cells in a column indicate that human
mobility on the day was similar to that on weekends. However, the
day was not a holiday. The color pattern appears because the weather
forecast reported that the typhoon would still be strong on September
28th. The government extended the typhoon day to 28th. However,
the forecast was wrong. When citizens woke up and confirmed that
the typhoon had been gone at 8 AM, they went out as though it
were in a weekend. Finally, the pattern on Oct. 25th seems a mix
of weekday and weekend (Figure 7 (f)). The date was a memorial
day. On the day, government employees had to work but industrial
employees did not.

5.2 Dimension Reduction Results of Unseen Data
Our trained neural network reduces data dimensionality while re-
taining data distances. If users do not join the data-color mapping
process, the results transformed by our system and by the MDS



Divide by time scale Divide by time period
Bike Metro Bike Crude oil Metro

0.06±0.03 0.02±0.01 0.07±0.02 0.10±0.05 0.06±0.01
Table 1: Means deviations of the 2D point distances. The statistic
indicates that the trained neural network is feasible to reduce the
dimensionality of unseen data. Note that the width and height of the
color map is 1.

would be very similar because the distance loss (Equation 2) used in
the two methods are the same. However, we point out that the main
advantage of our method over MDS is that the trained neural net-
work can directly transform unseen multivariate data to a 2D space
for color mapping. This advantage is particularly helpful when users
switch calendar views to observe data in different time scales or
when users observe online time series data.

We conducted experiments on the the bike sharing, crude oil, and
the metro datasets to evaluate the dimension reduction results of
these unseen multivariate data. Specifically, we divided the data
into training and testing sets, and trained the neural networks with
and without considering the testing set. Then, the dimensionality of
the testing data set was reduced by the two versions of the network.
We applied two strategies to divide data sets. First, since the bike
sharing and the metro data sets contain two time scales, we let the
monthly and the yearly scale data be the training and the testing
sets, respectively. Second, we divided the data by time period. The
former and the latter parts of data were the training (bike sharing:
Jan. 2011 - Nov. 2012, crude oil: 2007 - 2017, metro: Nov. 2015 -
Nov. 2016) and the testing sets (bike sharing: Dec. 2012, crude oil:
2018, metro: Dec. 2016), respectively.

We compared the two versions of the data distributions by aver-
aging the point distances. Considering that the dimension reduction
results can be translated, rotated, scaled, and flipped, before the
distance estimation, these two versions of the data distributions are
aligned by a flip and a similarity transformations. Table 1 shows the
distances of data points transformed by the networks, in which the
testing sets were and were not considered during network training.
The results indicate that the trained neural network is feasible to
reduce the dimensionality of unseen data.

5.3 Quality of Color Maps
We deform color maps to optimize the perceptual color differenti-
ation on every local region. Figure 4 shows several examples. To
assist the comparison, we show the perceptual color differentia-
tion [45] of each local region by heat maps. As can be seen, the
perceptual color differentiation is greatly improved by the deforma-
tion so that users will not be misled by the color representation.

To verify whether the color maps deformation benefits visual
analysis, we visualize the metro dataset by using the original and
the deformed color maps, respectively. Figure 8 shows the results.
Since the original color map is not perceptually linear, users have
difficulty observing the difference of data at 6-8 PM and 8-10 PM
(the rows in dark blue) on weekdays. They may also be misled by
the sudden change of color and think that the numbers of passengers
at 6-8 PM and 8-10 PM (the rows in orange and light yellow) on
weekdays were very different. In contrast, the height of poly-lines
(Figure 8 (b) (d)) indicates that the deformed color map enables the
calendar view to provide a correct overview.

5.4 User Study
We have demonstrated our system to three data scientists in an
IoT (Internet of Things) company for the evaluation. They had
worked on time series data for five years. Their job was designing
algorithms for detecting anomaly events in time series sensor data.
At the beginning of the user study, we introduced the interfaces
of our system and explained the way of data interpretation. After

(a) (b)

(c) (d)

Figure 8: (a) and (c) are the calendar views, in which the cells are
colorized by the original and the deformed color maps shown in Figure
4 (a). (b) and (d) are partial views of the PCPs. The colors of the
poly-lines correspond to the colors of the cells in (c).

the data scientists practiced and were fluent in using our system,
they used the system to discover their motor vibration dataset 1.
The think-aloud process was used to get their feedback during the
study. The data scientists noticed a pattern before the damage of
a motor when using our system. They told us that the finding was
helpful because such small damage could bring significant loss to
the production. Replacing the motor when the pattern appears but
before the motor becomes broken is essential. Therefore, they would
like to study data attributes and features, and then design a method
for detecting the event. They showed a high interest in our system
because the system can help them make sense of data efficiently,
particularly for them to identify events. At the end, they mentioned
that they were willing to pay for owning it.

5.5 Limitations

Our system represents each high-dimensional data point by a color-
coded cell. Ideally, users should be able to identify events of interest
easily by observing color patterns. However, limited by the humans’
color differentiation ability, subtle changes of colors may not be
noticeable and events can be missed, although we have optimized
color maps to reduce the problem. The alpha blending of color-coded
cells and poly-lines may worsen the situation. Although we have
provided users with parallel coordinate plots and several interactive
operations to reduce the problem, it is a good idea to incorporate
additional linked views and distance metrics to reveal multivariate
temporal behavior patterns from different perspectives [7]. Besides,
the mapping between a color and a data point is dynamic. Although
we have let users join the data-color mapping process to reduce their
mental load, they still have to memorize the meaning of each color
when discovering data. Finally, since we apply PCPs to convey
details of an event, our system inherits the limitations of PCPs.
Relations of dimensions that are displayed far from each other on
PCPs are difficult to observe.

6 CONCLUSION

We have presented a visualization system to help users discover in-
sights from multivariate time series data. Users first identify events
of interest by observing color-coded cells in the calendar view. Then,
they study details of an event by examining the distribution of poly-
lines on the PCPs. Since users can afford to focus on only one job
at a time, the mental load of data interpretation is greatly reduced
when they use our system to discover data. Because representing

1The dataset was collected from a production line. Unfortunately, the
dataset cannot be uncovered and released for public use.



multivariate data by colors inevitably introduces distortions, we re-
tained the relative distances of data when they are transformed from
the high to the low dimensional spaces. We also optimized percep-
tual color differentiation of color maps to prevent users from being
misled. Although bias cannot be fully eliminated, the abstraction
and transformation of data are still needed due to the complexity
of multivariate time series data. Otherwise, serious visual clutter
appear and users will fail to discover insights from the visualization.

We demonstrate the feasibility of our system by showing several
case studies and the comparison. Because insights in several experi-
ment datasets were uncovered, our system should be helpful as well
to many other multivariate time series data. We plan to improve our
prototype program to a product level system and open the system
for public use. Currently, we assume that the visualization data are
clean and free of missing values. However, since sensors may crash
and the collected data could be incorrect, we also plan to enable data
cleansing in the future system, which will be particularly helpful if
a noisy dataset is discovered.
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