
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Chess Evolution Visualization
Wei-Li Lu, Yu-Shuen Wang, and Wen-Chieh Lin

Abstract—We present a chess visualization to convey the changes in a game over successive generations. It contains a score
chart, an evolution graph and a chess board, such that users can understand a game from global to local viewpoints. Unlike
current graphical chess tools, which focus only on highlighting pieces that are under attack and require sequential investigation,
our visualization shows potential outcomes after a piece is moved and indicates how much tactical advantage the player can
have over the opponent. Users can first glance at the score chart to roughly obtain the growth and decline of advantages from
both sides, and then examine the position relations and the piece placements, to know how the pieces are controlled and how
the strategy works. To achieve this visualization, we compute the decision tree using artificial intelligence to analyze a game,
in which each node represents a chess position and each edge connects two positions that are one-move different. We then
merge nodes representing the same chess position, and shorten branches where nodes on them contain only two neighbors,
in order to achieve readability. During the graph rendering, the nodes containing events such as draws, effective checks and
checkmates, are highlighted because they show how a game is ended. As a result, our visualization helps players understand a
chess game so that they can efficiently learn strategies and tactics. The presented results, evaluations, and the conducted user
studies demonstrate the feasibility of our visualization design.

Index Terms—Chess visualization, graph

F

1 INTRODUCTION
Chess is one of the most popular two-player strategy
board games in the world. Players usually polish
their chess skills, including strategy and tactics, by
reading experts’ comments and play books. Given
that computers have recently surpassed humans in
playing chess, modern artificial intelligence (AI) has
emerged as a helpful tool for analyzing the interaction
of pieces and the evolution of a game. AI’s thorough
and deep searching enables the depiction of chess
positions after more than ten moves. Therefore, it is
capable of analyzing long-term positional advantages
of a game. However, all the current chess tools [1],
[2] assist users in analyzing games by visualizing
spatial information. For the example shown in Figure
1, Arena indicates that the opposing black knight can
be captured (background in green); the white pawn
may be captured while it is protected by a castle
(background in yellow); and the white knight will be
captured if nothing is done to prevent it (background
in red). The visualization also indicates the best two
moves for White to win in the current position using
arrows. Purple and light blue stand for the best and
the second best moves, respectively. As for the game
evolution, it simply describes a sequence of chess
moves using algebraic chess notation [3]. Hence, users
have to sequentially investigate the game and build
the global strategies in mind to answer the questions

• W. L. Lu, Y. S. Wang, and W. C. Lin are with the Department of
Computer Science, National Chiao Tung University, Taiwan

E-mail: willy-78831@hotmail.com
E-mail: yushuen@cs.nctu.edu.tw
E-mail: wclin@cs.nctu.edu.tw

1 Nh4-f5+, Bd7xf5+, Kh6-h5, Rf3-h3+,
Ng6-h4, Rh3xh4+, Kh5-g6, Rh4-h6+

2 Ng3-f5+, Bd7xf5, Nh4xf5+, Kh6-h5,
Rf3-h3+, Ng6-h4, Rh3xh4+, Rh4-h6+

3

Nh4xg6, h7xg6, c2-c3, Rg8-e8, h2-h3,
Kh6-g7, Ng3-e2, c6-c5, d4xc5, Qc7xc5+,
Ne2-d4, Qc5-b6, Rf3-f2, Bd6-c5, Rf1-
d1, Bc5xd4, c3xd4, Qb6xd4, Bd3-c4,
Re8-e1+, Rd1xe1, Qa5xe1, Rf2-f1

4
b2-b3, Ng6xh4, Rf3-f2, Qc7-a5, a2-a4,
Qa5-c3, Ng3-e2, Qc3-d2, f4-f5, Qd2-g5,
g2-g3, Qg5-e3, Kg1-h1

5
c2-c3, Ng6xh4, Rf3-f2, c6-c5, Bd3-e2,
c5xd4, c3xd4, Qc7-b6, Rf1-d1, Qb6xb2,
Be2-h5, Qb2-c3, Bh5xf7, Rg8xg3,
h2xg3, h2xg3, Qc3xg2, Bf7xd5, Bd6xf4,

Fig. 1. (left) Current chess visualization tool (Arena
[1]) focuses only on highlighting pieces that are under
attack and step-by-step moves. (right) Long-term move
sequences containing strategies can only be repre-
sented using algebraic chess notation [3], which is very
difficult to understand.

such as ”Why does the player give up the game?”, ”Is
there a way to escape from king hunt?”, and ”How
does the player turn defeat into victory?”

We present an evolution visualization system to
convey subtle trends of a chess game. Thus, instead
of investigating chess positions sequentially, users are
allowed to examine a chess game from global to
local viewpoints. The analysis of a game is obtained
from recording and linking successive chess positions
made by players, followed by utilizing AI to grow a
decision tree from this recorded structure. Essentially,
a decision tree is a directed graph, where each node
represents a chess position and edges are the legal
plies between two positions. An intuitive way to
visualize the chess evolution is to render the whole

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

decision tree. Yet numerous nodes and complex edges
can cause serious visual clutter. Furthermore, different
nodes in the tree may represent the same chess posi-
tion, thus resulting in perceptual misleading. These
readability problems should be well handled in chess
evolution visualization.

We conditionally simplify a game decision tree by
merging nodes that represent the same chess position
and then discarding nodes that have little correlation
to the game evolution. The node merging reveals
chess position relations that are invisible in a decision
tree, while the node discarding achieves readability.
Our system then renders the simplified graph in 2D
space, where node locations are determined using
GraphViz [4], and edge thicknesses are computed
based on how good the chess move is. By highlighting
the nodes containing critical events, such as draws,
effective checks and checkmates, this evolution graph
shows the circumstance of each chess position, in-
cluding potential advantages and disadvantages af-
ter a number of moves. To convey the global trend
throughout a game, we also align a score chart, which
contains the current score and the potential score
fluctuation with our evolution graph. This is done
to quantize the two players’ tactical advantages at
each move. By integrating these two global visual
clues, our evolution visualization reveals potential
end positions of a game and answers why a player
would consider giving up a game although there are
still many pieces left on the board.

Our technique leverages AI to analyze a chess game
and is capable of conveying the subtle trends to
the users. This global-to-local visualization enables
experts to quickly obtain the overview and critical
events that lead to winning or losing a chess game. It
also allows novice players to preview potential chess
positions in future moves to know how an opponent
may respond and learn how the strategy works. To
evaluate our technique, we compared our chess evo-
lution graph to professional comments, existing graph
visualization designs, and current chess tools. We also
conducted a user study with 21 participants, including
novice players, experienced players, and an expert.
Experimental results show that our visualization fits
the tactical points raised by experts and is capable of
helping players understand chess games efficiently.

2 RELATED WORK

Chess AI. AI long has been developed to play chess.
Existing techniques focus on board evaluation and
game tree pruning. The former evaluates how good
a position is based on piece locations, tactics, king
safety, board control, and passed pawns, etc. [5]. The
latter strives to determine the best move by searching
the minimal tree because exploring all possible moves
is impractical. Therefore, alpha beta algorithm [6],
[7], quiescence search [8], null-move pruning [9], [10],

[11], [12], and other selective enhancements [13] have
been presented to avoid searching sub-trees that have
minimal tactical advantages. We refer the readers to
[14] for more details, because our work focuses on
evolution visualization.

Chess visualization. All current chess visualiza-
tions focus on an instant instead of an overall evolu-
tion of a game, even though the AI engines behind the
systems contain long-term tactical knowledge. Arena
[1] and Fritz [2] show pieces that are under attack and
step-by-step piece moves to guide players in beating
their opponents. The thinking machine [15] sketches
invisible thoughts of an AI to convey how the pro-
gram searches for the best move based on the current
chess position. In contrast, our chess evolution graph
shows all position relations throughout a game and
helps players predict future moves that an opponent
may use in respond, in order to enhance their chess
skills.

Tree and Graph visualization. Trees and Graphs
are often used to represent relations between entities.
The visualization of these structures allows users to
discover intrinsic, hidden, non-trivial, and potential
valuable knowledge [16]. The main difference of these
two structures is the existence of cycles. Generally,
tree visualizations can be categorized according to
edge representation, alignment, and dimensionality
[17]. That is, explicit representations clearly show
connectivity using edges [18], [19] while implicit ones
focus on data hierarchy [20]. The layout could be
radial [18], [19], [21] or axis-parallel [22], [23]; the for-
mer places the root at the center and grows children
nodes outward, whereas the latter maps tree levels
parallel to one axis and span the structure to another.
Finally, trees could be rendered in 2D or 3D spaces.
In contrast to tree visualizations, where cycles do not
exist, algorithms developed to graph visualizations
strive to minimize crossovers and edge wiggles [24],
[25], [26] with the purpose of enhancing readability
and aesthetics. Moreover, plenty of navigation and
clustering techniques are presented to improve space
efficiency due to visual clutter in high complexity
graphs. On the one hand, navigation approaches [27],
[28] magnify regions of interest while shrinking or
discarding the rest to show graph details. On the
other hand, clustering methods [29] show the main
trunk of a graph by hiding nodes and edges that are
less important. Both categories of methods reveal only
partial information due to the limitations of human
cognitive ability.

Time-varying data visualization. A large amount
of research works have been presented that focus on
time-varying data analysis and visualization. These
works attempted to reveal temporal trends of the
underlying data by transforming the data into visual
means for exploring complex relations. Some studies
were presented to handle scientific imaging [30], [31].
Some of them applied dynamic graphs to information

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

visualization [32], [33], [34]. They showed changes
of state over time while preserving the mental map
and achieving good aesthetic quality. Although these
works can be utilized to visualize relations over suc-
cessive generations, they were not designed to convey
decisions and the induced events in a chess game.
Therefore, they are not sufficient in visualizing chess
evolutions and helping players polish their chess
skills.

Storyline visualization. Storyline visualization is
a technique that is often used to convey sequential
relational information. Each entity is represented as
a narrow line going from left to right as time goes
by and are grouped together if the entities have
interactions. Kim et al. [35] developed a visualiza-
tion system for genealogical data, which facilitates
the identification of marriages, parent-child relations,
siblings, and cousins over time. Ogawa and Ma [36]
presented a technique to visualize software project
evolution and to depict the scale and revisions of
development to viewers who are not familiar with the
project. Cui et al. [37] introduced a TextFlow method
to convey complex relations among topic evolution
trends, critical events, and keyword correlations so
that people can know well current affairs. Reda et al.
[38] presented a social network visualization method
to reveal gradual changes of community structures
over a period of time, thus allowing analysts to un-
derstand the formation, evolution, and dissolution of
communities.

Our chess evolution visualization can also be con-
sidered as a kind of storyline visualization. However,
its complexity is much higher than that of a general
storyline visualization, because many potential chess
positions after successive moves can be identified. In
addition, our system conveys high level tactics and
strategies computed by AI, which is very helpful in
facilitating chess learning.

3 DESIGN METHODOLOGY

The goal of our graph design is to reveal chess game
evolutions. It ought to show potential chess positions
after successive moves and highlight events such as
draws, effective checks, and checkmates. The checks that
lead to a worse position are neglected. For clarity, we
use position to represent a game instant and location to
indicate where a node is placed in the latter part of
this paper.

Given that a position contains many piece locations,
it is challenging to simultaneously show both spatial
and sequential information of a game. This prob-
lem becomes even worse when offense and defense
in a game is complex. Thus, we focus on showing
sequential relations of chess positions and pointing
out the successive moves achieving either tangible
gain or loss. Apart from the evolution graph, our
system additionally provides a chess board for the

reference of piece placements. It shows how the pieces
are controlled after a graph node is clicked. Our
interactive interface also allows the examination of the
chess board and the evolution graph on the fly so that
users can realize game strategies easily.

Our system leverages an AI engine called Stockfish1

to analyze a chess game and generate its evolution
graph. That is, we record the sequence of chess po-
sitions made by players throughout a game and feed
them into the chess engine to compute for the decision
tree. This is followed by branch pruning, node merg-
ing, and branch shortening. To achieve an insightful
analysis, the depth of the decision tree in our system
is set to 20, which has the grandmaster chess level and
is able to predict the chess positions after 10 moves2.
Once the decision tree is determined, we pick up 4
to 9 move sequences that take larger advantages from
the opponent at each position and discard the remains
because we assume that the goal of a player is to beat
the opponent. Specifically, suppose the player’s move
appear in the nth best sequence from a position. We
pick the 1st to 4th best sequences if n ≤ 4, the 1st

to nth best sequences if 4 < n ≤ 8, and the 1st to
8th best sequences plus the sequence that contains
the player’s move if n ≥ 9. The consideration to
only eight best sequences is based on more than 250
game play analyses in the GBR-ch tournament 20073,
where the eight best sequences contain 93.4% of the
piece moves made by players; taking the remaining
6.6% moves would lead to much worse positions
and eventually lose the game. Note that all the real
chess positions made by players are retained in the
tree. Mistakes leading to failure are presented in our
evolution graph.

3.1 Evolution graph generation
Our system computes a directed graph that reveals
tactical knowledge from a decision tree and conveys
a chess game evolution. We focus on the chess po-
sitions made by players and visualize potential po-
sitions they may achieve. The tree usually contains
duplicated notes because a decision tree only spans
potential moves at each node but neglects the fact
that different move sequences may lead to an identical
chess position. In addition, considering general chess
games have 40 moves on average, rendering all the
selected move sequences at each chess position would
result in serious visual clutter (Figure 2.a). To prevent
this problem, we merge the duplicated nodes (Fig-
ure 2.a→b) and shorten the branches (Figure 2.b→c)
where the nodes on them have no events and contain
only a parent and a child. We also compute node loca-
tions using GraphVis [4] to minimize edge crossings
and achieve readability in our visualization. Hence,

1. http://stockfishchess.org/
2. Each move contains two plies, one for White and one for Black.
3. http://www.angelfire.com/games3/smartbridge/

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

01

01

02 02

03 03

04 04

05 05

06 06

07 07

08 08

01

01

02 02

03 03

04 04

05 05

06 06 07 07 08 08

01

01 02 02 03 03 04 04 05 05 06 06 07 07 08 08

(a)

(b)

(c)

Fig. 2. (a) The evolution of a chess endgame is com-
puted using Stockfish engine and stored in a decision
tree. Chess positions and legal plies are represented in
nodes and edges, respectively. Chess positions played
by players and containing events are highlighted using
our visual encodings (Section 3.2). (a)→(b) Our sys-
tem merges the nodes representing the same chess
position to reveal position relations. (b)→(c) We also
shorten branches where nodes on them have only two
neighbors to achieve readability. Notice that the nodes
that are highlighted or adjacent to those highlighted
persist during our graph simplification.

this evolution graph allows users to easily trace nodes
via directed edges and foresee potential chess posi-
tions in the future. For example, in Figure 2.c, the
nodes filled with white are the chess positions at
which White can check Black, whereas the nodes filled
with white and a red crown are the chess positions
at which White can checkmate Black. Detailed visual
encodings of nodes and edges are described in Section
3.2 and Figure 3. By tracing the evolution graph, one
can easily identify that White will dominate the game
eventually because many nodes derived from the first
move show the Black’s king is checked or checkmated.

Graph simplification. An intuitive way to merge
duplicated nodes is to compare all pairs of arbitrary
nodes in a tree and merge them together if piece loca-
tions on the nodes are identical. The process repeats
until nodes in the tree are all different (Figure 2.b).
Given that the cost of this brute force strategy is ex-

pensive, we apply the hash table technique presented
by Hyatt and Cozzie [39] to reduce the number of
comparison and speed up the merging process. The
edges are re-directed whenever nodes are merged to
form the evolution graph. The position relations of a
chess game are then revealed. However, in Figure 2.b,
there are some move sequences in the graph, where
nodes have only a parent and a child. These sequences
show that the subsequent game evolution is simple
and can be shortened if there are no events on them
(Figure 2.c). Namely, only nodes that have events or
have more than two children will persist. Given that
our visualization focuses on the chess positions made
by players, their moves are also retained in the graph.

Graph layout. Our system computes the 2D loca-
tion of each node to visualize the evolution graph.
This graph is expected to extend from left to right as
the move number increases and to spread potential
locations in the vertical direction. The edges are then
rendered according to the determined node locations.
Specifically, we apply GraphVis [4] to compute an
evolution graph G = {V,E}, where vi = {xi, yi} ∈ V
is the node location and {i, j} ∈ E is a directed edge
from node i to node j. This tool first determines the
order of each node in the horizontal direction fh(v)
and then the order in the vertical direction fv(v). For
the connected nodes i and j, if their horizontal orders
are not adjacent, i.e., |fh(vi)− fh(vj)| > 1, it inserts a
virtual node from order min{fh(vi), fh(vj)}+1 to order
max{fh(vi), fh(vj)}−1 and connects the inserted and
the original nodes to form a chain. As a result, the
straight arrow from vi to vj can be replaced by an
arrow on a Bézier curve, in which the virtual nodes
serve as the control points, thus enhancing flexibility
and reducing edge crossing. After that, the objective
function is optimized to determine node locations.
That is, ∑

{i,j}∈E

kijωij |vi − vj |, subject to

|va − vb| ≥
sa + sb

2
+ d, where

kij =

 1 if both i and j are virtual nodes
2 if one of i and j is a virtual node
8 if both i and j are real nodes

, (1)

ωij = 5 × 104 if both node i and node j are chess
positions made by players and ωij = 104 other-
wise, a and b are nodes with fh(va) = fh(vb) and
|fv(va)−fv(vb)| = 1, sa and sb are the radii of node a
and node b, respectively, and d is a constant parameter
denoting the shortest distance between nodes. Clearly,
the edge with a larger kijωij would be shorter after the
optimization because the accumulated energy grows
rapidly if the corresponding edge length |vi − vj |
increases. Considering short and straight edges are
preferable in achieving readability, we set kij to a
larger value if either of its connecting node is visible.
We also set ωij to a larger value if the move from i to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

01

01 02 02 03 03 04 04

The position is in draw.

White gives a check to Black.

Black gives a check to White.

White gives a checkmate to Black.

Black gives a checkmate to White.

The turn for White to control armies.

The turn for Black to control armies.

One move to the next position.

Several moves to the next position.

Fig. 3. Our system renders an evolution graph to convey potential positions throughout a chess game (left). In this
graph, the actual moves made by users and the virtual moves estimated by AI are represented using circles and
squares, respectively. We show the detailed meaning of each primitive at the right table. Notice that the primitives
could be combined for additional meanings. For example, a white solid circle with a black border means White
gives a check to Black and it is the turn for Black to react. In addition, directed edges connecting nodes are
rendered in either solid or dotted arrows to indicate a single move or multiple moves, respectively. Furthermore,
the thicker the arrow is, the better position the move achieves. To better understand a game evolution, we also
label a move number in those nodes made by players (the main trunk) to represent the game progression.

j is made by players so that people can trace players’
moves sequentially without frequently switching at-
tention. Finally, parameter d controls the spaciousness
of nodes, which is set to 0.5 in all our experiments.

We utilize GraphViz to minimize Equation 1, which
considers node distances and edge chain straightness
during optimization. For more details, we refer the
readers to the directed graphs drawing technique
presented by Gansner et al. [40].

3.2 Evolution graph rendering

We render the evolution graph to convey the subtle
trend of a game, where its x coordinate shows the
move number, while the y coordinate indicates the
spread of potential chess positions. The nodes con-
taining events, such as draws, effective checks and
checkmates, are highlighted. We also label a move
number in the nodes that represent chess positions
made by players, in order to show the progression of a
game. Finally, darkseagreen is selected as background
color to achieve a harmonic viewing experience and
enhance the contrast in the evolution graph.

Visual encoding of a node. Fundamentally, there
are three design principles in our node appearance to
achieve readability. 1) Circles and squares are used to
represent positions made by players and computed
by the chess engine, respectively. 2) Black and white
represents the side that has advantage. Specifically,
the boundary color shows the turn to control armies.
The solid color shows the side that enjoys the event.
In the case of a tie position, the node is filled with

gray. 3) The chess position indicating that the king
will be captured is additionally filled with a red
crown icon. Therefore, based on the composition of
the mentioned principles, we come up with a set
of nodes representing different kinds of meanings as
shown in Figure 3 (right). The two examples shown
below illustrate how the composition works.

The node filled with white and a red crown icon
means White gives a checkmate to Black. The black
boundary shows that it is Black’s turn to respond.

The node filled with black and a red crown icon
means Black gives a checkmate to White. Given that
this node is computed using AI and does not actually
happen in a game, for a clear visualization, our system
does not indicate the side that can control armies, as
explained in the next paragraph.

We highlight draws, effective checks, and check-
mates because the ultimate goal in chess is to capture
the opposing king and prevent one’s own king from
being captured. These events reveal potential endings
of a game and should be emphasized. Specifically, a
draw or a checkmate shows a game result and an
effective check takes the advantage by enforcing the
opponent trades either a piece or a worse position
for the king. Our system highlights all graph nodes
containing events. However, the side that can con-
trol armies is indicated only on the nodes made by
players. All the predicted chess positions are rendered
with a black hallow square unless these positions have
an event. We do so because the nodes computed by
the chess engine do not actually happen in a game.
They can be abstracted to enhance the visual saliency

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

of real positions in a game.
Visual encoding of an edge. We render directed

graph edges using solid and dotted arrows to con-
nect two chess positions achieved by a move or
a sequence of moves, respectively. We also render
solid arrows with different thicknesses to indicate the
relative gained advantage of a move compared with
the other moves starting from the same position. That
is, good moves are rendered with thick arrows while
bad moves are rendered with thin ones. Let δij be the
gained advantage from position i to position j, and
mini be the minimal value of δij among edges coming
out of node i, we compute the thickness of each edge
using

wij =

{
(log(δij −mini))2 if δij > mini
α if δij = mini

, (2)

where α = 1 in all our experiments, followed by nor-
malizing wij to a value within 1 and 30. A logarithm
is used here because the gained values are typically
among [−30000, 30000]. Without this transformation,
a serious mistake or a genius attack would result
in other moves that have smaller gained values in-
comparable. Note that each normalization considers
only a small set of edges starting from node i, and
the thickness comparison between edges starting from
different nodes are meaningless. We show an example
in Figure 3 for illustration.

3.3 Score chart

Given that the evolution graph represents potential
moves at each chess position, we show a score chart
at the bottom of the graph to reveal the quantized
positional advantages of two players throughout a
game. In this chart, the color of each primitive is
used to indicate the side; its x coordinate is aligned
with the move number of the evolution graph; and
its y coordinate shows the log value of the score
computed by the chess engine. Considering our goal
is to convey a game evolution, the score chart contains
not only the actual advantage of players in each move
but also potential advantages they could obtain if
they chose the other moves predicted by the engine.
Here, we plot a circle on the chart to represent the
actual score at the nth move made by a player. To
represent the potential scores at the nth move that
the player may obtain, we check the computed move
sequences from the n − 1th to the nth move and
render a score band to show the fluctuation of the
estimated player’s potential advantages. These score
bands are also rendered with translucency to prevent
occlusion. As a result, knowing how much loss a
mistake would cause and how likely to turn defeat
into victory becomes intuitive with the use of our
score chart, as shown in Figures 6, 5, 7, and 8.

Fig. 4. Our system highlights the branches derived
from the 4th Black’s move so that users can trace them
easily.

4 RESULTS AND DISCUSSIONS

We implemented and tested our visualization system
on a desktop PC with Core i7 3.0 GHz CPU. The most
expensive part of this visualization process is analysis,
which may take up to 40 minutes to compute the deci-
sion tree. Fortunately, this step can be precomputed in
advance. Meanwhile, our graph generation requires 3
seconds on average, including node merging, branch
shortening and node position determination, which
can also be precomputed. Finally, the graph rendering
is in real time. Our system allows users to interac-
tively explore the changes in a game over successive
generations to help them learn tactics and strategies.

Our system allows users to investigate a chess game
evolution from global to local viewpoints. It conveys
information from growth and decline of tactical ad-
vantages throughout a game globally, to position re-
lations and potential events locally, which may occur
whenever a piece is moved. To trace position relations,
users can click on the node of interest and our system
would then enhance visual difference by reducing the
color saturation of the nodes and edges that are not
derived from this interested node (Figure 4). Besides,
as some nodes are degenerated to dotted arrows after
the branch shortening process, our system also allows
the user to click on a dotted arrow, which would
smoothly transit the arrow to a sequence of nodes
(see our accompanying video), thus enabling users to
observe detailed piece movements. Given that spatial
piece placements are also provided, users can go
back and forth to examine the chess board and the
evolution graph to know how the tactics work in a
game.

We tested our chess evolution visualization on a va-
riety of real-world examples, including chess puzzles,
chess played by both humans, by both computers,
and by a human and a computer. This interactive
visualization helps players gain a better understand-
ing of a game because they can go back and forth
to examine the potential chess positions and the suc-
cessive moves responded by an opponent after the
tactics are applied. Thus, users can understand why
the critical move leads a game to a loss or turns
defeat into victory. To demonstrate the feasibility of
our visualization, we listed the professional comments

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

01

01 02 02 03 03 04 04 05 0605 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20

21 21 22 22 23 23

24 24 25 25

26 26 27 27

27

11

11

22

22

33

33

44

44
55

55

66

66

77

77

88
88

99

99

10101010

1111

1111

1212

1212

1313

1313

1414

1414

1515

1515

1616

1616

1717

1717

1818

1818

1919

1919

2020

2020

2121

2121

2222

2222

2323

2323

2424

2424

2525

2525

2626

2626

2727

Fig. 5. Our chess visualization shows the evolution of a game, wherein the top evolution graph conveys position
relations and highlights critical events, while the bottom score chart reveals the advantages of the Black and
White players. In this contest, Black once had a better position even though he is at the defense position.
However, he eventually lost the game after making a number of mistakes in moves 9, 10, 12, 24, and 26.

01

01 02 02 03 03 06 0704 04 05 05 06 07

08 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16 16

17

17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36

37 37

38 38 39

36

37 37

38 38 39

11

11

22

22

33

33

44

44

55

55

66

66

77

77

88

88

99

99

1010

1010

1111

1111

1212

1212

1313

1313

1414

1414

1515

1515

1616

1616

1717

171718181818

1919

1919

2020

2020

2121

2121

2222

2222

2323

2323

2424

2424

2525

2525

2626

2626

2727

2727

2828

2828

2929

2929

3030

3030

3131

3131

3232

3232

3333

3333

3434

3434

3535

3535

3636

3636

3737

3737

38383838

Fig. 6. Our evolution visualization shows that White
keeps the offense position until the 38th move. How-
ever, he made a mistake and the game eventually
ended in a tie.

downloaded from a famous chess database4, which
verify that our system successfully highlights the
tactical points. Please refer to the results shown in
Figures 3–9, 7, 8, our supplemental materials and
our accompanying video, especially when the piece
movements are difficult to visualize in still images.

4.1 Case Studies
Case 1: Moderate Player vs. Moderate Player. Figure
5 shows a game played in World Open U2200. The
White and Black players are James Plaskett and Sergei
Shipov, respectively. Both are moderate players. In
this game, our visualization reveals that White did
not play very well at the 9th and 10th moves because
the passed arrows are relatively thinner than others.

4. http://www.chessbase.com/

Hence, the player lost his first hand advantage. The
aligned score chart also shows this fact. However, as
Black kept making faults at the 9th, 10th, 12th, 24th,
and the 26th moves, White eventually dominated the
game. Notice that the passed arrows starting from
the mentioned positions are relatively thinner than
the computed ones. Our evolution graph also reveals
that the checkmate to Black is unavoidable after the
27th move. The estimated positions with highlighted
events after this move explain the reason why Black
gave up the game. We show the original comments
from the annotator in our supplemental materials for
the reference.

Case 2: Expert vs. Expert. Figure 6 shows a game
played in Buenos Aires WCh. The White and Black
players are Jose Raul Capablanca and Alexander
Alekhine, respectively. Both players are experts. In
this game, both players chose almost the best moves
throughout the game. Given that White is on the
offense, his tactical advantage is slightly over his
opponent’s before the 38th move. However, he made
a mistake at the 38th move, and Black also caught
the opportunity immediately to reach a draw, as we
highlight in the top image of Figure 6. The only
comment from the annotator in this game is “A huge
missed opportunity and possible turning point of the
match. Blowing Alekhine off the board as White,
Capablanca walks into a perpetual check on his final
move. Simply 38. Ke2 instead of 38. Kf2 would have
won easily.”. This comment supports our highlights.

Case 3: Deep Blue vs. Kasparov. Figure 7 shows
a world-famous game played by Deep Blue and
Garry Kasparov, wherein the computer played as
White and the chess grandmaster played as Black.
This was the second game in the 1997 rematch. In
this game, the 37th move played by Deep Blue was
so ingenious and considered counterintuitive. IBM

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

01

01
02

02
03

03
04

04
05

05
06

06
07

07
08

08
09

09
10

10
11

11

12
13

13
14

14
15

15
12

16
16

17
17

18
18

19
19

20
20

21
21

22
2
2

23
23

24
24

2
5

25
26

26
2
7

2
7

28
28

29
2
9

30
30

3
1

31
3
2

32

33
3
3

34
34

35
35

36
3
6

37
37

38
38

39
39

40
4
0

42
42

43
4
1

4
1

4
3

4
4

4
4

4
5

4
5

36
37

37
38

38
39

39
11

11

22

22

33

33

44

44

55

55

66
66

77
77

88

88
99

99

1
0

1
0

1
0

1
0

1
1

1
1

1
1

1
1

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
6

1
6

1
6

1
6

1
7

1
7

1
7

1
7

1
8

1
8

1
8

1
8

1
9

1
9

1
9

1
9

2
0

2
0

2
0

2
0

2
1

2
1

2
1

2
1

2
2

2
2

2
2

2
2

2
3

2
3

2
3

2
3

2
4

2
4

2
4

2
4

2
5

2
5

2
5

2
5

2
6

2
6

2
6

2
6

2
7

2
7

2
7

2
7

2
8

2
8

2
8

2
8

2
9

2
9

2
9

2
9

3
0

3
0

3
0

3
0

3
1

3
1

3
1

3
1

3
2

3
2

3
2

3
2

3
3

3
3

3
3

3
3

3
4

3
4

3
4

3
4

3
5

3
5

3
5

3
5

3
6

3
6

3
6

3
6

3
7

3
7

3
7

3
7

3
8

3
8

3
8

3
8

3
9

3
9

3
9

3
9

4
0

4
0

4
0

4
0

4
1

4
1

4
1

4
1

4
2

4
2

4
2

4
2

4
3

4
3

4
3

4
3

4
4

4
4

4
4

4
4

4
5

4
5

Fi
g.

7.
A

w
or

ld
-fa

m
ou

s
ga

m
e

pl
ay

ed
by

D
ee

p
B

lu
e

(W
hi

te
)a

nd
G

ar
ry

K
as

pa
ro

v
(B

la
ck

).
Th

e
3
7
th

m
ov

e
pl

ay
ed

by
D

ee
p

B
lu

e
w

as
so

in
ge

ni
ou

s
an

d
K

as
pa

ro
v’

s
an

xi
et

y
m

ad
e

hi
m

co
m

m
it

an
un

pr
ec

ed
en

te
d

m
is

ta
ke

.A
s

th
e

nu
m

be
rs

of
ef

fe
ct

iv
e

ch
ec

ks
an

d
ch

ec
km

at
es

in
cr

ea
se

ra
pi

dl
y

af
te

rt
he

3
8t

h
m

ov
e,

th
e

gr
an

dm
as

te
r

ev
en

tu
al

ly
re

si
gn

ed
.

0
1

01
0
2

02
0
3

0
4

04
0
5

03
05

06
06

0
7

07
08

0
8

0
9

09
10

10
11

11
12

12
13

13
14

1
4

15
15

16
1
6

17
1
7

1
8

1
8

1
9

1
9

2
0

2
0

2
1

2
1

22
2
2

2
3

23
2
4

2
4

25
2
5

2
6

26
2
7

2
7

2
8

2
8

2
9

2
9

30
30

3
1

31
3
2

3
2

33
33

3
4

34
35

35
36

36
37

3
7

28
28

29
29

30
30

31
31

32
32

33
33

34

37

11

11

22

22

33

33

44

44

55

55

66

66

77

77

88

88

99

99

1
0

1
0

1
0

1
0

1
1

1
1

1
1

1
1

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
6

1
6

1
6

1
6

1
7

1
7

1
7

1
7

1
8

1
8

1
8

1
8

1
9

1
9

1
9

1
9

2
0

2
0

2
0

2
0

2
1

2
1

2
1

2
1

2
2

2
2

2
2

2
2

2
3

2
3

2
3

2
3

2
4

2
4

2
4

2
4

2
5

2
5

2
5

2
5

2
6

2
6

2
6

2
6

2
7

2
7

2
7

2
7

2
8

2
8

2
8

2
8

2
9

2
9

2
9

2
9

3
0

3
0

3
0

3
0

3
1

3
1

3
1

3
1

3
2

3
2

3
2

3
2

3
3

3
3

3
3

3
3

3
4

3
4

3
4

3
4

3
5

3
5

3
5

3
5

3
6

3
6

3
6

3
6

3
7

3
7

3
7

3
7

Fi
g.

8.
A

bl
itz

ch
es

s
pl

ay
ed

by
S

to
ck

fis
h

(W
hi

te
)

an
d

A
nM

on
(B

la
ck

)
en

gi
ne

s.
O

ur
ev

ol
ut

io
n

gr
ap

h
sh

ow
s

th
at

A
nM

on
di

d
no

tp
la

y
ve

ry
w

el
lw

he
n

its
ki

ng
w

as
un

de
ra

tta
ck

at
th

e
28

th
an

d
33

r
d

m
ov

es
.A

nM
on

re
si

gn
ed

at
th

e
3
7
th

m
ov

e
be

ca
us

e
th

e
ch

ec
km

at
e

to
its

ki
ng

w
as

in
ev

ita
bl

e.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

01

01 02 02 03 03 04 04 05 05 06 06

Fig. 9. Our visualization points out the solution that
can solve the chess puzzle even though it has to take
six successive moves to checkmate the Black’s king.
Notice the chess positions represented using circles.

Corporation was then accused of cheating because
Kasparov considered that there must be superior in-
telligence behind Deep Blue. However, as shown in
Figure 7, today’s improved chess engine is capable of
demonstrating the move to be the best during that
game. Kasparov’s anxiety also made him commit an
unprecedented mistake after the move and forfeit a
position that could have ended the match in a tie. One
can also observe that the numbers of effective checks
and checkmates to Black grew rapidly after the 38th

move, indicating that Deep Blue gradually controlled
the game. Hence, it came as no surprise that the chess
grandmaster eventually resigned.

Case 4: AI vs. AI. Figure 8 shows a blitz chess
played by Stockfish and AnMon5 engines, where both
of them had only 5 seconds to respond and they
were not able to perform deep and thorough searches
during a game. In this game, Stockfish played as
White and AnMon played as Black. Our post anal-
ysis revealed that computers did not make serious
mistakes even in such a time-constrained scenario be-
cause they iteratively increased the spread and depth
of the searching space while humans might miss some
important pieces. As Stockfish was at the offense
position and its chess level was higher than that of
AnMon, it was not surprising that White dominated
the game from the first move and Black eventually
surrendered. Besides, by zooming to the graph, one
can observe that Black did not play well when its king
was under attack at the 28th and 33rd moves, which
accelerated the game’s conclusion.

Case 5: Chess Puzzle. Figure 9 demonstrates the
evolution graph of the chess puzzle shown in Figure
1. The goal of this puzzle is to play as White and
give a checkmate to Black within six moves. One can
observe that in Figure 1, there are so many pieces
left on the chess board and White does not dominate
the game at that position. Considering there are so
many potential chess positions, finding six successive
moves to checkmate Black is very difficult. However,
by observing our evolution graph, it is now easier to
know that there is a way to checkmate Black’s king
by successive checks. Suppose White makes a correct

5. http://wbec-ridderkerk.nl/html/details1/AnMon.html

decision at each position (white circular nodes), Black
has only one legal move in return and eventually the
king is checkmated. Although it is difficult to find the
checkmate sequence, our visualization points out the
solution clearly.

4.2 Limitations
Our chess visualization focuses on the evolution of
a game. It shows the potential positions and tactical
advantages after successive moves. Users, however,
must still examine the piece placements to understand
how an event occurs and how a strategy works.
Thus, we claim that our system is not presented
to replace existing chess GUIs but to complement
them. We believe that fusing our evolution graph and
piece placements seamlessly would greatly help users
understand chess tactics and strategies. In addition,
this framework visualizes present chess games, where
the potential chess positions are precomputed. Thus,
we plan to extend our chess evolution visualization
system, which can dynamically update the graph
structure based on user’s query while minimizing
unpleasant visual artifacts.

5 EVALUATIONS

5.1 Comparison to visualization designs
An important key to learn chess tactics is to forecast
potential positions and to predict how an opponent
may respond in successive generations. Therefore, a
good chess evolution visualization should be able
to help players understand what would happen in
successive moves and how a certain position could
be reached. Given that current chess tools such as
Arena [1] and Fritz [2] focus on spatial piece place-
ments, using this kind of visualization, it is difficult
to interpret chess position relations after successive
generations because users have to memorize all piece
placements in each step. In contrast, using graph visu-
alization, in which nodes with events are highlighted
and sequential node relations are indicated, users are
allowed to trace connecting arrows and then obtain
the results when making decisions. Generally, there
may be some graph designs that can be used to
show chess evolutions. For example, the graph could
have: 1) a simplified or full structure, 2) an implicit
or explicit representation, 3) a radial or axis parallel
alignment, and 4) a 2D or 3D appearance. In the
presented system, we adopt a simplified graph that
enhances visual clearance, an explicit representation
with edges that depicts position relations, an axis
parallel alignment that allows obtaining game stages
easily, and a 2D appearance that is free from occlusion.
Furthermore, our visualization is carefully designed to
fit the demands of chess evolution visualization. The
theoretical analysis below shows the advantages.

Radial vs. Axis-Parallel. We choose the axis-parallel
design to visualize the chess evolution because the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

evolution is nearly sequential and it seldom reverses.
For example, only few players move back the pieces
and the captured pieces cannot be taken back. This
characteristic is verified in our results, which indicate
that almost all edges follow a left to right direction.
The only exception in our experimental results is the
39th move in Figure 6 because the game falls into
the state of threefold repetition. Given that the axis-
parallel layout matches the concept of most chess
evolutions, we confirm that our design is intuitive and
is sufficient in revealing the changes in a game over
successive generations. Although a radial graph lay-
out may also achieve the aim, this design inevitably
introduces many edge intersections because chess
positions that have similar move numbers are po-
tentially connected. While branches extend outward
but in different directions, those connected nodes
are placed far away from each other. Therefore, it
becomes more difficult to traverse sequential moves
and foresee the potential chess positions after a certain
position using this layout. In addition, due to lengthy
distances between the connected nodes, users have
to switch their attention frequently when investigat-
ing the graph structure. Our supplemental material
(ModerateRadial.pdf), which shows the radial layout of
the graph in Figure 5, verifies that the design is not
capable of conveying game evolutions.

Full vs. Simplified. Rendering the full tree would
result in serious visual clutter because of the complex
structure. Specifically, a chess game has 40 actual
moves on average, and a chess position in a decision
tree usually has eight potential move sequences to
predict future tactical advantages (Section 3.1). To
verify the difficulty of discovering a game evolution
from an unsimplified structure, we show the full
decision tree of Figure 7 in our supplemental material
(DeepBlueFull.pdf) for comparison.

Implicit vs. Explicit. Given that our goal is to
present relations among chess positions, it is impor-
tant to have an explicit representation with edges
that clearly shows how a chess position is achieved.
Implicit ones, such as a treemap that focuses on
highlighting hierarchy, is not appropriate.

2D vs. 3D Although 3D visualization provides an
additional dimension for data exhibition, most infor-
mation visualizations are achieved in 2D due to flat
displays. While the graph structure might be complex,
this strategy also prevents node and edge occlusions,
thereby allowing users to trace chess positions easily.

5.2 Comparison to current chess visualization

Some chess visualization tools have been presented
to help players better understand a chess game and
polish their chess skills. The most popular tools are
Arena [1] and Fritz [2], both of which focus on spatial
piece locations, while their main difference is the use
of different AI engines. Our system has the same

rationale but cuts into the point from sequential rela-
tions of chess positions. Considering that both Arena
and Fritz visualize a chess game in a similar way,
and Arena is an open source project but Fritz is a
commercial one, we mainly compared Arena to our
system.

To understand a chess game using Arena, users
could click forward, backward, and input a move
number to inspect the position with corresponding
piece locations, move indications, and highlights to
those pieces that are under attack. Clearly, the visual-
ization in this tool focuses on the spatial relations of
pieces. The long-term evolutions are conveyed using
algebraic chess notation [3], which are difficult to
understand. Under this circumstance, users have to
investigate chess positions sequentially and memorize
what has happened previously in each step, in order
to understand the changes in a game over successive
generations. Users also have to pay attention to multi-
ple paths from a junction that lead to different results
upon examination. Therefore, getting wise to a chess
strategy using Arena is difficult and time consuming.

In contrast, our visualization is designed to convey
the sequential relations of chess positions. Users can
pan and zoom into the evolution graph so as to
observe its topology while examining events, advan-
tages, and piece placements of the interesting nodes.
To understand a chess game, users can also trace con-
necting arrows of our graph to obtain the following: 1)
the success or failure, 2) the involved chess positions,
and 3) the potential weak points of a strategy based
on the graph connectivity. They can then investigate
piece locations by clicking a small number of nodes
to obtain piece placements and fully interpret the
strategy. Given that not all potential chess positions
after the start of a strategy is involved, which is not
necessarily investigated, and the sequential relations
of chess positions are shown, the global-to-local view-
points allows users to become more familiar with a
chess strategy easily.

5.3 User study

We conducted a user study to verify the feasibility
of our chess evolution visualization. We designed a
multiple-choice questionnaire according to the sug-
gestions of a chess expert. A total of 21 participants
were asked to answer the evolutional questions by
investigating our visualization system and Arena [1].
These participants came from diverse backgrounds
and their ages ranged from 23 to 32 years. About
67% were novice players. They were aware of chess
rules but had only little game experience. Given that
no participants had used our system and only few of
them were familiar with Arena, they were trained to
use both systems before the study. Each training took
about 10 minutes, i.e., 5 minutes for instruction and 5
minutes for practice.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

100% 90% 34.04633 87.85452

95% 43% 52.17957 108.9907

95% 62% 38.13919 120.7104

100% 43% 17.3931 88.06514

81% 48% 62.48167 113.9918

71% 33% 98.32962 137.9888

62% 29% 66.56343 141.5988

100% 81% 42.63657 130.7918

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8

Our system Arena

M
ea

n
co

rr
ec

t r
at

e
in

 %

Questions

0

50

100

150

200

250

300

An
sw

er
in

g
tim

e
(s

)

Our system Arena

1 2 3 4 5 6 7 8
Questions

Fig. 10. (Left) The box and whisker plot represents the answering time of the questionnaires. The five-number
summaries from top to bottom represent the 5th, 25th, 50th, 75th, and 95th percentile. (Right) The mean correct
rate of the questionnaires. Clearly, participants take less time but get higher correct rate when answering
questions related to long term evolutions because our graph provides a global to local investigation interface.

Questionnaire. The participants were asked to an-
swer two sets of questions, where each set contained 8
questions; each set of questions were answered based
on the help from our system and Arena, respectively.
The questionnaire included the move number to com-
plete a chess puzzle, the judgment of tactical advan-
tages among players, the critical moves leading to a
win or a loss, and the chance to turn defeat into vic-
tory. Some of the questions related to local events and
can be answered by observing highlights on a single
chess position; some were about long-term tactics and
required participants to investigate successive chess
positions before providing their answer. We refer the
readers to the user study questionnaire attached in
our supplemental materials for more details.

Environment. To achieve a fair study, both the
interfaces were displayed on a 27-inch screen with the
resolution of 1920×1080; the chess engines behind the
two GUIs were identical; two sets of the questions
were the same but with different orders and phras-
ings. Furthermore, answering the sets of questions
assisted by different graphical interfaces was done in a
random order. We also asked the participants to take
a 10-minute break before answering the second set
of questions to avoid bias. All the user studies were
performed in a quiet room, and each questionnaire
took a participant about 50 minutes on average. We
also found that most participants did not know the
two sets of questions were the same until we told
them the truth.

Results. We collected the answering time, error, and
preference of each user during the study. Figure 10
shows the box and whisker plot to depict the an-
swering time, and the bar chart to represent the mean
correct rate. As can be seen, by using our visualization
system, users took less time to answer questions but
achieved higher correct rates. This phenomenon was
more obvious in the 2nd to 5th questions because

the questions related to global evolution. While using
Arena requires sequential investigation, answering
these questions was difficult and time consuming.
In contrast, our visualization shows the entire trend
of a game in a 2D space, thus making it easier to
find out the key moves that result in winning or
losing a game. Regarding the 6th to 8th questions, the
participants were asked to examine a number of chess
games, but the questions were about local events, the
advantage of our system was slightly weakened in
this scenario because the answers could be figured
out in less than five moves. Finally, as for the 1st

question, the goal was to find sequences that can end
the game in two moves, our evolution visualization
only slightly outperforms Arena because the question
was very simple. However, the mean correct rate and
the answering time still showed that our visualization
was much better than Arena even in terms of finding
local events and strategies.

The hypothesis in the user study is that our chess
evolution graph outperforms Arena in terms of both
correct rate and answering time. We apply the Re-
peated Measures Analysis of Variance (RM-ANOVA)
to analyze these two factors and verify the hypothesis
after the study. As shown in Table 1, the reported post-
hoc comparisons are significant at the p < 0.08 level.

Preference. Participants were asked to fill out sat-
isfaction surveys after completing the questionnaire.
The survey contained multiple areas, including in-
tuitive interface, enjoyment, easy of use, efficiency,
and helpfulness in teaching chess. The ratings ranged
from 1 to 5, where 1 indicated totally disagree and
5 indicated totally agree. Figure 11 shows the ratings
for both techniques. As can be seen, our visualization
system is preferable compared with the traditional
chess interface due to its global-to-local investigation
manner.

We also asked for comments from the participants.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

question 1 2 3 4 5 6 7 8
p-value (time) 1.3 ×10−3 1.7 ×10−3 4.7×10−7 1.0 ×10−3 4.1 ×10−3 7.1 ×10−2 2.9 ×10−5 6.0×10−6

p-value (correct rate) 7.7 ×10−2 4.6 ×10−5 3.8 ×10−3 3.5×10−6 1.2 ×10−2 6.4 ×10−3 1.5 ×10−2 1.8 ×10−2

TABLE 1
The significance values with respect to time and correct rate in our user study

They confirmed the quality and the feasibility of this
new visualization system. Some participants did not
get used to our design in the beginning because they
had used traditional graphical interface for years.
Nevertheless, in the end, they were very happy to see
this new tool as they found that the global perspective
of conveyance provided to be very useful. They then
preferred our visualization because investigating the
entire chess game step by step was no longer neces-
sary, and the graph structure provided a much more
intuitive way to point out successive moves compared
with the algebraic notation sequences. For example,
they could browse the bottom score chart to obtain
the overall growth and decline of players’ advantages
with respect to the move number, and then check the
thickness of each arrow to determine whether or not
there was another better move from the position of
interest. Finally they were able to trace the branches to
predict the outcome of successive moves. The senior
players especially liked the highlights provided for ef-
fective check events because many checks often result
in a worse position, which might be traps setup by
the opponent. Generally, after using our system for a
while, most players agreed that our new visualization
design is useful. Some chess teachers also looked
forward to the system suitable for young children
because our current evolution graph was still abstract
to them. Thus, we consider involving these junior
players in the development and the evaluation of a
production-level system in the near future.

Summary. Our conducted user study and the col-
lected user preferences highly support the fact that the
presented chess evolution visualization is sufficient in
revealing long-term strategies in a game. Specifically,
participants took less time but got higher correct
rate when utilizing our visualization to answer the
questions related to global evolution. These results
are not surprising because the trend of a chess game
is disclosed in our evolution graph and a sequential
investigation is not needed. Moreover, users can fore-
see potential events in the future and examine spatial
piece movements to help them easily understand the
interested tactic.

6 CONCLUSIONS

We have presented a chess evolution visualization
system, which enables the user to understand a game
from a global-to-local viewpoint. This visualization
conveys the change over successive moves using a
graph, in which the x and y coordinates represent the

1

2

3

4

5

Intuitive
Interface

Enjoyment Easy to Use Efficiency Helpfulness

Our Method Arena

Di
sa

gr
ee

 A
gr

ee

1

2

3

4

5

Di
sa

gr
ee

Ag

re
e

Intuitive
Interface

 Enjoyment Easy to Use Efficiency Helpfulness

Our system Arena

Fig. 11. Subjective ratings from our user study. The
values ranging from 1 to 5 mean totally disagree to to-
tally agree. In this chart, the three-number summaries
from top to bottom are maximum, mean and minimum,
respectively.

move number and the spread of potential positions,
respectively. Given that sequential examination of a
chess game is not necessary, experts can check our
visualization to quickly understand the overview and
critical events of a chess game. Furthermore, novice
players can preview potential chess positions in future
moves to predict how an opponent may respond and
to learn chess tactics. The evaluation of our graph
designs, the verification of professional comments
to our visualization results, and the conducted user
study demonstrate the feasibility of our system.

We emphasize that our system focuses on sequen-
tial relations among chess positions. To help them
be aware of a strategy, users still have to investigate
spatial piece movements so as to fully understand
how the strategy works. Considering that users have
to switch their attention in between the evolution
graph and the piece placements, which may interrupt
their thoughts, we plan to integrate the two kinds of
information seamlessly in our future work.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their con-
structive comments. We are also grateful to Benjamin
Hildreth for narrating the demo video, to Ke-Jung
Chen for helping us edit the demo video, and to
all the users who participated in the user study.
This work was supported in part by the National

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

Science Council (101-2628-E-009-020-MY3, 102-2221-E-
009-083-MY3, 101-2628-E-009-021-MY3, and 102-2221-
E-009-082-MY3) and the UST-UCSD International
Center of Excellence in Advanced Bioengineering
sponsored by the Taiwan National Science Council
IRiCE Program (NSC-101-2911-I-009-101).

REFERENCES

[1] M. Blume, “Arena chess gui,” Available online at
http://www.playwitharena.com/.

[2] “Fritz 13 – the truly great chess program,” Available online at
http://en.chessbase.com/home/TabId/211/PostId/4007601.

[3] E. Schiller, Official Rules Of Chess. ISBN: 978-1-58042-092-1,
2003.

[4] J. Ellson, E. Gansner, L. Koutsofios, S. North, G. Woodhull,
S. Description, and L. Technologies, “Graphviz – open source
graph drawing tools,” in Lecture Notes in Computer Science.
Springer-Verlag, 2001, pp. 483–484.

[5] P. Saariluoma, Chess Players’thinking: A Cognitive Psychological
Approach. Routledge, 1995.

[6] A. Newell, J. C. Shaw, and H. A. Simon, “Chess-playing
programs and the problem of complexity,” IBM J. Res. Dev.,
vol. 2, no. 4, pp. 320–335, 1958.

[7] T. A. Marsland and M. Campbell, “Parallel search of strongly
ordered game trees,” ACM Comput. Surv., vol. 14, no. 4, pp.
533–551, 1982.

[8] D. F. Beal, “Mating sequences in the quiescence search,” ICCA
Journal, vol. 7, no. 3, pp. 133–137, 1984.

[9] ——, “Experiments with the null move,” Advances in Computer
Chess, vol. 5, pp. 65–79, 1989.

[10] C. Donninger, “Null move and deep search: Selective-search
heuristics for obtuse chess programs,” ICCA Journal, vol. 16,
no. 3, pp. 137–143, 1993.

[11] G. Goetsch and M. S. Campbell, “Experiments with the null-
move heuristic,” Computers, Chess, and Cognition, pp. 159–168,
1990.

[12] E. A. Heinz, “Adaptive null-move pruning,” ICCA Journal,
vol. 18, no. 2, pp. 123–132, 1999.

[13] ——, “Extended futility pruning,” ICCA Journal, vol. 21, no. 2,
pp. 75–83, 1998.

[14] T. Marsland, “A review of game-tree pruning,” Int. Comp.
Chess Assoc. Journal, vol. 19, no. 1, pp. 3–19, Mar. 1986.

[15] M. Wattenberg, “Thinking machine,” Available online at
http://www.bewitched.com/chess.html.

[16] Y. Wang, S. T. Teoh, and K.-L. Ma, “Evaluating the effective-
ness of tree visualization systems for knowledge discovery,”
in Eurographics / IEEE VGTC Conference on Visualization (EU-
ROVIS), 2006, pp. 67–74.

[17] H.-J. Schulz, “Treevis.net: A tree visualization reference,” IEEE
Comput. Graph. Appl., vol. 31, no. 6, pp. 11–15, Nov. 2011.

[18] R. M. Wilson and R. D. Bergeron, “Dynamic hierarchy speci-
fication and visualization,” in IEEE Symposium on Information
Visualization, pp. 65–72.

[19] C.-C. Lin and H.-C. Yen, “On balloon drawings of rooted
trees,” in International conference on Graph Drawing.

[20] H.-J. Schulz, S. Hadlak, and H. Schumann, “The design space
of implicit hierarchy visualization: A survey,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 17, no. 4, pp.
393–411, April 2011.

[21] J. Yang, M. O. Ward, and E. A. Rundensteiner, “InterRing:
An interactive tool for visually navigating and manipulating
hierarchical structures,” in IEEE Symposium on Information
Visualization, pp. 77–84.

[22] T. D. Nguyen, T. B. Ho, and H. Shimodaira, “A visualization
tool for interactive learning of large decision trees,” in IEEE
International Conference on Tools with Artificial Intelligence, pp.
28–35.

[23] S. van den Elzen and J. J. van Wijk, “BaobabView: Interactive
construction and analysis of decision trees,” in IEEE Conference
on Visual Analytics Science and Technology, pp. 151–160.

[24] R. Tamassia, G. Di Battista, and C. Batini, “Automatic graph
drawing and readability of diagrams,” IEEE Trans. Syst. Man
Cybern., vol. 18, no. 1, pp. 61–79, Jan. 1988.

[25] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, 1998.

[26] I. Herman, G. Melancon, and M. S. Marshall, “Graph visual-
ization and navigation in information visualization: A survey.”
IEEE Trans. Vis. Comput. Graph., vol. 6, no. 1, pp. 24–43, 2000.

[27] T. A. Keahey and E. L. Robertson, “Techniques for non-
linear magnification transformations,” in IEEE Symposium on
Information Visualization (INFOVIS), 1996, pp. 38–.

[28] G. W. Furnas and X. Zhang, “Muse: a multiscale editor,” in
ACM symposium on User interface software and technology, 1998,
pp. 107–116.

[29] D. Kimelman, B. Leban, T. Roth, and D. Zernik, “Reduction
of visual complexity in dynamic graphs,” in Graph Drawing,
1994, pp. 218–225.

[30] H. Akibay and K.-L. May, “A tri-space visualization interface
for analyzing time-varying multivariate volume data,” in Eu-
rographics / IEEE VGTC Conference on Visualization (EUROVIS),
2007, pp. 115–122.

[31] J. Woodring and H.-W. Shen, “Multiscale time activity data ex-
ploration via temporal clustering visualization spreadsheet,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 1, pp. 123–137, 2009.

[32] A. V. Moere, “Time-varying data visualization using infor-
mation flocking boids,” in IEEE Symposium on Information
Visualization (INFOVIS), 2004, pp. 97–104.

[33] G. Kumar and M. Garland, “Visual exploration of complex
time-varying graphs,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 805–812, 2006.

[34] K.-C. Feng, C. Wang, H.-W. Shen, and T.-Y. Lee, “Coherent
time-varying graph drawing with multifocus+context interac-
tion,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 8, pp. 1330–1342, 2012.

[35] N. W. Kim, S. K. Card, and J. Heer, “Tracing genealogical data
with timenets,” in International Conference on Advanced Visual
Interfaces, 2010, pp. 241–248.

[36] M. Ogawa and K.-L. Ma, “Software evolution storylines,” in
International symposium on Software visualization, 2010, pp. 35–
42.

[37] W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and
X. Tong, “Textflow: Towards better understanding of evolving
topics in text,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 12, pp. 2412–2421, Dec. 2011.

[38] K. Reda, C. Tantipathananandh, A. Johnson, J. Leigh, and
T. Berger-Wolf, “Visualizing the evolution of community struc-
tures in dynamic social networks,” in Eurographics / IEEE
VGTC conference on Visualization (EuroVis), 2011, pp. 1061–1070.

[39] A. C. Robert M. Hyatt, “The effect of hash signature collisions
in a chess program.”

[40] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo, “A
technique for drawing directed graphs,” IEEE Trans. Softw.
Eng., vol. 19, no. 3, pp. 214–230, Mar. 1993.

Wei-Li Lu received the BS and MS degrees
from the Department of Computer Science
and Information Engineering, National Cen-
tral University, Taiwan, in 2011, and from the
Department of Computer Science, National
Chiao Tung University, Taiwan, in 2013, re-
spectively. Now, he is working in Foxconn
Electronics Inc. His research interests in-
clude computer graphics and visualization.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

Yu-Shuen Wang received the BS and PhD
degrees from the Department of Computer
Science and Information Engineering, Na-
tional Cheng-Kung University, in 2004 and
2010, respectively. He is currently an assis-
tant professor of the Department of Com-
puter Science at National Chiao Tung Univer-
sity (http://people.cs.nctu.edu.tw/ yushuen/).
He leads the Computer Graphics and Visu-
alization Lab at the Institute of Multimedia
Engineering. His research interests include

computer graphics, computational photography, and visualization.

Wen-Chieh Lin is an associate professor at
the Department of Computer Science, Na-
tional Chiao Tung University, Taiwan. He re-
ceived the BS and MS degrees in control en-
gineering from National Chiao Tung Univer-
sity, Hsinchu, Taiwan, in 1994 and 1996, re-
spectively, and the Ph.D. degree in Robotics
from the School of Computer Science at
Carnegie Mellon University, Pittsburgh, in
2005. His research interests span several
areas of computer graphics and computer

vision. In particular, he is interested in physics-based animation, real-
time rendering, and texture modeling and manipulation.

	Introduction
	Related work
	Design Methodology
	Evolution graph generation
	Evolution graph rendering
	Score chart

	Results and discussions
	Case Studies
	Limitations

	Evaluations
	Comparison to visualization designs
	Comparison to current chess visualization
	User study

	Conclusions
	References
	Biographies
	Wei-Li Lu
	Yu-Shuen Wang
	Wen-Chieh Lin

