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Abstract
Domain randomization (DR) is widely used in
reinforcement learning (RL) to bridge the gap be-
tween simulation and reality by maximizing its
average returns under the perturbation of envi-
ronmental parameters. However, even the most
complex simulators cannot capture all details in
reality due to finite domain parameters and sim-
plified physical models. Additionally, the exist-
ing methods often assume that the distribution
of domain parameters belongs to a specific fam-
ily of probability functions, such as normal dis-
tributions, which may not be correct. To over-
come these limitations, we propose a new ap-
proach to DR by rethinking it from the perspec-
tive of adversarial state perturbation, without the
need for reconfiguring the simulator or relying
on prior knowledge about the environment. We
also address the issue of over-conservatism that
can occur when perturbing agents to the worst
states during training by introducing a Relaxed
State-Adversarial Algorithm that simultaneously
maximizes the average-case and worst-case re-
turns. We evaluate our method by comparing it to
state-of-the-art methods, providing experimental
results and theoretical proofs to verify its effective-
ness. Our source code and appendix are available
at https://github.com/sophialien/RAPPO.

1. Introduction
The use of reinforcement learning (RL) agents in real-world
environments is often hindered by the difficulty of collecting
data. As a result, many RL agents are trained in simulated
environments. However, there is often a significant differ-
ence between the simulated and real environments, known
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as the ”reality gap,” which can greatly reduce the perfor-
mance of these agents. To address this issue, domain ran-
domization (DR) methods have been developed to perturb
environmental parameters (Tobin et al., 2017; Rajeswaran
et al., 2017; Jiang et al., 2021), such as mass and friction co-
efficient, in order to simulate uncertainty in state transition
probabilities and improve the agents’ ability to maximize
return in various environments. Despite its effectiveness,
DR has two major limitations: (1) it requires direct access to
the underlying parameters of the simulation, which may not
be possible when only off-the-shelf simulation platforms
are available, and (2) it relies on prior knowledge of the
distribution of environmental parameters, which can greatly
affect performance in real-world environments.

To prevent the above limitations, we rethink DR from the
perspective of adversarial state perturbation, which elim-
inates the need for reconfiguring the simulator or relying
on prior knowledge about the environment. Our method
involves perturbing states after nominal state transitions
rather than altering transition probabilities. A popular ap-
proach from the robust optimization literature (Ben-Tal &
Nemirovski, 1998) is to take a worst-case viewpoint and
perturb the states to nearby states with the lowest long-
term expected return under the current policy (Kuang et al.,
2022). However, this worst-case strategy can lead to severe
over-conservatism in the learned policy, which will not be
useful even in nominal environments. We identify that the
over-conservative behavior results from the tight coupling
between temporal difference (TD) learning in robust RL and
the worst-case state perturbation. Specifically: (1) In ro-
bust RL, the value functions are learned with bootstrapping
in TD methods since finding nearby worst-case states via
Monte-Carlo sampling is NP-hard (Ho et al., 2018; Chow
et al., 2015; Behzadian et al., 2021). (2) When the state per-
turbations are in the worst-case scenario, the value function
updates are based on the local minimum within a neighbor-
hood of the nominal next state, ignoring the value of the
nominal next state. This causes the learner to fail to identify
or explore states with high potential returns. To illustrate
the issue of over-conservatism, we present a toy example
using a grid world environment where the goal is to find the
shortest path to a specific location. As shown in Figure 1(a),
despite the goal state having a high value, the use of the
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Figure 1. We show the over-conservatism issue in the worst-case state-adversarial policy optimization using a grid world environment for
shortest path navigation. In this environment, we have a goal, a trap and an initial state represented by a star, a cross and a dot respectively.
The rewards for reaching the trap and the goal are −10 and 0 respectively. We use arrows to indicate the action that has the highest value
at each state, and multiple arrows in a state indicate that the actions have equal Q-values. We also use color to indicate the value of the
best action at each state. In (a), the agent trained with the worst-case state-adversarial approach fails to learn how to reach the goal state,
since TD updates lead the agent to ultimately move towards the trap state after 12 training iterations. In (b), our relaxed state-adversarial
approach overcomes this issue by considering both average-case and worst-case environments. For more details on the step-by-step
evolution of the value functions, we refer readers to Appendix A.

worst-case state-adversarial method prevents TD updates
from propagating this value to other states. Additionally,
the agent ultimately learns to move towards the “trap state”
due to the combined effect of TD updates and worst-case
state-adversarial perturbations. This problem is not limited
to the grid world environment, but also commonly occurs in
various RL tasks, such as locomotion tasks in MuJoCo with
various termination conditions. This motivates us to answer
a question in robust RL: How to fully unleash the power of
the state-adversarial model in robustifying RL algorithms
without suffering from over-conservatism?

To answer this question, we introduce relaxed state-
adversarial perturbations. This approach involves: (1) Con-
sidering both average-case and worst-case scenarios during
training, allowing TD updates to propagate the values of
high-return states and prevent over-conservatism (as shown
in Figure 1(b)). (2) Using a relaxed state-adversarial transi-
tion kernel, which allows for easy representation of average-
case environments through interpolation of nominal and
worst-case environments. Each interpolation coefficient cor-
responds to a distribution of state adversaries. (3) Theoreti-
cally quantifying the performance gap between average-case
and worst-case environments and proving that maximizing
average-case performance also improves worst-case perfor-
mance. (4) Implementing Relaxed State-Adversarial Policy
Optimization, a bi-level framework that optimizes rewards
for both cases through alternating and iterative updates. One
level updates the policy to maximize average-case perfor-
mance, while the other updates the interpolation coefficient
of the relaxed state-adversarial transition kernel to increase
the lower bound of worst-case environment returns.

2. Related Work
Robust Markov Decision Process (MDP) and Robust RL.
Robust MDP is a method that aims to maximize rewards
in the worst-case scenarios if the testing environment de-
viates from the training environment (Nilim & El Ghaoui,
2005; Iyengar, 2005; Wiesemann et al., 2013). However,
due to the large search space, the complexity of robust
MDP increases rapidly as the dimensionality increases. To
address this issue, (Tamar et al., 2014) developed an ap-
proximation of dynamic programming to scale up the robust
MDP paradigm. (Roy et al., 2017) extended the method
to nonlinear estimation and ensured convergence to a re-
gional minimum. Later, (Wang & Zou, 2021; Badrinath
& Kalathil, 2021) studied the convergence rate when ap-
plying function approximations under certain assumptions.
(Derman et al., 2021) showed that regularized MDPs are a
specific subset of robust MDPs that have uncertain rewards.
They chose to solve regularized MDPs as they have lower
computational complexity as compared to robust MDPs.
(Clement & Kroer, 2021) developed efficient proximal up-
dates to solve the distributionally robust MDP via gradient
descent, improving the convergence rate. However, despite
these approximations, these model environments are still
too restrictive to be applied to real-world problems.

Adversary in Observations. Deep neural networks are
highly sensitive to small changes in input, making them
vulnerable to adversarial attacks (Huang et al., 2017). To
mitigate this issue, various methods have been proposed
to train agents in environments with adversarial attacks to
improve their robustness (Kos & Song, 2017; Pattanaik
et al., 2018). Later, (Wang et al., 2019; Lütjens et al., 2020)
adopted the concept of certified defense which is commonly
used in classification problems, to guarantee a minimum
level of performance. They applied it to agents that take
discrete actions and showed that the agents are robust to
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adversaries in observations within a specific distance. As
many real-world problems require agents to take continuous
actions, researchers have also developed methods for these
scenarios (Weng et al., 2019; Zhang et al., 2020; Oikarinen
et al., 2021; Zhang et al., 2021).

Domain Randomization. Uncertainty in transition proba-
bilities can be introduced in the environments. To simulate
this scenario, one can perturb the environmental parame-
ters of a simulator to reasonably change transition prob-
abilities when training agents (Huang et al., 2021; Tobin
et al., 2017; Jiang et al., 2021; Igl et al., 2019; Cobbe et al.,
2019). Specifically, (Tobin et al., 2017) randomly sampled
environmental variables and optimized the agents’ average
reward. Since excessive perturbation may hinder training,
(Cobbe et al., 2019) gradually increased the level of dif-
ficulty when training agents. (Jiang et al., 2021) further
considered the expected return in the optimal case and intro-
duced monotonic robust policy optimization to maximize
both the average-case and worst-case returns simultaneously.
However, perturbing transition probabilities through envi-
ronmental parameters requires prior knowledge, so (Kuang
et al., 2022) transferred states to nearby local minima based
on gradients obtained from the value function to imitate
environmental disturbance. (Igl et al., 2019) injected selec-
tive noise based on a variational information bottleneck and
value networks to prevent models from overfitting to the
training environment. This regularization helps agents resist
the uncertainty of state transition probabilities.

Our method perturbs states through the gradients of the
value function, as (Kuang et al., 2022) did. However, push-
ing states toward the nearby local minimum will make
agents over-conservative because they consider only the
worst-case scenarios. We present the relaxed state adver-
sarial perturbation and optimize both the average-case and
worst-case environments to overcome this problem.

3. Preliminaries
A Robust MDP can be defined as a tuple (S,A,U , R, µ, γ),
where S is the state space, A is action space, U is the un-
certainty set that contains all possible transition kernels,
R : S ×A → [−Rmax, Rmax] is the reward function, µ is
the initial state distribution, and γ ∈ (0, 1) is the discount
factor. Let P0 ∈ U be the nominal transition kernel, which
characterizes the transition dynamics of the nominal envi-
ronment without perturbation. We define the total expected
return under a policy π and a transition kernel P ∈ U as

J(π|P ) := Es0∼µ,at∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
.

(1)
For ease of exposition, we also define the value function
under policy π and transition kernel P as V π(s|P ) :=

Eat∼π(·|st),st+1∼P (·|st,at)

[∑∞
t=0 γ

tR(st, at)|s0 = s
]
. To

learn a policy in a robust MDP, the DR approaches are built
on two major design principles: (1) Construction of an un-
certainty set: DR presumes that one could have access to the
environment parameters of the simulator. The uncertainty
set U is constructed by specifying the possible range of
one or multiple environment parameters, typically based on
some domain knowledge. (2) Average-case perspective: DR
resorts to maximizing the average performance with respect
to some pre-configured distribution D over the uncertainty
set U , i.e., EP∼D[J(π|P )].

4. Relaxed State-Adversary Algorithm
Conventional DR methods enforce attacks on state transi-
tions by perturbing the environment parameters of a sim-
ulator. This can be replaced by perturbing the state after
each nominal transition (Kuang et al., 2022): Let (s, a) be
a state-action pair, and Γ : S → S be a state perturba-
tion function. In a nominal environment, the probability of
transitioning to state s′ under s, a is P (s′|s, a). Under the
state perturbation Γ, the probability becomes P (Γ(s′)|s, a).
However, this approach is too effective as a value function
considers the expected future return, and a modification to
an early state may significantly influence later states, lead-
ing to the over-conservatism problem. To address this issue,
we present a relaxed state-adversarial policy optimization
and prove that the relaxed MDP enjoys two advantages: (1)
It helps capture the average performance of the uncertainty
set. (2) It enables policy improvement guarantees in the
performance of the worst-case MDP. Further, we prove that
a specific average-case MDP corresponds to a relaxation pa-
rameter. Accordingly, we propose an algorithm for adapting
the relaxation parameter during training.

4.1. State-Adversarial MDPs and Uncertainty Sets

State-adversarial attacks perturb the current states to neigh-
boring states with the lowest values. This perturbation
process can be captured by a state-adversarial transition
kernel, which connects the nominal MDP and the result-
ing state-adversarial MDP. For ease of exposition, for each
state s ∈ S, we define N σ(s) := {s′|d(s, s′) ≤ σ} to be
the σ-neighborhood of s, where d(s, s′) can be any distance
metric. In this study, we use L∞-norm and use ∥·∥ to denote
the L∞-norm throughout the paper.

Definition 1 (State Perturbation Matrix). Given a nominal
MDP with transition kernel P0, a policy π, and a perturba-
tion parameter σ ≥ 0, the state perturbation matrix Zπ

σ with
respect to π is defined as follows: for each pair of states
i, j ∈ S,

Zπ
σ (i, j) :=

{
1, if j = argmins∈Nσ(i) V

π(s|P0),

0, otherwise.
(2)
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The reasoning behind our choice of the surrogate perturba-
tion model is twofold: (1) it can be seen as a way to create
adversarial examples for true states; and (2), it is closely
connected to the perturbation of environmental parameters,
which serve as the standard machinery in the canonical DR
formulation, as described in (Kuang et al., 2022).

Remark 1. In continuous state spaces, the argmin in Equa-
tion 2 can be computed by adapting the fast gradient sign
method (FGSM) (Goodfellow et al., 2015). Let V be a
value function (i.e., network) with parameter ϕ, s be a state,
and ϵ be the strength of perturbation. FGSM finds the per-
turbed state Γ(s) = s − ϵ · sign(∇sV (ϕ, s)) that has the
minimum value, where ||s− Γ(s)|| ≤ ϵ, and the gradient at
s is computed using back-propagation.

Remark 2. The state-adversarial perturbation does not
change the states in a simulator during training because TD
learning only considers the reward at the current state and
the value at the next adversarial state. The value of each state
s is updated repeatedly using V (s) = r(s, a) + γV (Γ(s′)).
Hence, unlike the conventional DR, the state-adversarial
perturbation does not require reconfiguring the simulator.

Definition 2 (State-Adversarial MDP). For any policy π,
the corresponding state-adversarial MDP with respect to π
is defined as a tuple (S,A, Pπ

σ , R, µ, γ), where the state-
adversarial transition kernel Pπ

σ is defined as

Pπ
σ (·|s, a) := [Zπ

σ ]
⊤P0(·|s, a), ∀(s, a) ∈ S ×A, (3)

and P0 is the nominal transition kernel. We use the notation
Pπ
σ = [Zπ

σ ]
⊤P0 in the later paragraphs for simplicity. Note

that the state-adversarial transition matrix Zπ
σ depends on

the strength of perturbation. Each perturbation radius σ
results in a unique state-adversarial MDP Pπ

σ .

Remark 3. The state-adversarial MDP, as defined in Defini-
tion 2, modifies the true states, rather than the observations,
which is fundamentally different from (Zhang et al., 2020).

Definition 3 (Uncertainty Set). Given a radius ϵ > 0, the
uncertainty set induced by state-adversarial perturbations,
denoted by Uπ

ϵ , is defined as

Uπ
ϵ := {Pπ

σ : Pπ
σ = [Zπ

σ ]
⊤P0 and σ ≤ ϵ}. (4)

Agents trained using the state adversarial MDP Pπ
ϵ would

prevent themselves from falling into the worst situation
(Kuang et al., 2022). However, a large ϵ will make agents
too conservative as the high value cannot be propagated
to neighboring states by the TD updates (cf. Figure 1).
While using a small ϵ can ease the problem, agents would be
completely oblivious of the risks outside the bounding area.
Moreover, this strategy can be infeasible in an environment
with a discrete state space due to the inherent lower bound
of ϵ. For example, the agent’s movement in the grid world
is at least one hop and cannot be further reduced.

Lemma 1 (Monotonicity of Average Value in Perturbation
Strength). Under the setting of state-adversarial MDP, the
value of the local minimum monotonically decreases as the
bounded radius σ increases. Let x be a positive real number.
Under any policy π, the total expected return J satisfies

J(π|Pπ
σ ) ≥ J(π|Pπ

σ+x). (5)

The proof is in Appendix C. Notably, Lemma 1 indicates
that among the transition kernels in the uncertainty set Uπ

ϵ ,
the worst-case occurs when σ = ϵ.

4.2. Relaxed State-Adversarial MDPs

We propose a relaxation approach to tackle the problem of
over-conservatism, which is detailed as follows:

Relaxed State-Adversarial Transition Kernel. Given ϵ >
0 and α ∈ [0, 1], the α-relaxed state-adversarial transition
kernel is defined as a convex combination of the nominal
and the state-adversarial transition kernels, i.e.,

Pπ,α
ϵ (·|s, a) = αP0(·|s, a) + (1− α)Pπ

ϵ (·|s, a). (6)

Connecting Relaxed State-Adversarial MDPs with DR.
DR methods demand a prior distribution for computing the
average case performance. Let D be a distribution over the
uncertainty set Uπ

ϵ . In the following, we show that applying
DR with respect to D is equivalently cast as optimizing an
objective under a relaxed state-adversarial transition kernel.

Lemma 2 (Relaxation parameter α as a prior distribution
D in DR). For any distribution D over the state-adversarial
uncertainty set Uπ

ϵ , there must exist an α ∈ [0, 1] such that

EP∼D[J(π|P )] = J(π|Pπ,α
ϵ ). (7)

The proof is in Appendix D. It is worth noting that different
values of α represent different prior assumptions. For ex-
ample, α = 1 implies that the prior probability of nominal
MDP is 1, whereas α = 0 indicates that the prior probability
of the worst-case MDP is 1. In other words, we can control
the value of α to represent different distributions D and train
the policies under various environments. To achieve this
goal, we quantify the gap between the average performance
EP∼D[J(π̃|P )] and the worst-case performance J(π̃|Pπ

ϵ )
when updating the current policy π to a new policy π̃, and
then apply an optimization technique to maximize both of
them. Based on the analysis in (Jiang et al., 2021), one can
obtain a lower bound as follows.

Theorem 1 (A Direct Connection Between the Average–
Case and the Worst-Case Returns). Given a nominal MDP
with transition kernel P0 along with a state-adversarial un-
certainty set Uπ

ϵ , for any distribution D over Uπ
ϵ , upon an

update from the current policy π to a new policy π̃, the
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following bound holds (Jiang et al., 2021):

J(π̃|Pπ
ϵ ) ≥ EP∼D[J(π̃|P )]

− 2Rmax
γEP∼D[dTV(P

π
ϵ ∥P )]

(1− γ)2
− 4Rmax

dTV(π∥π̃)
(1− γ)2

, (8)

where dTV(π∥π̃) indicates the total variation divergence
between π and π̃, and Pπ

ϵ is the worst-case state-adversarial
transition kernel.

Theorem 1 indicates that the gap between the average- and
the worst- case performance can be expressed using the
MDP shift EP∼D[dTV(P

π
ϵ ∥P )] and the policy evolution

dTV (π, π̃). For completeness, we provide the proof of The-
orem 1 in Appendix E.

Issues with the lower bound in Theorem 1. The issues
with Equation 8 are mainly two-fold: (1) The bound in Theo-
rem 1 can be loose: This results from the second term of the
right hand side (RHS) of Equation 8, where the maximum
possible immediate reward Rmax could result in a too con-
servative lower bound. Specifically, the shift in transition
kernel EP∼D[dTV(P

π
ϵ ∥P )] is multiplied by the maximum

possible total return Rmax
1−γ , which can be very large in many

benchmark RL environments (e.g., MuJoCo) and therefore
does not well capture the true effect of state-adversarial per-
turbation. As a result, the bound can be vacuous unless the
worst-case MDP Pπ

ϵ is very close to the average case. (2)
The dependency of Equation 8 on the relaxation parameter α
is unclear: As Equation 8 only captures the dependency on
D through an expectation over D (i.e., EP∼D[·]), the depen-
dency on α remains implicit and unclear. Given Equation
8, it remains unknown how to operate with the relaxation
parameter to reconcile the worst case and the average case.

To address the above issues, we consider the smoothness of
the reward function and transition property to build a tighter
connection between the average-case and the worst-case
returns. Specifically, Lipschitz continuity in reward function
has been widely used in the theory of RL (Fehr et al., 2018;
Asadi et al., 2018; Ling et al., 2016). The smoothness of
the transition kernel also holds in most of the environments
(Shen et al., 2020; Lakshmanan et al., 2015). For example,
in grid-world, the next state must be adjacent to the current
state; and in MuJoCo, the poses of consecutive periods are
similar. We formulate the two properties as follows:
Definition 4 (δ-Smooth Transition Kernel in State). Let P
be a transition kernel and δ be a positive constant. P is a
δ-smooth transition kernel in state if ∥s− s′∥ ≤ δ, for all a
and for all s, s′ with P (s′|s, a) > 0.
Definition 5 (Lr-Lipschitz Continuous Reward Function).
Let R : S ×A → R be the reward function of an MDP and
Lr be a positive constant. R is Lr-Lipschitz continuous in
state if for any pair s, s′ ∈ S and any action a ∈ A,

|R(s, a)−R(s′, a)| ≤ Lr∥s− s′∥. (9)

The property of Lr-Lipschitz continuous reward function
ensures that the reward function does not change dramati-
cally as the state changes slightly. With the assumption of
Lipschitz continuity in reward function and smoothness of
transition kernel, we arrive at the following bound:

Theorem 2 (A Sharper Characterization of the Connection
Between Worst-Case and Average-Case Returns). Consider
a nominal MDP with a δ-smooth transition kernel and an
Lr-Lipschitz reward function (cf. Definitions 4-5). Let Uπ

ϵ

be the state-adversarial uncertainty set. For any α ∈ [0, 1],
upon an update from the current policy π to a new policy π̃,
the following bound holds:

J(π̃|Pπ
ϵ ) ≥ J(π̃|Pπ,α

ϵ )− 4γ(ϵ+ δ)Lrα

(1− γ)3

− 4(γ(ϵ+ δ)Lr + (1− γ)2Rmax)dTV(π∥π̃)
(1− γ)3

, (10)

where dTV(π∥π̃) is the total variation divergence between
π and π̃, Pπ,α

ϵ and Pπ
ϵ are the relaxed and worst-case state-

adversarial transition kernels within the uncertainty set Uπ
ϵ ,

respectively.

The proof for Theorem 2 is in Appendix F. Notably, this
theorem holds for any value of the relaxation parameter α
within the range of [0,1]. The main technical challenges in
the proof include: (1) Propagation of state perturbations
over time: The difference of trajectories under different
MDPs would increase in a nonlinear and complex manner
as time evolves. (2) Quantifying the difference in rewards
among trajectories generated under different transition ker-
nels: To assess the variations in rewards across different
MDPs, it is necessary to consider not only the probability
difference at a given time, but also the variations in rewards
among different states. Despite the above challenges, our
proof uses the finding that the difference of initial proba-
bility of state under two MDPs Pπ

ϵ and Pπ,α
ϵ at time step t

can be quantified as α∆t, where 0 ≤ ∆t ≤ 1. Then under
the smoothness conditions of the reward function and the
transition matrix, we can characterize a tight bound between
the average-case and the worst-case performance.

Why does Theorem 2 provide a tighter lower bound?
Theorem 2 offers a tighter lower bound than Theorem 1
because of the two reasons: (1) The main difference between
the second term of Equation 8 and that of Equation 10 lies in
Rmax and Lr(ϵ+ δ) (given that α and EP∼D [dTV(P

π
ϵ ∥P )]

both capture the transition kernel shifts and are comparable).
(2) Recall that Rmax can be very large in many benchmark
RL environments (e.g., MuJoCo), and it results in a fairly
loose bound. By contrast, Lr(ϵ+ δ) explicitly characterizes
the effect of environment perturbation on the return and
thereby can offer a tighter bound. To further illustrate this,
we provide an example on the Reacher task in Appendix H.
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4.3. Online Adaptation of the Relaxation Parameter

We leverage Theorem 2 to address both the average-case
and worst-case performance. Specifically, we present a
bi-level approach to maximize the lower-bound of the worst-
case performance (i.e., RHS of Theorem 2). Since α and
π are correlated, the two unknowns should be optimized
simultaneously. Details are as follows:

• Lower-level task for average-case return: On the lower
level, we improve the policy by optimizing the objective
J(π̃|Pπ,α

ϵ ) under a fixed relaxation parameter α. This
can be done by using any off-the-shelf RL algorithm (e.g.,
proximal policy optimization (PPO) (Schulman et al.,
2017) with a clipped objective).

• Upper-level task for worst-case return: On the upper
level, we design a meta objective Jmeta(α) to represent
the lower bound of the worst case performance (i.e., RHS
of Equation 10). In other words, J(π̃|Pπ

ϵ ) ≥ Jmeta(α).
The task aims to find a relaxation parameter α that can
maximize Jmeta(α) so as to increase the worst-case perfor-
mance J(π̃|Pπ

ϵ ). On one hand, increasing α improves the
average performance J(π̃|Pπ,α

ϵ ) since the average-case
moves toward a nominal environment, yet the price is in-
creasing the MDP shift (i.e., the second term of Jmeta(α)).
On the other hand, decreasing α changes the performance
and the penalty oppositely. To enable a stable training,
we iteratively update α by applying the online cross-
validation algorithm (Sutton, 1992).

Both the lower and upper level tasks aim to increase the
lower bound of the worst-case performance J(π̃|Pπ

ϵ ). On
the lower level, maximizing the average-case performance
J(π̃|Pπ,α

ϵ ) also increases the lower bound of the worst-case
performance J(π̃|Pπ

ϵ ) because the first term of Jmeta(α)
increases. On the upper level, the optimization adjusts α to
maximize this lower bound directly.

Algorithm 1 outlines the steps of our approach. At each
iteration step t, we use PPO to improve the policy πθt by
maximizing the average-case return J(πθt |P

πθt−1
,αt). Fol-

lowing this, we adjust the relaxation parameter αt in order
to increase the lower bound of the worst-case return, as spec-
ified in Equation 10. Note that the samples used in the two
steps are different (Lines 3 and 6 of Algorithm 1) because
the meta-objective optimization is an online method. In ad-
dition, we choose PPO as a base algorithm since it prevents
the model from being updated significantly in a single step,
which helps control the penalty term dTV(π∥π̃) in Theorem
2. Further implementation details are in Appendix I.

5. Experimental Results and Evaluations
We performed two experiments on the MuJoCo platform
(Todorov et al., 2012) to assess the performance of our re-

Algorithm 1 Relaxed State-Adversarial Policy Optimization
Input : MDP (S,A, P0, R, γ), Objective function J , step

size parameter η, number of iterations T , number
of update samples Tupd, P0 is the nominal transition
kernel, uncertainty set radius ϵ

1 Initialize the policy πθ0

2 for t = 0, · · · , T − 1 do
3 Sample the tuple {si, ai, ri, s′i}

Tupd
i=1,

where ai ∼ πθt(·|si), and s′i ∼ P0(·|si, ai)
4 Evaluate J(πθt |P

πθt−1
,αt

ϵ )
5 Update the policy to πθt+1

by applying multi-step SGD
to the objective function as PPO

6 Sample the tuple {si, ai, ri, s′i}
Tupd
i=1,

where ai ∼ πθt+1(·|si), and s′i ∼ P0(·|si, ai)
7 Update the relaxation parameter to αt+1 via one SGD
8 update with respect to the meta-objective
9 end

Figure 2. We perturbed the size and gravity of the environments
and measured the mean rewards achieved by the agents trained
using a DR method, MRPO, and our RAPPO. The heatmaps show
the subtractions of MRPO’s reward from RAPPO’s reward. The
higher value (red) indicates that RAPPO outperformed MRPO.

laxed state adversarial policy optimization (RAPPO) against
various adversaries. The baselines and our method were im-
plemented using the PPO algorithm (Schulman et al., 2017),
and the default parameters were used.

Robustness Against Environmental Adversaries. We
compared RAPPO to the state-of-the-art DR method, MRPO
(Jiang et al., 2021), to evaluate its robustness against uncer-
tainty in environmental parameters1. The agents trained us-
ing the two methods were evaluated in environments where
the size and gravity were varied between 0.6 and 1.4. To sim-
ulate the scenario where domain knowledge is unavailable,
MRPO perturbed mass and friction in the range of [0.8, 1.2]
during training, while RAPPO perturbed the states using its
value function. Figure 2 shows the difference in rewards
between the two methods. RAPPO outperformed MRPO be-
cause state adversaries are more general than environmental
adversaries. An agent trained by MRPO experiences only a
specific type of perturbation during training and lacks the

1We used the official implementation and the default setting of
MRPO from https://proceedings.mlr.press/v139/jiang21c.html.
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Table 1. We evaluated the performance of agents trained using PPO, SCPPO, and RAPPO in various Mujoco environments, with varying
levels of state perturbation. The results were obtained from 5 different seeds and 50 initial states. We present the mean and standard
deviation of the rewards, and the average ranks, with higher rewards and lower ranks indicating better performance.

Environment Method Reward Reward Rank Reward Rank Reward Rank Reward Rank Reward Rank
Nominal σ = 0.005 σ = 0.01 σ = 0.015 σ = 0.02 σ = 0.025

PPO 5286 ± 1004 4280 ± 1552 2.52 3186 ± 1875 2.24 1996 ± 1743 2.00 1256 ± 1251 1.50 819 ± 1003 1.20
HalfCheetah-v2 SCPPO 6157 ± 709 5046 ± 1533 2.42 3367 ± 2090 2.74 1795 ± 1758 2.92 875 ± 1259 3.00 60 ± 791 3.00

RAPPO 6146 ± 742 5519 ± 774 1.06 4353 ± 1510 1.02 3087 ± 1568 1.08 1878 ± 1287 1.50 846 ± 951 1.80
Nominal σ = 0.0008 σ = 0.0016 σ = 0.002 σ = 0.0024 σ = 0.003

PPO 3330 ± 619 1357 ± 787 2.52 615 ± 194 3.00 494 ± 151 3.00 462 ± 141 3.00 417 ± 131 3.00
Hopper-v2 SCPPO 2644 ± 951 1369 ± 620 2.48 876 ± 347 2.00 773 ± 357 2.00 782 ± 437 1.98 732 ± 412 2.00

RAPPO 3301 ± 520 2198 ± 859 1.00 1457 ± 537 1.00 1244 ± 584 1.00 1067 ± 605 1.02 1014 ± 779 1.00
Nominal σ = 0.001 σ = 0.0015 σ = 0.002 σ = 0.0025 σ = 0.003

PPO 3781 ± 1165 1564 ± 1285 2.60 903 ± 521 2.72 763 ± 353 2.60 628 ± 241 2.66 575 ± 222 2.54
Walker2d-v2 SCPPO 4313 ± 979 2647 ± 1584 2.28 1604 ± 1082 2.20 985 ± 704 2.28 772 ± 492 2.14 666 ± 412 1.88

RAPPO 4608 ± 962 3998 ± 1487 1.12 3298 ± 1478 1.08 2160 ± 1408 1.12 1470 ± 1013 1.20 1173 ± 783 1.58
Nominal σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05

PPO 6075 ± 889 4489 ± 1342 1.82 2071 ± 1156 1.74 1016 ± 523 1.76 703 ± 283 1.92 615 ± 248 1.94
Ant-v2 SCPPO 5915 ± 728 4203 ± 1441 2.28 1661 ± 951 2.64 831 ± 398 2.46 609 ± 320 2.42 489 ± 273 2.64

RAPPO 6022 ± 698 4381 ± 1357 1.90 2284 ± 1225 1.62 1038 ± 553 1.78 733 ± 255 1.66 672 ± 219 1.42
Nominal σ = 0.003 σ = 0.004 σ = 0.005 σ = 0.006 σ = 0.007

PPO 5357 ± 1618 3033 ± 1834 2.48 2373 ± 1742 2.14 1802 ± 1446 2.20 1287 ± 1068 2.42 939 ± 750 2.46
Humanoid-v2 SCPPO 5410 ± 1340 3196 ± 1781 2.32 2387 ± 1472 2.62 1783 ± 1256 2.66 1271 ± 838 2.40 1060 ± 678 2.24

RAPPO 5355 ± 1491 3768 ± 1972 1.20 3227 ± 1883 1.24 2537 ± 1698 1.14 1747 ± 1274 1.18 1350 ± 1133 1.30

Figure 3. Our RAPPO can steadily improve the average-case and worst-case rewards during training. The solid lines and shaded areas
indicate the mean and standard deviation of the rewards, respectively. Note that the variance of the average-case rewards results from the
inherent large variability in the adversarial strength in the average-case scenario.

ability to adapt to another disturbances during testing.

Robustness Against States Adversaries. To assess the ro-
bustness of RAPPO against state adversaries, we compared
our RAPPO to SCPPO (Kuang et al., 2022), the state-of-
the-art method for robust RL via state perturbations from a
worst-case perspective. We also included the original PPO
algorithm in the experiment for comparison, as it forms
the foundation for both RAPPO and SCPPO. To ensure a
fair comparison, we used the same parameters for RAPPO
and SCPPO. Specifically, we set ϵ to 0.015, 0.002, 0.002,
0.03, and 0.005 for the HalfCheetah-v2, Hopper-v2, Ant-v2,
Walker2d-v2, and Humanoid-v2 environments, respectively.
These values were chosen based on the mean magnitude of
actions taken in each environment.

Table 1 displays the test results. We evaluated the agents’
performance under multiple strengths of attack, using their
respective value functions. Since we repeated each experi-
ment 250 times (i.e., across 5 different seeds and 50 initial
states) for evaluation, the mean and standard deviation of
the rewards are reported. The results clearly show that the
agents’ performance decreased as the strength of the at-
tack increased, in accordance with Lemma 1. Additionally,
RAPPO performed comparably to PPO and SCPPO in nom-
inal environments and its performance decreased at a slower

rate as the attack strength increased. It is worth noting that
the attacks in the last two columns of Table 1 were stronger
than the worst-case scenario (i.e., σ is larger than the radius
of the uncertainty set ϵ used in training), and RAPPO still
performed the best in these environments.

The variances of the total rewards in Table 1 are large be-
cause we attacked the agents in the direction that would
decrease their value the most at each step. An episode
could terminate shortly after a critical attack, resulting in
a considerably low total expected reward for the trajectory.
As a result, the mean-variance ratios were highest in the
nominal environment and decreased as the attack strength
increased. To further confirm that RAPPO outperformed
PPO and SCPPO, we followed the guidelines in (Chan et al.,
2020) and computed the rank of each method under the
same seed and the same initial state. The best performing
method was assigned a rank of 1, the second best was 2,
and so on. We reported the average ranks of each method
across 5 different seeds and 50 initial states in Table 1. As
shown, higher average rewards often correspond to better
ranks (low values), and RAPPO had the best average ranks
in most of the experiments.

Notably, we perturbed policies every step, and each attack
aimed to push the policy to the worst neighboring state in
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Table 2. We evaluated the performance of agents trained using RAPPO and simple schedulers of α. The Scheduler=, Scheduler+ and
Scheduler- indicate that the value of α was fixed at 0.5 (i.e., the middle of the nominal and worst-case environments), gradually increased
from 0 to 1, and gradually decreased from 1 to 0, respectively.

Environment Nominal σ = 0.005 σ = 0.01 σ = 0.015 σ = 0.02 σ = 0.025

HalfCheetah-v2

Scheduler + 5744 ± 883 4591 ± 1395 3542 ± 1730 2001 ± 1910 1096 ± 1859 408. ± 1644
Scheduler - 5865 ± 770 5176 ± 829 3456 ± 1903 1970 ± 2033 941 ± 1483 -158 ± 922
Scheduler = 5830 ± 779 5185 ± 782 4084 ± 1266 2743 ± 1644 1459 ± 1439 406 ± 912

RAPPO 6146 ± 742 5519 ± 774 4353 ± 1510 3087 ± 1568 1878 ± 1287 846 ± 951
Nominal σ = 0.0008 σ = 0.0016 σ = 0.002 σ = 0.0024 σ = 0.003

Hopper-v2

Scheduler + 3032 ± 763 1156 ± 614 829 ± 353 691 ± 250 591 ± 210 479 ± 238
Scheduler - 3032 ± 822 1276 ± 592 789 ± 428 758 ± 456 617 ± 332 486 ± 225
Scheduler = 2497 ± 1041 1626 ± 1064 1122 ± 817 795 ± 426 704 ± 393 521 ± 201.27

RAPPO 3301 ± 520 2198 ± 859 1457 ± 537 1244 ± 584 1067 ± 605 1014 ± 779
Nominal σ = 0.001 σ = 0.0015 σ = 0.002 σ = 0.0025 σ = 0.003

Walker2d-v2

Scheduler + 4051 ± 1130 1548 ± 1068 994 ± 600 736 ± 314 597 ± 237 618 ± 287
Scheduler - 4043 ± 1238 2410 ± 1581 1601 ± 1206 1601 ± 1206 771 ± 768 771 ± 768.81
Scheduler = 4113 ± 899 2394 ± 1471 1881 ± 1398 1520 ± 1387 1249 ± 1282 888 ± 970

RAPPO 4608 ± 962 3998 ± 1487 3298 ± 1478 2160 ± 1408 1470 ± 1013 1173 ± 783
Nominal σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05

Humanoid-v2

Scheduler + 5162 ± 1714 2903 ± 2094 2365 ± 1840 1689 ± 1580 1347 ± 1282 915 ± 694
Scheduler - 5039 ± 1798 3316 ± 2153 2655 ± 2043 1847 ± 1527 1322 ± 958 1022 ± 676
Scheduler = 5169 ± 1468 3031 ± 1810 1941 ± 1336 1550 ± 1165 1035 ± 551 874 ± 458

RAPPO 5355 ± 1491 3768 ± 1972 3227 ± 1883 2537 ± 1698 1747 ± 1274 1350 ± 1133

the experiment. This strategy would inevitably introduce
high variance to the total returns. This phenomenon did not
appear only in our results but also in all the baselines, such
as PPO and SCPPO. Take the performance of PPO in the
HalfCheetah environment as an example: the mean-variance
ratio was 5.26 (5286/1004) when the environment was nom-
inal, and the ratio decreased to 0.81 (819/1003) when the
magnitude σ of attack became 0.025. The performance of
the SCPPO in the HalfCheetah environment also had a simi-
lar phenomenon. The mean-variance ratio decreased from
8.68 (6157/709) to 0.08 (60/791).

Aggregate Levels Results. Given the low mean-variance
ratio, we calculated the interquartile mean (IQM) (Agarwal
et al., 2021) using the rliable library 2 to evaluate the results
at the aggregate levels. Specifically, we aggregated the
results across the strengths of perturbation both in each
environment and in all environments. Due to the various
reward ranges in different environments, we normalized
the rewards to the range of [0, 1] to facilitate comparison
across the tasks. Figure 4 shows the aggregate metrics with
95% Confidence Intervals (CIs) of aggregated scores for
the five Mujoco environments. The CIs are estimated using
the percentile bootstrap with stratified sampling. Higher
IQM scores are better. In addition, we conducted a test
of significance of the total expected rewards to verify that
the results are statistically significant. The results are in
Appendix J.

Combinations of Adversarial Attacks. To evaluate the
agents’ performance under the combined attacks (against
environmental adversaries and states adversaries), we mod-
ified an environmental parameter – size by offsetting the
value from 1.0 to 1.2 and perturbed the states to nearby

2https://github.com/google-research/rliable

positions (using the value function) after each state transi-
tion. The results indicate that RAPPO outperformed the
other two methods under the combined attacks. Particularly,
RAPPO outperformed the methods by a clear margin in the
environments of HalfCheetah and Humanoid. The results
are in Table 3

Steady Improvements of Average and Worst Case Envi-
ronments. We employed a bi-level approach to optimize
both the average and worst-case environments. To demon-
strate the feasibility of this approach, we evaluated the
agents’ performance under these two cases during training.
To determine the worst-case result, we generated 50 trajec-
tories from different initial states, perturbed the states with
the same strength as the training ϵ, and then averaged the
rewards. In contrast, the average-case result was determined
from 50 initial states and 10 different perturbation strengths,
which were evenly distributed between 0 and ϵ. In total, the
rewards of 500 trajectories were averaged. Figure 3 illus-
trates that RAPPO can steadily improve the average-case
performance without sacrificing the worst-case performance.
Note that the high variance of the average-case rewards is
expected due to the varying adversarial strengths. Figure 6
in Appendix provides a comparison of the learning perfor-
mances of PPO, SCPPO, and RAPPO.

The Value of Relaxation Parameter α. Theorem 2 sug-
gests that the policy π and the relaxation parameter α are
interdependent and should be optimized together. To ver-
ify this claim, we also conducted experiments under vari-
ous popular schedulers, where α was held constant (Sched-
uler=), increased linearly (Scheduler+), or decreased lin-
early (Scheduler-) during training. The results, shown in
Table 2, reveal that RAPPO performed better than these
schedulers in most environments. This is not surprising,
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Figure 4. The interquartile mean (IQM) reveals the aggregated results across the strengths of perturbation in each environment and across
strengths and environments.

Table 3. Evaluated the agents’ performance under the combined attacks.

HalfCheetah-v2 Walker-v2 Ant-v2 Hopper-v2 Humanoid-v2
PPO 1568±980 286±74 814±579 450±9 891±321
SCPPO 1083±1293 134±67 842±461 474±2 1035±400
RAPPO 3124±307 311±156 969±870 478±2 2644±1481

as the schedulers did not take into account the correlation
between α and π, making it difficult to find a good solution.

Extending SAPPO Using Relaxed State Adversaries.
While RAPPO effectively improves the robustness of agents
against state adversaries, a classical method, SAPPO (Zhang
et al., 2020), can help agents against perturbations of ob-
servations. We thus extended SAPPO by incorporating our
relaxed state adversarial attacks and evaluated its effective-
ness. The results are in Table 4 in Appendix G. As indicated,
the extended RA-SAPPO performed better than SAPPO in
most of the environments, particularly under strong attacks.

6. Concluding Remarks
We have presented a relaxed state adversarial policy op-
timization approach to enhance the robustness of agents
against uncertain environments. In contrast to the conven-
tional DR methods, we used adversarial attacks to perturb
states, allowing us to decouple randomization from sim-
ulators and eliminating the need for prior knowledge of
selecting environmental parameters or assumptions about
parameter distributions. Furthermore, we implemented a re-
laxation strategy to address the over-conservatism problem
caused by state adversarial attacks. Our policy optimization
simultaneously maximizes rewards in average-case environ-

ments while maintaining lower-bound rewards in worst-case
environments. Experimental results and theoretical proofs
validate the effectiveness of our method.

Limitations and Future Work. Our relaxation method is
state-independent, meaning that the value of α is adjusted
based on the overall performance of the policy. Given that
the level of difficulty varies between states, it would be in-
teresting to investigate state-dependent relaxation methods.
Additionally, we currently assume that each dimension of
states is of equal importance, which may not always be the
case. We plan to further study this issue in the future.
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Appendix

A. Grid World Example
We illustrate the over-conservatism problem in Figure 1 using a shortest-path grid world environment. In this environment,
the four-adjacent neighbors of each state s are denoted by N (s). During training, we perturbed states to the nearby worst
states to help agents against the uncertainty of environments. The state-adversarial value iteration algorithm is shown
in Algorithm 2. To achieve a clear explanation, we first denote the coordinate of the bottom left corner by grid(0, 0).
Accordingly, the goal state is located at grid(0, 3), and the trap state is at grid(2, 2). Let sa and sb be the states at grid(1, 3)
and grid(1, 2), respectively. Since sa is adjacent to the goal state, the value V (sa) will increase because of the high reward
R(sa, aa). However, the value V (sa) will never propagate to state sb because only the worst value around sb is used in the
TD update. Since the policy would be penalized by a −1 reward at each step (to learn how to reach the goal state as soon as
possible), and the positive reward at the goal state can only propagate to grid(0, 2) and grid(1, 3), the value V (sb) decreases
by the negative (sb, ab) after each TD update.

Following the algorithm, we show how the naive state-adversarial method updates the value of (s,a) = (grid(1,2), UP).
Initially, all state values are 0.

At t = 0, Q(s, a) = Q(grid(1,2), UP) = R(grid(1,2), UP) + γ · min
s′∈N (grid(1,3))

V (s′)

= −1 + 0.99 ·min(V (grid(1,3)), V (grid(0,3)), V (grid(2,3)), V (grid(1,2)))
= −1 + 0.99 ·min(0, 0, 0, 0) = −1.

At t = 1, Q(s, a) = Q(grid(1,2), UP) = R(grid(1,2), UP) + γ · min
s′∈N (grid(1,3))

V (s′)

= −1 + 0.99 ·min(V (grid(1,3)), V (grid(0,3)), V (grid(2,3)), V (grid(1,2))
= −1 + 0.99 ·min(−1, 0,−1,−1) = −1.99.

At t = 2, Q(s, a) = Q(grid(1,2), UP) = R(grid(1,2), UP) + γ · min
s′∈N (grid(1,3))

V (s′)

= −1 + 0.99 ·min(V (grid(1,3)), V (grid(0,3)), V (grid(2,3)), V (grid(1,2)))
= −1 + 0.99 ·min(−1, 0,−1.99,−1.99) = −2.97.

As can be seen, although the agent took the action “UP” at grid(1,2) to reach grid(1,3), it considers the minimum value
among the neighbours of grid(1, 3) for the robust purpose. Hence, the TD update reduces the value Q(s, a) = Q(grid(1,2),
UP) at each step. In other words, the agent cannot learn how to move to the goal state because the value of the goal state
does not propagate outward during value iteration. Even worse, the agent would move toward the trap state if it is nearby
due to the compounding effect of TD updates and the worst-case state-adversarial perturbations. The phenomenon appears
after updating state values 12 times.

Algorithm 2 State-Adversarial Perturbation with Greedy Policy
Input :MDP (S,A, P0, R, γ), number of iterations T , P0 is the nominal transition kernel

1 Initialize the Q0(s, a) value function with 0.
2 for t = 1, . . . , T do
3 for state s, action a do
4 Qt(s, a) = R(s, a) + γ

∑
s′ P0(s

′|s, a) min
s′′∈N (s′)

(max
a

Qt−1(s
′′, a))

5 end
6 end
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Figure 5. The 4× 4 shortest-path grid world. The dot, star, and cross icons indicate the initial, goal, and trap states, respectively. The agent
can move either up, down, left, or right at each step and earn +0 and −10 rewards when reaching the goal and trap states, respectively. In
addition, the agent would be penalized by a −1 reward at each step and learn to reach the goal state as quick as possible.

B. Bellman Equation of Relaxed State-Adversarial Policy Optimization
Given a fixed policy π, we aim to estimate its value using the temporal difference learning. Based on the relaxed state-
adversarial transition kernel (Equation 6), we obtain the value function

V π,α
ϵ (s) :=Ea0∼π

[
R(s0, a0) + γEs1∼Pπ,α

ϵ (·|s0,a0)

[
Ea1∼π(·|s1)R(s1, a1) (11)

+ γEs2∼Pπ,α
ϵ (·|s1,a1)

[
Ea2∼π(·|s2)R(s2, a2) + ...

]]]
(12)

The corresponding Bellman operator is derived as

T π,α
ϵ V (s) = Ea∼π

[
R(s, a) + γEs′∼P0(·|s,a)

(
αV (s′) + (1− α) min

s′′∈N (s′)
V (s′′)

)]
(13)

Proof.

V π,α
ϵ (s0) =Ea0∼π

[
R(s0, a0) + γEs1∼Pπ,α

ϵ (·|s0,a0)

[
Ea1∼π(·|s1)R(s1, a1) (14)

+ γEs2∼Pπ,α
ϵ (·|s1,a1)

[
Ea2∼π(·|s2)R(s2, a2) + ...

]]]
(15)

=Ea0∼π

[
R(s0, a0) + γEs1∼P0(·|s0,a0)

[
α
(
Ea1∼π(·|s1)R(s1, a1) (16)

+ γEs2∼Pπ,α
ϵ (·|s1,a1)

[
Ea2∼π(·|s2)R(s2, a2) + ...

)
(17)

+ (1− α)
(

min
s′1∈N ϵ(s1)

Ea′
1∼π(·|s′1)R(s′1, a

′
1) (18)

+ γEs′2∼Pπ,α
ϵ (·|s′1,a′

1)

[
Ea′

2∼π(·|s′2)R(s′2, a
′
2) + ...

)]]]
(19)

=Ea0∼π

[
R(s0, a0) + γEs1∼P0(·|s0,a0)

(
αV π,α

ϵ (s1) + (1− α) min
s′1∈N ϵ(s1)

V π,α
ϵ (s′1)

)]
, (20)

C. Proof of Lemma 1
For ease of exposition, we restate Lemma 1 as follows.

Lemma (Monotonicity of Average Value in Perturbation Strength). Under the setting of state-adversarial MDP, the value of
the local minimum monotonically decreases as the bounded radius σ increases. Let x be a positive real number. Under any

13
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policy π, the total expected return J satisfies

J(π|Pπ
σ ) ≥ J(π|Pπ

σ+x). (21)

Proof.

V π(s0|Pπ
σ ) =Ea0∼π

[
R(s0, a0) + γEsσ1∼Pπ

σ (·|s0,a0)

[
V π(sσ1 |Pπ

σ )
]]

(22)

=Ea0∼π

[
R(s0, a0) + γEs1∼P0(·|s0,a0),sσ1=argminV π(s),s∈Nσ(s1)

[
V π(sσ1 |Pπ

σ )
]]

(23)

≥Ea0∼π

[
R(s0, a0) + γEs1∼P0(·|s0,a0),s

σ+x
1 =argminV π(s),s∈Nσ+x(s1)

[
V π(sσ+x

1 |Pπ
σ )

]]
(24)

=Ea0∼π

[
R(s0, a0) + γEs1∼P0(·|s0,a0),s

σ+x
1 =argminV π(s),s∈Nσ+x(s1),a1∼π(·|sσ+x

1 )

[
R(sσ+x

1 , a1) (25)

+ γEsσ2∼Pπ
σ (·|sσ+x

1 ,a1)
[V π(sσ2 |Pπ

σ )]
]]

(26)

=Ea0∼π

[
R(s0, a0) + γEs1∼P0(·|s0,a0),s

σ+x
1 =argminV π(s),s∈Nσ+x(s1),a1∼π(·|sσ+x

1 )

[
R(sσ+x

1 , a1) (27)

+ γEs2∼P0(·|sσ+x
1 ,a1),sσ2=argminV π(s),s∈Nσ(s2)

[V π(sσ2 |Pπ
σ )]

]]
(28)

≥Ea0∼π

[
R(s0, a0) + γEs1∼P0(·|s0,a0),s

σ+x
1 =argminV π(s),s∈Nσ+x(s1),a1∼π(·|sσ+x

1 )

[
R(sσ+x

1 , a1) (29)

+ γEs2∼P0(·|sσ+x
1 ,a1),s

σ+x
2 =argminV π(s),s∈Nσ+x(s2)

[V π(sσ+x
2 |Pπ

σ )]
]]

(30)

≥Eai∼π,si∼Pπ
σ+x)

[
R(s0, a0) + γR(sσ+x

1 , a1) + γ2R(sσ+x
2 , a2) + ...

]
(31)

=Ea0∼π

[
R(s0, a0) + γEsσ+x

1 ∼Pπ
σ+x(·|s0,a0)

[
V π(sσ+x

1 |Pπ
σ+x)

]]
(32)

=V π(s0|Pπ
σ+x) (33)

where the inequality holds because σ + x is a larger perturbation radius than σ. Recall that µ denotes the initial state
distribution. Then, we have

J(π|Pπ
σ ) =Es0∼µ[V

π(s0|Pπ
σ )] (34)

≥Es0∼µ[V
π(s0|Pπ

σ+x)] (35)
=J(π|Pπ

σ+x). (36)

D. Proof of Lemma 2
We prove Lemma 2 based on the continuity of the expected discounted return J(π|Pπ,α

ϵ ) with the relaxation parameter
α ∈ [0, 1]. Based on the continuity of α, the assumption is reasonable because similar values of α imply similar
transition kernels (Equation 6). We show this property by the continuity of the epsilon-delta definition as follow. Let
α1, α2 ∈ [0, 1] be two relaxation parameters. As long as |α1 − α2| is small, the state perturbations are similar, which
also implies that the total returns would be similar due to bounded rewards. Therefore, by expressing J(π|Pπ,α

ϵ ) =
Es0∼µ,a0∼π[R(s0, a0) + γ

∑
s1
Pπ,α
ϵ (s1|s0, a0)V π(s1|Pπ,α

ϵ )] and using the boundedness of total return, one can verify
that for any ϵc > 0, there exist a δc > 0, such that |α1 −α2| < δc and |J(π|Pπ,α1

ϵ )−J(π|Pπ,α2
ϵ )| < ϵc. Hence, J(π|Pπ,α

ϵ )
is continuous in α. Now we are ready to prove Lemma 2.

Lemma (Relaxation parameter α as a prior distribution D in domain randomization). For any distribution D over the
state-adversarial uncertainty set Uπ

ϵ , there must exist an α ∈ [0, 1] such that

EP∼D[J(π|P )] = J(π|Pπ,α
ϵ ).

Proof. Based on Lemma 1, we have

J(π|Pπ,0
ϵ ) = J(π|Pπ

ϵ ) ≤ EP∼D[J(π|P )] ≤ J(π|Pπ,1
ϵ ) = J(π|P0) (37)

14
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Under the condition that J(π|Pπ,α
ϵ ) is a continuous function, by Intermediate Value Theorem, we know that there exists

α ∈ [0, 1] such that

EP∼D[J(π|P )] = J(π|Pπ,α
ϵ ). (38)

E. Proof of Theorem 1
For ease of exposition, we restate Theorem 1 as follows.
Theorem (A Direct Connection Between the Average-Case and the Worst-Case Returns). Given a nominal MDP with
transition kernel P0 along with a state-adversarial uncertainty set Uπ

ϵ , for any distribution D over Uπ
ϵ , upon an update from

the current policy π to a new policy π̃, the following bound holds (Jiang et al., 2021):

J(π̃|Pπ
ϵ ) ≥ EP∼D[J(π̃|P )]− 2Rmax

γEP∼D[dTV(P
π
ϵ ∥P )]

(1− γ)2
− 4Rmax

dTV(π∥π̃)
(1− γ)2

, (39)

where dTV(π∥π̃) indicates the total variation divergence between π and π̃, and Pπ
ϵ is the worst-case state-adversarial

transition kernel.

Proof. To begin with, note that

J(π̃|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ) = J(π̃|Pπ
ϵ )− J(π|Pπ

ϵ ) + J(π|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ). (40)

Throughout the proof, we use ptπ(s|P ) to denote the state distribution at time t under a transition kernel P and a policy π.
For ease of notation, we also define ptπ(s, a|P ) := π(a|s)ptπ(s|P ). For the last two terms of Equation 40,

|J(π|Pπ
ϵ )− J(π̃|Pπ,α

ϵ )| (41)

= |
∑
t

γt
∑
s,a

(ptπ(s, a|Pπ
ϵ )− ptπ̃(s, a|Pπ,α

ϵ ))R(s, a)| (42)

≤
∑
t

γt
∑
s,a

|(ptπ(s, a|Pπ
ϵ )− ptπ̃(s, a|Pπ,α

ϵ )|R(s, a) (43)

≤ 2Rmax

∑
t

γt[dTV(p
t
π(s, a|Pπ

ϵ )∥ptπ̃(s, a|Pπ,α
ϵ ))] (44)

because ptπ(s, a|Pπ
ϵ ) = π(a|s)ptπ(s|Pπ

ϵ ) and ptπ̃(s, a|Pπ,α
ϵ ) = π̃(a|s)ptπ̃(s|Pπ,α

ϵ ) (45)

≤ 2Rmax
[
Es′∼pt

π(·|Pπ
ϵ )[dTV(π(a|s′)∥π̃(a|s′))] (46)

+ dTV(p
t
π(s|Pπ

ϵ )∥ptπ̃(s|Pπ,α
ϵ ))

]
(47)

For the second term of Equation 47,

dTV(p
t
π(s|Pπ

ϵ )∥ptπ̃(s|Pπ,α
ϵ )) (48)

≤ t · max
t

Es′∼pt
π(·|Pπ

ϵ )[dTV(pπ(s|s′, a, Pπ
ϵ )∥pπ̃(s|s′, a, Pπ,α

ϵ ))] (49)

because pπ(s|s′, a, Pπ
ϵ ) =

∑
a

Pπ
ϵ (s|s′, a)π(a|s′) (50)

≤ t · max
t

Es′∼pt
π(·|Pπ

ϵ )Ea∼π(·|s′)[dTV(P
π
ϵ (s|s′, a)∥Pπ,α

ϵ (s|s′, a, )] (51)

+ t · max
t

Es′∼pt
π(·|Pπ

ϵ )dTV(π(s|s′)∥π̃(a|s′)) (52)

Then we can rewrite Equation 47as:

J(π|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ) (53)

≥ −2Rmax

∑
t

γt[(t+ 1)max
t

Es′∼pt
π(·|Pπ

ϵ )dTV(π(a|s′)∥π̃(a|s′) (54)

− tmax
t

Es′∼pt
π(·|Pπ

ϵ )Ea∼π(·|s′)dTV(P
π
ϵ (s|s′, a)∥Pπ,α

ϵ (s|s′, a)) (55)
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Similar to the derivation of Equation 47,

J(π̃|Pπ
ϵ )− J(π|Pπ

ϵ ) (56)

≥ −2Rmax

∑
t

γt[(t+ 1)max
t

Es′∼pt
π(·|pw)dTV(π(a|s′)∥π̃(a|s′))] (57)

and rewrite Equation 40 as following,

J(π̃|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ) (58)

≥ −2Rmax

∑
t

γt[2(t+ 1)max
t

Es′∼pt
π(·|Pπ

ϵ )dTV(π(a|s′)∥π̃(a|s′) (59)

− tmax
t

Es′∼pt
π(·|Pπ

ϵ )Ea∼π(·|s′)dTV(P
π
ϵ (s|s′, a))∥Pπ,α

ϵ (s|s′, a)] (60)

= −2Rmax

∑
t

γt[2(t+ 1)max
t

Es′∼pt
π(·|Pπ

ϵ )dTV(π(a|s′)∥π̃(a|s′) (61)

− tEP∼D[dTV(P
π
ϵ ∥P )]] (62)

= −2Rmax
γEP∼D[dTV(P

π
ϵ ∥P )]

(1− γ)2
− 4Rmax

dTV(π∥π̃)
(1− γ)2

(63)

F. Proof of Theorem 2
We consider the difference of the expected discounted return under two different state-adversarial transition kernels. To
prove this theorem, we utilize the definition of the reward function of the corresponding Markov Reward Process (MRP)
with respect to policy π by R(s) :=

∑
a π(a|s)R(s, a). For convenience, we restate Theorem 2 as follows.

Theorem (A Sharper Characterization of the Connection Between Worst-Case and Average-Case Returns). Consider a
nominal MDP with a δ-smooth transition kernel and an Lr-Lipschitz reward function (cf. Definitions 4-5). Let Uπ

ϵ be
the state-adversarial uncertainty set. For any α ∈ [0, 1], upon an update from the current policy π to a new policy π̃, the
following bound holds:

J(π̃|Pπ
ϵ ) ≥ J(π̃|Pπ,α

ϵ )− 4γ(ϵ+ δ)Lrα

(1− γ)3
− 4(γ(ϵ+ δ)Lr + (1− γ)2Rmax)dTV(π∥π̃)

(1− γ)3
, (64)

where dTV(π∥π̃) is the total variation divergence between π and π̃, Pπ,α
ϵ and Pπ

ϵ are the relaxed and worst-case state-
adversarial transition kernels within the uncertainty set Uπ

ϵ , respectively.

We first introduce the following supporting lemma before proving Theorem 2.

Lemma 3. Given any ϵ > 0, any initial state s0 ∈ S, and a policy π, let st and s̃t denote the state at time step t under the
nominal transition kernel P0 and the state-adversarial transition kernel Pπ

ϵ , respectively. Then, we have ∥st− s̃t∥ ≤ 2t(ϵ+δ),
with probability one.

Proof of Lemma 3. We prove this by induction. If t = 1, we know the difference between s1 and s̃1 results from the
perturbation at time step 1. Therefore, we have ∥s1 − s̃1∥ ≤ ϵ.

Next, suppose that at time step t = τ , we have ∥sτ − s̃τ∥ ≤ 2τ(ϵ+ δ). Then, we have

∥sτ+1 − s̃τ+1∥ = ∥sτ+1 − sτ + sτ − s̃τ + s̃τ − s̃τ+1∥ (65)
≤ ∥sτ+1 − sτ∥+ ∥sτ − s̃τ∥+ ∥s̃τ − s̃τ+1∥ (66)
≤ δ + 2τ(ϵ+ δ) + (ϵ+ δ) (67)
≤ 2(τ + 1)(ϵ+ δ), (68)

where Equation 65 holds by the triangle inequality, Equation 66 follows the definition of δ, the assumption in the induction
step, and the fact that s̃τ+1 is obtained from s̃τ via the transitions determined by P0 and the perturbation of strength ϵ.
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We are now ready to prove Theorem 2.

Proof of Theorem 2. To begin with, we have

J(π̃|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ) = J(π̃|Pπ
ϵ )− J(π|Pπ

ϵ ) + J(π|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ) (69)

As in the proof of Theorem 1, we use ptπ(s|P ) to denote the state distribution at time t under a transition kernel P and a
policy π. For ease of notation, we also define ptπ(s, a|P ) := π(a|s)ptπ(s|P ). For the last two term of Equation 69,

|J(π|Pπ
ϵ )− J(π̃|Pπ,α

ϵ )| (70)

=|
∑
t

γt
∑
s,a

π(a|s)ptπ(s|Pπ
ϵ )R(s, a)− π̃(a|s)ptπ̃(s|Pπ,α

ϵ )R(s, a)| (71)

=|
∑
t

γt
∑
s,a

π(a|s)[ptπ(s|Pπ
ϵ )− ptπ̃(s|Pπ,α

ϵ )]R(s, a) + (π(a|s)− π̃(a|s))ptπ̃(s|Pπ,α
ϵ )R(s, a)| (72)

≤
∑
t

γt
∑
s,a

|π(a|s)[ptπ(s|Pπ
ϵ )− ptπ̃(s|Pπ,α

ϵ )]R(s, a)|+ |(π(a|s)− π̃(a|s))ptπ̃(s|Pπ,α
ϵ )R(s, a)| (73)

For the first term of Equation 73, we have the t-step state distribution:

|ptπ(s|Pπ
ϵ )− ptπ̃(s|Pπ,α

ϵ )| (74)

≤|ptπ(s|Pπ
ϵ )− ptπ(s|Pπ,α

ϵ )|+ |ptπ(s|Pπ,α
ϵ )− ptπ̃(s|Pπ,α

ϵ )| (75)
(76)

Now we prove the following inequality.∑
s

|ptπ(s|Pπ
ϵ )− ptπ(s|Pπ,α

ϵ )| (77)

=
∑
s

|
∑
s′

pt−1
π (s′|Pπ

ϵ )(
∑

k,Zks=1

P0(k|s′)) (78)

− (1− α)
∑
s′

pt−1
π (s′|Pπ,α

ϵ )(
∑

k,Zks=1

P0(k|s′)) (79)

− α
∑
s′

pt−1
π (s′|Pπ,α

ϵ )P0(s|s′), (80)

≤
∑
s

∑
s′

|pt−1
π (s′|Pπ

ϵ )− pt−1
π (s′|Pπ,α

ϵ )|(
∑

k,Zks=1

P0(k|s′)) (81)

+ α
∑
s

∑
s′

pt−1
π (s′|Pπ,α

ϵ )|(
∑

k,Zks=1

P0(k|s′))− P0(s|s′)| (82)

≤
∑
s′

|pt−1
π (s′|Pπ

ϵ )− pt−1
π (s′|Pπ,α

ϵ )| (83)

+ α ·max
s′

∑
s

|(
∑

k,Zks=1

P0(k|s′))− P0(s|s′)| (84)

≤
∑
s′

|pt−1
π (s′|Pπ

ϵ )− pt−1
π (s′|Pπ,α

ϵ )|+ 2α (85)

=2αt (86)

where P0(s|s′) =
∑

a π(a|s′)P0(s|s′, a), Zks = Z π̃
ϵ (k, s) is the state perturbation matrix, and Equations 78 to 80 follow

from the definition of state perturbation transition kernel. Note that
∑

k,Zks=1 P0(k|s′) is the state probability after
considering the perturbation, and Equation 83 holds because

∑
s

∑
k,Zks=1 P0(k|s′) = 1. In addition, Equation 86 is

obtained by recursively applying Equations 78 to 85 to the first term of Equation 85.
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For the first two terms of Equation 75, we have

|ptπ(s|Pπ
ϵ )− ptπ(s|Pπ,α

ϵ )| (87)

≤
∑
s

|ptπ(s|Pπ
ϵ )− ptπ(s|Pπ,α

ϵ )| (88)

≤2αt, (89)

For the last two terms of Equation 75, we have

|ptπ(s|Pπ,α
ϵ )− ptπ̃(s|Pπ,α

ϵ )| (90)

≤
∑
s

|ptπ(s|Pπ,α
ϵ )− ptπ̃(s|Pπ,α

ϵ )| (91)

=
∑
s

∑
s′,a

(
|pt−1

π (s′|Pπ,α
ϵ )π(a|s′)− pt−1

π̃ (s′|Pπ,α
ϵ )π̃(a|s′)|

)(
αP0(s|s′, a) + (1− α)

∑
k,Zks=1

P0(k|s′, a)
)

(92)

≤
∑
s′,a

|pt−1
π (s′|Pπ,α

ϵ )π(a|s′)− pt−1
π̃ (s′|Pπ,α

ϵ )π̃(a|s′)| (93)

≤
∑
s′,a

|pt−1
π (s′|Pπ,α

ϵ )π(a|s′)− pt−1
π (s′|Pπ,α

ϵ )π̃(a|s′)|+
∑
s′,a

|pt−1
π (s′|Pπ,α

ϵ )π̃(a|s′)− pt−1
π̃ (s′|Pπ,α

ϵ )π̃(a|s′)| (94)

=
∑
s′,a

|pt−1
π (s′|Pπ,α

ϵ )(π(a|s′)− π̃(a|s′))|+
∑
s′,a

|(pt−1
π (s′|Pπ,α

ϵ )− pt−1
π̃ (s′|Pπ,α

ϵ ))π̃(a|s′)| (95)

≤2tdTV(π∥π̃) (96)

Hence, we can rewrite Equation 74 as:

|ptπ(s|Pπ
ϵ )− ptπ̃(s|Pπ,α

ϵ )| ≤ 2αt+ 2tdTV(π∥π̃) (97)

where Equation 97 holds by applying Equation 96 and 89.

Under the condition that the reward function R(s, a) is Lr-Lipschitz continuous in state, we know the reward function of
the MRP under policy π is also Lr-Lipschitz continuous, i.e., |R(s1)−R(s2)| ≤ 2t(ϵ+ δ)Lr if ∥s1 − s2∥ ≤ 2t(ϵ+ δ). By
Lemma 3, for every probability density in ptπ(s|Pπ

ϵ ), there exists a corresponding density point transited by Pπ,α
ϵ , and the

state distance between these two density is less than 2t(ϵ+ δ). Hence, their reward difference is bounded by 2t(ϵ+ δ)Lr.
By Equation 97, for every state, the total probability density difference is bounded by 2αt+ 2tdTV(π∥π̃). The total reward
difference at time t will be

|
∑
s,a

π(a|s)[ptπ(s|Pπ
ϵ )− ptπ̃(s|Pπ,α

ϵ )]R(s, a)| (98)

=|
∑
s

[ptπ(s|Pπ
ϵ )− ptπ̃(s|Pπ,α

ϵ )]R(s)| (99)

≤(2αt+ 2tdTV(π∥π̃)) · 2t(ϵ+ δ)Lr (100)

Combining Equations 70and 100, we have

|J(π|Pπ
ϵ )− J(π̃|Pπ,α

ϵ )| (101)

≤
∑
t

γt
(
(2αt+ 2tdTV(π∥π̃)) · 2t(ϵ+ δ)Lr + 2RmaxdTV(π∥π̃)

)
(102)

=
∑
t

γt4αt2(ϵ+ δ)Lr +
∑
t

γt4t2(ϵ+ δ)LrdTV(π∥π̃) +
∑
t

γt2RmaxdTV(π∥π̃) (103)

=
γ(4α(ϵ+ δ)Lr)

(1− γ)3
+

4γ(ϵ+ δ)LrdTV(π∥π̃)
(1− γ)3

+ 2
RmaxdTV(π∥π̃)

(1− γ)
(104)
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When policy π is updated to π̃, J(π|Pπ
ϵ ) ≤ J(π̃|Pπ,α

ϵ ). Then we have

J(π|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ) (105)

≥− γ(4α(ϵ+ δ)Lr)

(1− γ)3
− 4γ(ϵ+ δ)LrdTV(π∥π̃)

(1− γ)3
− 2RmaxdTV(π∥π̃)

(1− γ)
(106)

Similar to the derivation of Equation 70

|J(π̃|Pπ
ϵ )− J(π|Pπ

ϵ )| (107)

≤|
∑
t

γt
∑
s,a

(π̃(a|s)− π(a|s))ptπ̃(s|Pπ
ϵ )R(s, a)| (108)

≤2RmaxdTV(π∥π̃)
(1− γ)

(109)

Hence we have

J(π̃|Pπ
ϵ )− J(π|Pπ

ϵ ) ≥ −2RmaxdTV(π∥π̃)
(1− γ)

(110)

By combining Equations 106, 110, we rewrite Equation 69 as

J(π̃|Pπ
ϵ )− J(π̃|Pπ,α

ϵ ) (111)

≥− 4γ(ϵ+ δ)Lrα

(1− γ)3
− 4(γ(ϵ+ δ)Lr + (1− γ)2Rmax)dTV(π∥π̃)

(1− γ)3
(112)

By combining Equations of PPO,

J(π̃|Pπ
ϵ ) (113)

≥J(π̃|Pπ,α
ϵ )− 4γ(ϵ+ δ)Lrα

(1− γ)3
− 4(γ(ϵ+ δ)Lr + (1− γ)2Rmax)dTV(π∥π̃)

(1− γ)3
(114)

≥J(π̃|Pπ,α
ϵ )− 8γ(1− α) · (ϵ+ δ)Lr

(1− γ)3
− 4γ(ϵ+ δ)Lrα

(1− γ)3
− 4(γ(ϵ+ δ)Lr + (1− γ)2Rmax)dTV(π∥π̃)

(1− γ)3
(115)

≥J(π̃|Pπ,α
ϵ )− 8γ · (ϵ+ δ)Lr

(1− γ)3
+

4γ(ϵ+ δ)Lrα

(1− γ)3
− 4(γ(ϵ+ δ)Lr + (1− γ)2Rmax)dTV(π∥π̃)

(1− γ)3
(116)

G. Additional Experimental Results

Table 4. We extended the SAPPO by adopting the relaxed state adversarial strategy and evaluated whether the extension (i.e., RA-SAPPO)
can improve the agents’ robustness against state perturbation. Mean and standard deviations are reported.

Environment Nominal σ = 0.005 σ = 0.01 σ = 0.015 σ = 0.02 σ = 0.025
HalfCheetah-v2 SAPPO 4928 ± 370 4765 ± 359 4485 ±394 4036 ± 582 3282 ± 1175 2533 ± 1495

RA-SAPPO 5784 ± 1081 5371 ± 1323 4874 ± 1311 4775 ± 933 4106 ± 1273 3152 ± 1750
Nominal σ = 0.001 σ = 0.0015 σ = 0.002 σ = 0.0025 σ = 0.003

Walker2d-v2 SAPPO 4135 ± 962 2211 ± 1322 940 ± 405 673 ± 318 667 ± 326 614 ± 311
RA-SAPPO 4539 ± 1014 3229 ± 1590 1564 ± 1410 921 ± 789 832 ± 806 746 ± 772

Nominal σ = 0.003 σ = 0.004 σ = 0.005 σ = 0.006 σ = 0.007
Humanoid-v2 SAPPO 5736 ± 1194 3690 ± 2068 2926 ± 1956 1944 ± 1438 1409 ± 1098 1156 ± 789

RA-SAPPO 5320 ± 1164 3960 ± 2082 3335 ± 2117 2882 ± 2066 2129 ± 1776 1567 ± 1474

H. An Illustrative Example for Comparing the Lower Bounds in Theorem 1 and Theorem 2
Recall from Section 4 that Theorem 2 offers a tighter lower bound than Theorem 1. To further substantiate this, let us take
the Reacher task in MuJoCo as an example. In Reacher, the goal is to control a robot arm with two joints and move the
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robot’s fingertip close to the target. Let s = (s1, s2) be the position of the fingertip, sg = (sg1 , sg2) be the position of the
target, and s1, s2, sg1 , sg2 ∈ [0, S]. Let a = (a1, a2) be the action of the joints. In Reacher, the reward function is defined as

R(s, a) = −
√
(s1 − sg1)

2 + (s2 − sg2)
2 − κ(a21 + a22), (117)

where κ is some weight factor of the action penalty. Then, one can verify that Rmax =
√
2S = O(S). Moreover, we have

Lr = 1 since

∥∥∥∂R(s, a)

∂s

∥∥∥
2
=

√
(

−(s1 − sg1)√
(s1 − sg1)

2 + (s2 − sg2)
2
)2 + (

−(s2 − sg2)√
(s1 − sg1)

2 + (s2 − sg2)
2
)2 = 1. (118)

Hence, Theorem 2 can reduce the growth rate from Rmax = O(S) to 2(ϵ+δ)Lrα
(1−γ) = O(1) as ϵ, δ, α, and γ are constants with

respect to S.

I. Implementation Details
We apply the online cross-validation (Sutton, 1992) method to update the average-case and worst-case rewards alternatively
and iteratively. Specifically, at one step, we update the policy πθt using the paths generated by the current relaxation
parameter αt. The Bellman operator used to update the value function is derived in Appendix B. At the other step, we
apply the updated model πθt+1

to generate new paths and compute the relaxation parameter αt+1 by maximizing the meta
objective function. The gradient of relaxation parameter αt is calculated by

∂Jmeta(αt; θt+1)

∂αt
=

∂Jmeta(αt; θt+1)

∂θt+1

∂θt+1

∂αt
, (119)

where ∂θt+1

∂αt
measures how the relaxation parameter affects the updated model parameter. Since θt+1 = θt + f(θt, αt),

where f(θt, αt) is the update function for θt, we have ∂θt+1

∂αt
= ∂f(θt,αt)

∂αt
. In our implementation, we use the automatic

differentiation package in PyTorch to compute ∂Jmeta(αt;θt+1)
∂θt+1

and ∂θt+1

∂αt
. In addition, to avoid the large penalty coefficients

− 4γ(ϵ+δ)Lr

(1−γ)3 and − 4(γ(ϵ+δ)Lr+(1−γ)2Rmax)
(1−γ)3 (Theorem 2), which lead to prohibitively small steps (Jiang et al., 2021), we

consider the coefficients to be tunable hyper-parameters C1 and C2. We apply the grid search (i.e., [0.001, 0.01, 0.02] for
C1 and [0.1, 0.5, 1.0, 1.5] for C2) to find the best hyper-parameters.

We use tunable hyperparameters C1 and C2 to approximate the coefficients in Equation 10 because this strategy can improve
network training. The strategy is commonly used in optimization. Famous examples are TRPO (Schulman et al., 2015)
and PPO (Schulman et al., 2017). Specifically, TRPO’s authors pointed out that the derived penalty coefficient leads to
a tiny step at each policy update; and PPO’s authors solved the problem by setting the penalty coefficient as (1) a fixed
hyperparameter and (2) an adaptive hyperparameter, and (3) by clipping the penalty directly. In our implementation, since α
is dynamic, and its value is correlated with π, we set the penalty coefficients of αt and dTV(πθt , πθt+1) to fixed parameters
to achieve a stable network training.

J. Statistically Significant Results
We conducted a test of significance of the total expected rewards to verify that the results are statistically significant. The
null hypothesis was that the difference of the mean between RAPPO and SCPPO was zero. The alternative hypothesis was
that the difference was larger than zero. Table 5 shows the lower bound of 95% confidence interval (CI). The value implies
that one can have 95% confidence that the interval included the true value of the difference between two methods. If the 95%
confidence interval did not cover 0, it meant that the difference between SCPPO and RAPPO was statistically significant.
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Algorithm 3 Practical Implementation of Relaxed State-Adversarial Policy Optimization
Input : MDP (S,A, P0, R, γ), number of iterations T , number of update samples Tupd, nominal transition kernel P0,

hyperparameter for RAPPO C1 and C2, uncertainty set radius ϵ
1 Initialize the policy πθ0 , the value function Vϕ0

2 for t = 0, . . . , T − 1 do
3 Sample the tuple {si, ai, ri, s′i}

Tupd
i=1, where ai ∼ πθt(·|si), and s′i ∼ P0(·|si, ai)

4 Evaluate J(πθt |P
πθt−1

,αt

ϵ ) =
∑Tupd

j=0[rj + γ[αtVϕt(s
′
j)− (1− αt)( min

s′′j ∈N ϵ(s′j)
Vϕt(s

′′
j ))]]

5 Update the policy to πθt+1 and value function to Vϕt+1 by PPO
6 Sample the tuple {si, ai, ri, s′i}

Tupd
i=1, where ai ∼ πθt+1

(·|si), and s′i ∼ P0(·|si, ai)
7 Evaluate J(πθt+1 |Pπθt ,αt) =

∑Tupd
j=0[rj + γ[αtVϕt+1

(s′j)− (1− αt)( min
s′′j ∈N ϵ(s′j)

Vϕt+1
(s′′j ))]]

8 Evaluate Jmeta(αt) =J(πθt+1
|Pπθt ,αt

ϵ )−C1αt − C2dTV(πθt∥πθt+1
)

9 Update the relaxation parameter αt via ∂Jmeta(αt;θt+1)
∂αt

= ∂Jmeta(αt;θt+1)
∂θt+1

∂θt+1

∂αt

10 end

Table 5. We compared the performances of RAPPO and SCPPO from the statistical perspective. The values indicate the lower bound
of 95% confidence interval of the test of significance. The null hypothesis was no difference between RAPPO and SCPPO, and the
alternative hypothesis was the opposite. Namely, the value larger than 0 indicated that the difference was statistically significant.

σ = 0.005 σ = 0.01 σ = 0.015 σ = 0.02 σ = 0.025
HalfCheetah-v2 294 717 1046 815 757.1

σ = 0.0008 σ = 0.0016 σ = 0.002 σ = 0.0024 σ = 0.003
Hopper-v2 718.6 514.3 399.6 216.2 190.1

σ = 0.001 σ = 0.0015 σ = 0.002 σ = 0.0025 σ = 0.003
Walker2d-v2 1125 1503 1010.8 580.5 474.7

σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05
Ant-v2 -28 416.3 136 81.4 146.5

σ = 0.003 σ = 0.004 σ = 0.005 σ = 0.006 σ = 0.007
Humanoid-v2 295 591 534 317 152.3

Figure 6. The training curves to facilitate a comparison between the learning performances of PPO, SCPPO, and RAPPO.
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