
Adversarial Colorization Of Icons Based On Structure And
Color Conditions

Tsai-Ho Sun
National Chiao Tung University

Hsinchu, Taiwan
locha0519@gmail.com

Chien-Hsun Lai
National Chiao Tung University

Hsinchu, Taiwan
jxcode.tw@gmail.com

Sai-Keung Wong
National Chiao Tung University

Hsinchu, Taiwan
cswingo@cs.nctu.edu.tw

Yu-Shuen Wang
National Chiao Tung University

Hsinchu, Taiwan
yushuen@cs.nctu.edu.tw

ABSTRACT
We present a system to help designers create icons that are widely
used in banners, signboards, billboards, homepages, and mobile
apps. Designers are tasked with drawing contours, whereas our sys-
tem colorizes contours in different styles. This goal is achieved by
training a dual conditional generative adversarial network (GAN)
on our collected icon dataset. One condition requires the generated
image and the drawn contour to possess a similar contour, while
the other anticipates the image and the referenced icon to be similar
in color style. Accordingly, the generator takes a contour image
and a man-made icon image to colorize the contour, and then the
discriminators determine whether the result fulfills the two condi-
tions. The trained network is able to colorize icons demanded by
designers and greatly reduces their workload. For the evaluation,
we compared our dual conditional GAN to several state-of-the-art
techniques. Experiment results demonstrate that our network is
over the previous networks. Finally, we will provide the source
code, icon dataset, and trained network for public use.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Human-
centered computing → Interactive systems and tools.

KEYWORDS
Icon, colorization, generative adversarial networks

ACM Reference Format:
Tsai-Ho Sun, Chien-Hsun Lai, Sai-Keung Wong, and Yu-Shuen Wang. 2019.
Adversarial Colorization Of Icons Based On Structure And Color Conditions.
In Proceedings of the 27th ACM International Conference on Multimedia (MM
’19), October 21–25, 2019, Nice, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3343031.3351041

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’19, October 21–25, 2019, Nice, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3351041

1 INTRODUCTION
Nowadays, icons are widely utilized in banners, signboards, bill-
boards, homepages, and mobile apps. Effective icons are usually
simple but distinguishable, so that users can quickly receive the
intended information when seeing them at a small size or a long
distance. Considering aesthetics and practical issues, designing an
eye-catching icon is challenging. Designers have to carefully con-
sider not only shapes and structures, but also colors, when they
create icons for their customers. Moreover, icons are not self exis-
tent. When they appear on a signboard or a website with letters
and backgrounds, the styles of these different components should
be consistent, which makes icon design more challenging. The dif-
ficulties motivate us to build a system that can reduce designers’
workload. Specifically, designers draw the contour of an icon, while
our system is in charge of colorization.

Generative adversarial networks (GANs) [10] have been proven
to be able to generate realistic images in many applications [4, 22,
24, 25, 30, 39], and could constitute a solution to help designers
colorize icons. Specifically, a network takes a contour image drawn
by the designers as input and then outputs the colorized icon image.
Similar ideas have been adopted to colorize black-and-white Manga
characters [5, 8, 14, 44] and achieved great success. To control
the colorization process, additional inputs, such as stroke colors
and style images, are fed into the network as well. The features
extracted from both contour and style images will be fused and
used for the colorization. However, training the above-mentioned
networks to achieve icon colorization is inadequate because icons
exhibit diverse styles and structures. While the discriminator is
not strong enough to recognize man-made and machine-generated
icons, its guidance to train the generator is inappropriate.

Observing that an icon can be well defined by color and struc-
ture conditions, we present a dual conditional GAN (Figure 1) to
colorize icons. Rather than training a discriminator to recognize
whether an icon is man-made or machine-generated, we train two
discriminators to determine whether paired images are similar in
structure and color style, respectively. In this way, the task assigned
to each discriminator is simple and easy to accomplish. To spec-
ify the icon structure, we let users draw contours on a graphical
interface. To condition the color style, a man-made icon image is
selected. The two images are fed into our dual conditional GAN for
icon colorization. Because it is not intuitive to apply a man-made
icon to specify the color condition, in practice, we let users select a

https://doi.org/10.1145/3343031.3351041
https://doi.org/10.1145/3343031.3351041

Generator
𝐺

𝑚𝑐

𝑚𝑠

Color

condition
𝑦𝑐~𝑃

Generated icon
𝐺 𝑦𝑐 , 𝑦𝑠

Structure

condition
𝑦𝑠~𝑆

Color discriminator
𝐷𝑐

prediction

Structure discriminator
𝐷𝑠

prediction

Fake

Fake

Real

Real

Conv. s=2, k=3

Batch norm

Relu

Conv. s=1, k=3

Batch norm

Relu

Conv. s=1, k=3

Tanh

Residual block

Residual block

UpSample 2x

Conv. s=2, k=3

Spectral norm

Leaky relu

Conv. s=1, k=3

Sigmoid

𝐺 𝑦𝑐 , 𝑦𝑠 𝑦c

𝑥1 𝑥2

𝐺 𝑦𝑐 , 𝑦𝑠 𝑦𝑠

𝑥 𝑆(𝑥)

Figure 1: Our dual conditional generative adversarial network. The details of layers in different colors are on the right. k and
s are the kernel size and the stride, respectively

style label when using our system to create icons. Then the system
randomly selects man-made icons that match the style [20, 21] and
feeds the icons to the network for colorization.

To evaluate the performance of our icon colorization method, we
tested the system on several examples with diverse structures and
color styles. Figures 4, 6, and 8, and our accompanying video present
the results. In addition, we compared our dual conditional GAN to
state-of-the-art techniques, including iGAN [46], CycleGAN [47],
conditional image-to-image translation [42], ComiColorization [8],
MUNIT [17] and Anime [44]. Experiment results demonstrate the
effectiveness of our technique.

2 RELATEDWORK
Icon Design. Although icons are widely used nowadays, creating
visually appealing icons is not easy because many aspects, such
as context, color, and structure, should be considered [12, 13, 15].
Extensive studies have conducted on issues about the message
quality, metaphor, and styling of icons [16], and the effects of icon
spacing and size [28]. Among the above-mentioned aspects, color
is visually essential to make icons attractive, legible and viewer-
friendly [26]. The optimal choice of color combinations and icon
shapes can convey information both clearly and pleasantly.

Generative Adversarial Networks. GAN was first presented
by Goodfellow et al. [10] and then widely used in realistic image
generation [4, 18, 22, 24, 25, 30, 37–40]. The network typically con-
tains a generator and one or multiple discriminators, which are
trained iteratively and alternatively to surpass one another. In spite
of tremendous advantages, training a GAN is challenging because of
gradient vanish and stability problems. To facilitate network train-
ing, several methods, such as energy-based GANs [45], minibatch
discrimination [36], Wasserstein GANs [1, 11], boundary equilib-
rium GANs [2], and spectral normalization [32], were presented.

Conditional GANs and Domain Transfer. Earlier versions
of GANs are not controllable because the inputs are noise latent
vectors. Afterward, to control the results, additional features or
conditions are fed into the network. The features can be labels

[22, 31, 41], images [18, 29], and sentences [3, 43]. Although re-
sults generated by the conditional GANs are impressive, most of
them are supervised; and they demand a large number of labels
and matching image pairs. Thus, unsupervised techniques were
presented to map images from one domain to another [37, 42, 47].
The methods retain either latent codes or reconstructions during
the domain transformation to achieve the goal. To avoid the mode
collapse problem that frequently occurs in GANs, Zhu et al. [48]
combined the conditional variational autoencoder GAN [23] and
the conditional latent regressor GAN [6, 7] to generate diverse and
realistic results.

Manga and Cartoon Colorization. In the past, coloring black-
and-white Manga was achieved by considering hand crafted fea-
tures, such as pattern-continuity and intensity-continuity [34].
While such features are difficult to define, deep neural networks
were presented to achieve the goal by learning from data automati-
cally. By providing a line art and several guided stoke colors, the
system can be used to colorize Manga [5]. In addition to stroke col-
ors, several methods let users provide reference images for guiding
results. Among them, Furusawa et al. [8] adopted a convolutional
encoder-decoder network with an additional discriminator to col-
orize black-and-white Manga pages. Hensman et al.’s method [14]
required only one single reference image to train the conditional
GAN [18], and used the network to colorize monochrome images.
Zhang et al. [44] fused the high level features extracted from sketch
and style images to generate the color version of a sketch. They also
applied two guided decoders to prevent the residual U-net from
skipping high level features.

The aforementioned networks have achieved great success on
colorizing Manga characters. For our icon colorization task, how-
ever, they may fail because icons are not only diverse in color
style but also in structure. Furthermore, we want to achieve that
boundaries of regions are formed by color difference between the
regions. Because man-made icons are difficult to define, a single
discriminator cannot determine whether the generated result is
meaningful. To tackle this problem, we presented a dual conditional

GAN that anticipates the generated results to fulfill structure and
color conditions. Because the task assigned to each discriminator
is simple, the network is easy to train and able to generate visually
appealing results.

3 STRUCTURE AND COLOR OF AN ICON
Given a contour image and a man-made icon, our system strives to
generate a result, in which the structure is similar to the contour
and the color style is similar to the referenced man-made icon. To
achieve this goal, we train a conditional generative adversarial net-
work on an icon dataset1 that contains 12,575 images. These icons
contain multiple colors, with a white background, but without dark
border lines. We apply image processing techniques to automati-
cally extract contours and color styles from these icons for network
training. No manual labeling tasks are needed.

3.1 Structure Condition
We represent the structure condition by a binary contour image.
White and black pixels in the image indicate edge and non-edge
regions, respectively. To obtain this contour image, the Canny edge
detection algorithm is adopted. Intuitively, each icon and its corre-
sponding contour can match, and otherwise cannot.

3.2 Color Condition
The color condition is specified by the referenced icon image. To
determine whether two icons match in color style, we compute
a 3D Lab color histogram (8 × 8 × 8) of each of them, and then
measure their distance. In the pre-processing step, we apply the
K-means (K = 500) clustering method to merge icons if their color
histograms are close to each other. Icons in the same cluster are
considered similar in color style.

4 NETWORK TRAINING
We train a dual conditional GAN to colorize icons. Figure 1 shows
the network architecture and the details of each layer. The inputs of
the network are a contour image and a referenced icon image, with
a resolution 64 × 64 × 3. The former and the latter inputs are the
structure and the color conditions, respectively. They are encoded,
concatenated together, and then fed into the generator. The gen-
erator then takes the code to generate a fake icon. After that, two
discriminators are used to guide the generator creating results that
can fulfill the input conditions. To train the structure discriminator,
the contour image is combined with the corresponding icon and the
generated icon to form the real and the fake pairs, respectively; and
then they are fed into the structure discriminator. To train the color
discriminator, the real pair is formed by two arbitrary icons that
are classified in the same cluster, whereas the fake pair is formed
by the referenced and the generated icon. It is worth noting that
the purpose of this discriminator is to judge whether two icons are
similar in color style. The real and the fake pairs can be dissimilar
in structure.

1https://www.flaticon.com/

Pretty Casual Casual Dynamic Dynamic Gorgeous Wild

Natural Elegant Elegant Dandy Clear
Cool

casual

Cool

casual

Figure 2: The semantic labels, corresponding color combina-
tions, and the example icons.

Figure 3:We transform a color combination (left) to four his-
tograms (right) according to the ratios 1:1:1, 2:1:1, 1:2:1, and
1:1:2. The sphere size indicates the bin size. Note that the
histograms have been smoothed by Gaussian blur.

4.1 Loss functions
The dual conditional GAN is trained by optimizing two adversarial
losses. Let P and S be the distributions of man-made icons and the
corresponding contours, respectively. We also let x ∈ P , and S(x)
be the contour of x . To fulfill the structure condition, the loss is
defined as:

Ls (G,Ds) =Eyc∼P ,ys∼S [log(1 − Ds (G(yc ,ys),ys))]+

Ex∼P [logDs (x, S(x))], (1)

whereG(yc ,ys) is the result generated according to a reference icon
yc and a contour image ys ; and Ds is a conditional discriminator
that determines whether the paired images have the same structure.
To fulfill the color condition, we apply a similar strategy. Let k(x)
be the cluster index of x . We present the loss as:

Lc (G,Dc) =Eyc∼P ,ys∼S [log(1 − Dc (G(yc ,ys),yc))]+

Ex1,x2∼P ,k (x1)=k (x2)[logDc (x1, x2)], (2)

where Dc is a conditional discriminator that determines whether
two images are similar in colors. Recall that we apply the K-means
clustering to group icons that are similar in color. The real pair, x1
and x2, are two arbitrary icons in the same cluster. Finally, the full
objective function is

G∗ = argmin
G

max
Ds ,Dc

(Ls (G,Ds) + Lc (G,Dc)) . (3)

Figure 4:We applied our trained network to colorize icons in various styles. The first row shows contours, and the first column
shows man-made icons that specify color conditions.

4.2 Training Details
We trained the dual conditional GAN by using the Adam optimizer
[19] on a single NVIDIA GeForce 1080Ti. The learning rate was
set to 10−4; the hyper parameters were initialized by using Xavier
initialization [9]; and the batch size was set to 64. In each epoch,
the generator G, the color discriminator Dc , and the contour dis-
criminator Ds were updated sequentially based on the stochastic
gradient of G∗. We repeated the process 1,000 epochs until the loss
was unable to decrease and the system started overfitting. It is
worth noting that we did not use latent noise in the network.

4.3 Semantic Style Labels
Since applying a referenced icon to specify the color condition is not
intuitive, we let users simply select a style label when using our sys-
tem to create icons. Specifically, we consider the color psychology
theory [20] and define the style of a man-made icon according to its
color combination. In our current implementation, each color com-
bination contains three major colors; and each combination refers
to a style. For example, an icon that contains #C02C46, #ED8E32,
and #01AC50 can be considered casual, while an icon that contains
#94DEE2, #FFFFFF, and #91D2F1 can be considered clear. Figure 2
shows the illustration. Accordingly, when the users select a style
label, our system randomly selects a number of man-made icons
that fulfill the style, and then feeds the icons to the network as
color conditions. We recommend readers to watch our accompany-
ing video for this intuitive user interface, as user interactions are
difficult to be visualized in still images.

To determine whether an icon image p matches a color combina-
tion (style) q, we compute their 3D Lab color histograms (8 × 8 ×
8) for comparison. When determining the histogram of an icon Hp ,
white background pixels are not considered. In addition, because
colors in adjacent bins can be visually similar, but are considered
different, we apply 3D Gaussian blur to the histogram to reduce
the difference between perception and statistics. Then, each bin
is normalized by the total pixel number. Different to icon images,
the definition of color combinations is rough. We generate four his-
tograms Hq1 - Hq4 for each color combination based on the ratios
(1:1:1, 2:1:1, 1:2:1, and 1:1:2) of three major colors, as illustrated in
Figure 3. Finally, the icon is labelled as style q if its color histogram
Hp is similar to either Hq1 - Hq4.

5 RESULTS AND EVALUATIONS
Several contour images, which contain straight and curved lines,
and small and large open areas, were tested on our system. As can
be seen in Figure 4, these machine generated results were similar
to man-made icons. For example, the results were in flat colors;
only foreground objects were colorized; and most of the noticeable
color boundaries could match the specified contours. The generated
results are well elaborated and look like carefully designed icons.
Interestingly, the results generated by considering the same refer-
ence icon were very similar in color style. This property is helpful
to designers if they need to colorize a set of icons in a particular
style. Considering that previous colorization methods may suffer
from color leaking artifacts, we tested our system on several open
contours. Figure 5 shows that the system is leak-proofing. Users
are not expected to draw contours carefully when using it.

Figure 5: Our system can colorize icons that are conditioned
by open contours without causing color leaking problems.

Figure 6: Step by step results. Our system generates results
interactively while the input contour is incrementally en-
hanced. Each row shows the results based on the refer-
enced icon image on the left. Notice that the colors were
not changed considerably in subsequent steps once the ref-
erenced icon was selected.

The trained network can colorize icons in real-time by leverag-
ing the GPU (graphics processing unit) resources. Hence, in our
implementation, we feed the contour image and the referenced
icon image into the network whenever a stroke is updated and then
display the generated result immediately. Figure 6 shows the results
for the input contours that are incrementally enhanced.

5.1 Representations of a Color Condition
Several ways exist to represent the color condition of an icon. In
addition to an image, we input a 3D Lab color histogram to the
network and compared the results generated by these two different
representations. Specifically, we duplicated the 8 × 8 × 8 histogram
to form an 8×8×256 feature map. Therefore, on the generator part,
the two feature maps determined from the contour image and the

Figure 7: We applied different color conditions (i.e., image
and histogram) to guide the network and compared their re-
sults.

histogram can be concatenated. Regarding the discriminator part,
we encoded the generated icon from 64 × 64 × 3 to 8 × 8 × 256 by
three 2D convolutions so as to concatenate with the feature map of
a color histogram.

Figure 7 shows that both images and histograms are able to
condition the color of the generated icons. However, the network
can learn additional features if the color condition is represented by
images. For example, a (nearly) closed region is in the same color,
whereas adjacent regions are in different colors. In addition, we
observed that the network adopts different strategies if the color
and the structure conditions conflict with each other, which may
occur when complexities of the contour image and the referenced
icon image are considerably different. As shown in Figure 7, if
the color condition is represented by a histogram, the generated
icons may contain unnecessary edges/structures; if the condition is
represented by an image, the generated and the conditioning icons
may have different dominant colors.

5.2 Comparison to State-of-the-Art Techniques
We compared our method to the state-of-the-art techniques to
evaluate its effectiveness. All the methods were trained on our
collected icon dataset for the comparison.

iGAN. Interactive GAN (iGAN) [46] can produce samples that
best satisfy user edits in real-time. The system is based on DCGAN
[35], which optimizes the latent vector to generate results specified
by the color and the shape of brush strokes. As can be seen in Figure
8, the results of iGAN are not satisfactory because low level features
are noisy. In other words, although the generated icons to some
extent fulfill the structure conditions, they are unsatisfactory.

Domain Transfer Methods. CycleGAN [47], CImg2Img [27],
and MUNIT [17] are well known methods that can transform im-
ages from one domain to another. Thus, we were curious whether
they were able to transform images in the contour domain to im-
ages in the color icon domain as well. The codes of these methods
were obtained from the authors. As can be seen in Figure 8, given
contour images, the results generated by their networks to some
extent contain the features of icons, such as flat colors and simple
lines. However, the results are not anticipated because their struc-
tures differ from the given contours. We suspect the reasons as
follows. Given two domains X and Y , the goal of domain transfer
is to transform samples in X to samples in Y , denoted as Y ′, and
then back to samples in X , denoted as X ′. Another pass is from Y
toX and then back to Y . The relations betweenX and Y are learned
by the network itself. Normally, since the network has to trans-
form samples in Y ′ back to samples in X , the samples in Y ′ must
contain some features in X to facilitate transformation. However,
this does not mean that all features in Y ′ are all related to X . A
part of them is not used. For example, in the icons generated by
CycleGAN, CImg2Img, and MUNIT, although a part of the edges
can be matched to the contour images, a part of them cannot. In
general, the redundant features make the results deviate from our
expectation. If the domain Y is narrow, such as a face dataset, the
problem is not serious because the redundant features is suppressed
by the discriminator. However, if the domain Y is wide, such as
the icon dataset, the redundant features become noticeable. That
a GAN can generate face images from a random latent vector, but
may fail to generate icons (Figure 9), supports this assertion. Notice
that the faces are recognizable, although there are many redundant
features (artifacts).

Manga/Cartoon Colorization. The goal of our system is simi-
lar to Manga colorization. Both of them attempt to colorize contour
images. Therefore, we compared our system to a famous online
software called style2paints2, which was an improved version of
[44]. However, because the details of this online software was not
disclosed and the network was trained on Manga images, the com-
parison may not be fair. We further implemented the original net-
work [44] and trained the network on our collected icon dataset.
Figure 8 shows the results. As can be seen, the interior structures
of the icons generated by the method (Anime) are barely matched
with the input structures. The network of [44] does not function
well because the discriminator is trained to determine man-made
and machine-generated icons. The domain is too wide and the task
is too difficult. In addition, the training strategy makes the gener-
ator overfit easily. During the training phase, the input contour
and style images are very similar in structure. However, during the
testing phase, the two images are different.

We also compared our system to Comicolorization [8]. The codes
were obtained from the authors. In the beginning, we failed to train
the network by following their procedure because the discrimina-
tor cannot recognize icons. Hence, we reduced the weight of the
adversarial loss to 0.05 and then succeeded. In other words, the
network was trained mostly based on the reconstruction loss. Since
the supervised learning tends to fit the whole data distribution, the
generated icons often contain blurring artifacts. The structures of

2https://github.com/lllyasviel/style2paints

CycleGAN

MUNIT

CImg2Img

iGAN

Anime

Comi

Ours

Structure	
condition

Color	
condition

Figure 8: We compared our system to the current state-of-the-art techniques. From top to bottom rows are the contour images,
the icons generated by CycleGAN [47], MUNIT [17], CImg2Img [27], iGAN [46], Anime [44], Comi [8], our system, and the
icons referenced by Anime and our system.

Figure 9: We trained a SNGAN [33] on celeba and our col-
lected icon datasets, respectively. It fails to generate icons
(right) due to complex structures and styles.

their generated icons (Comi) are not as sharp/clear as the structures
of ours (Figure 8).

5.3 Objective Evaluations
In addition to visual comparison, we quantitatively evaluated the
generated results. Color distances and structure distances between
the generated icons and the conditions were computed. To measure
the fulfillment of color condition, we computed the Jensen-Shannon

Structure	Distance

Color	Distance

0.0

CycleGAN	
MUNIT	

CImg2Img	
iGAN	

Anime	
Comi	
Ours	

Dataset
0.5 1.0 1.5 2.0 2.5

CycleGAN	
MUNIT	

CImg2Img	
iGAN	

Anime	
Comi	
Ours

1 2 3 4 5 6 7

Figure 10: Fulfillment of color and structure conditions
among the previous and ourmethods. The five-number sum-
mary (from left to right on the box and whisker plots) con-
sists of the 5th , 25th , 50th , 75th , and 95th percentiles.

divergence of 3D Lab color histograms for the evaluation. To mea-
sure the fulfillment of structure condition, we first applied the
Canny edge detection method to the generated icon image. After-
ward, bi-directional search of the closest edge pixels is adopted
to compute the distance between the generated and the condi-
tioned contours. Specifically, for each edge pixel p in one image, we

searched the edge pixel q in the other that is closest to p, and com-
puted the mean distance Dpq . The two images were then switched
for estimating the mean distanceDqp . In other words, we measured
the fulfillment of structure condition by 1

2 (Dpq + Dqp).
The box and whisker plots in Figure 10 show the evaluation re-

sults. Clearly, CycleGAN, MUNIT, CImg2Img and iGAN could not
fulfill the color condition because of the monotonic or noisy colors.
It is worth noting that the icons generated by Anime were the most
similar to the referenced icons in colors. By comparing the statistic
and the results shown in Figure 8, we found that Anime tends to
copy colors from one image to another when colorizing an icon.
However, this strategy is inappropriate because the contour image
and the referenced icon were different in structure. The number
and the sizes of contours cause the conflict. To verify this inference,
we randomly picked two man-made icons that were classified in the
same cluster (Section 3.2) and computed their mean color distance.
The statistic shows that man-made and our colorized icons were
well matched. In contrast to the color distance, the shorter contour
distance is the better because ideally we expect the generated icon
and the contour image to be the same in structure. Again, the dis-
tances show that icons generated by CycleGAN,MUNIT, CImg2Img,
and iGAN were dissimilar to the specified contours. Anime and
Comi could fulfill the overall structure condition. However, our
method did a better job in colorizing details.

5.4 Subjective Evaluations
We conducted a user study with 111 participants to evaluate the
results generated by CyleGAN, MUNIT, CImg2Img, iGAN, Anime,
Comi, and ours. Specifically, we created a questionnaire and posted
it in the Internet for anonymous participants to answer. They were
asked to compare and to rate icons colorized by different methods.
The best to the worst icons were rated by 5 to 1, respectively. To
achieve a fair comparison, the icons that were conditioned by the
same color and the same structure were listed in a page. In addition,
the order of the methods was randomly assigned to prevent bias.

The mean scores rated by the participants to our method, Comi,
Anime, MUNIT, CycleGAN, CImg2Img, and iGAN were 3.65 (SD
= 1.12), 3.27 (SD = 1.20), 2.67 (SD = 1.14), 2.07 (SD = 1.02), 1.66
(SD = 0.80), 1.57 (SD = 0.72), and 1.25 (SD = 0.64), respectively. As
indicated, our method was rated the best. To understand whether
the result had statistical significance, we ran a one-way ANOVA to
analyze/compare the scores of the previous methods and ours. The
results confirmed that our system was qualitatively better than the
other methods (p < 0.01 for all of the comparisons).

5.5 Limitations
Generating results that are always satisfactory in semantics is diffi-
cult. Figure 11 shows several failure examples. Specifically, some
icons, such as an apple, a lion, or a tree, have their own colors.
Our system is likely to generate results that do not match the tar-
get semantics (e.g., colorizing an apple with blue) because it only
considers whether the generated and the reference icons have the
same color style. We also find that several external regions, such
as the holes formed by the steps of a ladder and the bicycle frame,
are mis-colorized. In addition, the structure and color conditions

Figure 11: Several failure examples generated by our system.
From top to bottom are the contours, results, and the refer-
ence icons.

can conflict when the complexities of a contour image and a ref-
erenced icon are different. If a simple contour and a diverse-color
icon are fed into the generator, the generated result may contain
additional boundaries or gradient colors that should not appear in
icons. Regarding the combination of complex contour and monoto-
nous color, the generated results are of two types: 1) they can be as
monotonous as the reference icon; or 2) they contain colors that
are not in the reference icon.

6 CONCLUSIONS AND FUTUREWORKS
We have presented an interactive system to help designers create
icons. This is a system that allows both humans and machines to
cooperate and explore creative designs. Specifically, designers draw
contours to specify the structure of an icon; then the system col-
orizes the contours according to the color conditions. This goal
cannot be achieved by previous methods due to various structures
and styles of man-made icons. Training a discriminator to recog-
nize a man-made or a machine-generated icon is very challenging.
Therefore, we divide the icon recognition task into two sub-tasks
and apply a dual conditional GAN to solve the problem. Specifi-
cally, the two discriminators determine whether the structure and
the color of paired images are well matched, respectively. While
the generator successfully cheats these two discriminators, it can
generate icons demanded by users.

The color condition of our current system is represented by an
image. To improve usability, we let users specify a style label when
using our system to create icons. Man-made icons that fulfill the
label will be randomly selected and then fed into the network as
color condition. In other words, the network has no idea about
styles. Therefore, in future, we plan to train a network that can take
semantic labels as input when colorizing icons. Considering that
style labels are implicit, we believe that the strategy also has the
potential to solve the conflict of structure and color conditions.

ACKNOWLEDGEMENTS
We thank anonymous reviewers for their insightful comments and
suggestions. We are also grateful to Prof. Chun-Cheng Hsu for
the valuable discussions, and all the participants who joined the
user study. This work is partially supported by the Ministry of
Science and Technology, Taiwan, under Grant No. 105-2221-E-009
-135 -MY3 and 107-2221-E-009 -131 -MY3.

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Genera-

tive Adversarial Networks. Proceedings of the 34th International Conference on
Machine Learning 70 (2017), 214–223.

[2] David Berthelot, Thomas Schumm, and Luke Metz. 2017. BEGAN: boundary
equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717
(2017).

[3] Navaneeth Bodla, Gang Hua, and Rama Chellappa. 2018. Semi-supervised
FusedGAN for Conditional Image Generation. In ECCV. https://doi.org/10.
1145/2897824.2925974

[4] Yun Cao, Zhiming Zhou,Weinan Zhang, and Yong Yu. 2017. Unsupervised diverse
colorization via generative adversarial networks. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 151–166.

[5] Yuanzheng Ci, Xinzhu Ma, Zhihui Wang, Haojie Li, and Zhongxuan Luo. 2018.
User-Guided Deep Anime Line Art Colorization with Conditional Adversarial
Networks. In Proceedings of ACM Multimedia. 1–6.

[6] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. 2017. Adversarial feature
learning. ICLR.

[7] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,
Martin Arjovsky, and Aaron Courville. 2017. Adversarially learned inference. In
International Conference on Learning Representations.

[8] Chie Furusawa, Kazuyuki Hiroshiba, Keisuke Ogaki, and Yuri Odagiri. 2017.
Comicolorization: semi-automatic manga colorization. In SIGGRAPH Asia 2017
Technical Briefs. ACM, 12.

[9] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 249–256.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. 2017. Improved training of wasserstein gans. In Advances in
Neural Information Processing Systems. 5767–5777.

[12] D Hawthorn. 2000. Possible implications of aging for interface designers. Interact-
ing with Computers 12, 5 (2000), 507 – 528. https://doi.org/10.1016/S0953-5438(99)
00021-1

[13] Steven Heim. 2007. The resonant interface: HCI foundations for interaction design.
Addison-Wesley Longman Publishing Co., Inc.

[14] Paulina Hensman and Kiyoharu Aizawa. 2017. cGAN-based Manga Colorization
Using a Single Training Image. In Document Analysis and Recognition (ICDAR),
2017 14th IAPR International Conference on, Vol. 3. IEEE, 72–77.

[15] William K Horton. 1994. The icon book: Visual symbols for computer systems and
documentation. John Wiley & Sons, Inc.

[16] Shih-Miao Huang, Kong-King Shieh, and Chai-Fen Chi. 2002. Factors affecting
the design of computer icons. International Journal of Industrial Ergonomics 29, 4
(2002), 211 – 218. https://doi.org/10.1016/S0169-8141(01)00064-6

[17] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. 2018. Multimodal unsu-
pervised image-to-image translation. In Proceedings of the European Conference
on Computer Vision (ECCV). 172–189.

[18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-
Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017), 5967–5976.

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Shigenobu Kobayashi. 1992. Color Image Scale. Kodansha Amer Inc.
[21] J. Krause. 2002. Color Index: Over 1,100 Color Combinations, CMYK and RGB

Formulas, for Print and Web Media. F&W Publications, Inc.
[22] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic

Denoyer, et al. 2017. Fader networks: Manipulating images by sliding attributes.
In Advances in Neural Information Processing Systems. 5967–5976.

[23] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole
Winther. 2016. Autoencoding Beyond Pixels Using a Learned Similarity Metric.
In Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48. 1558–1566.

[24] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan

Wang, et al. 2017. Photo-Realistic Single Image Super-Resolution Using a Gener-
ative Adversarial Network.. In CVPR, Vol. 2. 4.

[25] Chuan Li and Michael Wand. 2016. Precomputed real-time texture synthesis with
markovian generative adversarial networks. In European Conference on Computer
Vision. Springer, 702–716.

[26] Yan-Peng Lim and Peter Charles Woods. 2010. Visual Information Communication.
Springer, Chapter: Experimental Color in Computer Icons, 149–158.

[27] Jianxin Lin, Yingce Xia, Tao Qin, Zhibo Chen, and Tie-Yan Liu. 2018. Conditional
Image-to-Image Translation. In CVPR. 5524–5532.

[28] Tomas Lindberg and Risto Näsänen. 2003. The effect of icon spacing and size on
the speed of icon processing in the human visual system. Displays 24, 3 (2003),
111–120.

[29] Yifan Liu, Zengchang Qin, Tao Wan, and Zhenbo Luo. 2018. Auto-painter: Car-
toon image generation from sketch by using conditional Wasserstein generative
adversarial networks. Neurocomputing 311 (2018), 78–87.

[30] Michael Mathieu, Camille Couprie, and Yann LeCun. 2016. Deep multi-scale
video prediction beyond mean square error. In ICLR.

[31] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784 (2014).

[32] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral Normalization for Generative Adversarial Networks. In ICLR.

[33] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral normalization for generative adversarial networks. In ICLR.

[34] Yingge Qu, Tien-Tsin Wong, and Pheng-Ann Heng. 2006. Manga Colorization.
ACM Trans. Graph. 25, 3 (July 2006), 1214–1220. https://doi.org/10.1145/1141911.
1142017

[35] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised repre-
sentation learning with deep convolutional generative adversarial networks. In
ICLR.

[36] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. In Advances in Neural
Information Processing Systems. 2234–2242.

[37] Yaniv Taigman, Adam Polyak, and Lior Wolf. 2017. Unsupervised cross-domain
image generation. In ICLR.

[38] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. 2018. Mocogan:
Decomposing motion and content for video generation. In CVPR.

[39] Xiaolong Wang and Abhinav Gupta. 2016. Generative image modeling using
style and structure adversarial networks. In European Conference on Computer
Vision. Springer, 318–335.

[40] Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. 2018. Learning to
generate time-lapse videos using multi-stage dynamic generative adversarial
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2364–2373.

[41] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. 2016. Attribute2image:
Conditional image generation from visual attributes. In European Conference on
Computer Vision. Springer, 776–791.

[42] Zili Yi, Hao (Richard) Zhang, Ping Tan, and Minglun Gong. 2017. DualGAN:
Unsupervised Dual Learning for Image-to-Image Translation.. In ICCV. 2868–
2876.

[43] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei
Huang, and Dimitris Metaxas. 2017. StackGAN: Text to Photo-realistic Image
Synthesis with Stacked Generative Adversarial Networks. In ICCV.

[44] Lvmin Zhang, Yi Ji, and Xin Lin. 2017. Style transfer for anime sketches with en-
hanced residual U-net and auxiliary classifier gan. arXiv preprint arXiv:1706.03319
(2017).

[45] Junbo Zhao, Michael Mathieu, and Yann LeCun. 2016. Energy-based generative
adversarial network. arXiv preprint arXiv:1609.03126 (2016).

[46] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. 2016.
Generative visual manipulation on the natural image manifold. In European
Conference on Computer Vision. Springer, 597–613.

[47] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired
Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017
IEEE International Conference on Computer Vision (ICCV) (2017), 2242–2251.

[48] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros,
Oliver Wang, and Eli Shechtman. 2017. Toward multimodal image-to-image
translation. In Advances in Neural Information Processing Systems. 465–476.

https://doi.org/10.1145/2897824.2925974
https://doi.org/10.1145/2897824.2925974
https://doi.org/10.1016/S0953-5438(99)00021-1
https://doi.org/10.1016/S0953-5438(99)00021-1
https://doi.org/10.1016/S0169-8141(01)00064-6
https://doi.org/10.1145/1141911.1142017
https://doi.org/10.1145/1141911.1142017

	Abstract
	1 Introduction
	2 Related Work
	3 Structure and Color of an Icon
	3.1 Structure Condition
	3.2 Color Condition

	4 Network Training
	4.1 Loss functions
	4.2 Training Details
	4.3 Semantic Style Labels

	5 Results and Evaluations
	5.1 Representations of a Color Condition
	5.2 Comparison to State-of-the-Art Techniques
	5.3 Objective Evaluations
	5.4 Subjective Evaluations
	5.5 Limitations

	6 Conclusions and Future Works
	References

