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Court Reconstruction for Camera Calibration
in Broadcast Basketball Videos
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Abstract—We introduce a technique of calibrating camera motions in basketball videos. Our method particularly transforms
player positions to standard basketball court coordinates and enables applications such as tactical analysis and semantic
basketball video retrieval. To achieve a robust calibration, we reconstruct the panoramic basketball court from a video, followed
by warping the panoramic court to a standard one. As opposed to previous approaches, which individually detect the court lines
and corners of each video frame, our technique considers all video frames simultaneously to achieve calibration; hence, it is
robust to illumination changes and player occlusions. To demonstrate the feasibility of our technique, we present a stroke-based
system that allows users to retrieve basketball videos. Our system tracks player trajectories from broadcast basketball videos.
It then rectifies the trajectories to a standard basketball court by using our camera calibration method. Consequently, users can
apply stroke queries to indicate how the players move in gameplay during retrieval. The main advantage of this interface is an
explicit query of basketball videos so that unwanted outcomes can be prevented. We show the results in Figures 1, 7, 9, 10 and
our accompanying video to exhibit the feasibility of our technique.

Index Terms—Camera calibration, basketball, stroke, player trajectory, video retrieval
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1 INTRODUCTION
Camera calibration for broadcast sport videos has
been thoroughly studied in the past few years. Cal-
ibrated scenes are particularly beneficial to applica-
tions such as tactical analysis, summarization, and
virtual realities. A straightforward idea to achieve
camera calibration is reconstructing a 3D basketball
court by using structure from motion. But this ap-
proach will fail when the camera of a court view
shot video does not contain translation [1]. Hence,
most previous methods apply a 2D model to achieve
the aim. The first approach is to detect intersecting
points of court lines, and subsequently mapping the
points to the predefined court with a homography [2],
[3], [4], [5], [6], [7], [8]. Given that the recognition
of court lines is challenging due to noise, player
occlusions, and illumination conditions, the derived
homographies are not reliable, and the calibration
usually fails. Another approach is to manually align
a court model on the first frame of a video clip
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and then applying the iterated closest point (ICP)
method to estimate a homography between the model
points and court line pixels in consecutive frames [9].
The approach achieves robust and reliable calibration.
However, manual registration of the first frame in
each video clip is tedious because a broadcast video
usually contains many shot changes. In general, the
mentioned techniques consider only spatial features
to handle camera calibration and inevitably suffer
from reliability problem or demand tedious manual
registration.

We generate the panoramic image from a court
view shot video that covers the whole basketball
court to achieve camera calibration. Our system es-
timates a homography transformation based on the
tracked Kanade-Lucas-Tomasi (KLT) features [10] be-
tween consecutive frames and transforms each frame
to an identical coordinate system. Colors of the pix-
els transformed to the same position are linearly
blended. After that, we detect the court region in the
panoramic image based on the dominant color [6].
Considering that panoramic court may be distorted
due to accumulated transformation errors, we further
warp the court to a quadrangle. Finally, by employing
the obtained corner correspondence, we rectify the
quadrangular basketball court to a standard one using
a homography to remove the perspective effect. Since
our court generation can project pixels from a frame
to a basketball court, this procedure is also able to
transform player positions between the two coordi-
nate systems. The success of our method is due to the
court reconstruction that considers all video frames
in a clip. Missing court features in one frame can
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Fig. 1. (Left) The complete and half saturated red
curves denote the user-specified stroke and extracted
player trajectory, respectively. (Middle) Event filter.
(Right) Retrieved basketball videos.

be obtained from other frames. Hence, our system
achieves not only full automation but also robustness.

Our automatic camera calibration works when the
video contains a whole basketball court. For the re-
maining videos, the calibration requires an additional
mapping to a reference video that covers a complete
court. Therefore, we determine the court completeness
by identifying whether the video covers the left and
the right courts simultaneously. We then select a video
clip with a complete court as a reference and map
other videos to this reference based on the tracked
KLT features. The strategy enables our system to map
player trajectories from all court view shot videos to
an identical coordinate, regardless of court complete-
ness of a video.

To demonstrate the feasibility of our technique, we
present a stroke-based system that allows users to re-
trieve basketball videos by specifying player trajecto-
ries. Unlike existing retrieval systems, which generally
rely on local features such as color, texture, shape, and
spatial relations, the presented approach supports se-
mantic queries during retrieval. These stroke queries
are very useful in basketball video retrieval because
player trajectories can be used to compose high level
tactics that cannot be described by low level features.
In addition, considering that an event is normally
achieved in different ways due to various offensive
and defensive strategies, a text-based retrieval system
is insufficient. Users may intend to specify where a
player cuts in and makes a shot to prevent unwanted
results. Therefore, we track player trajectories from
broadcast basketball videos and rectify the trajectories
based on the presented camera calibration technique.
When a stroke query is given, the videos in which
player trajectories best fit the query are returned as the
searching results. This intuitive interface effectively
reduces the semantic gap of basketball video retrieval
between users and machines (Figure 1).

We present a robust and fully automatic approach
of calibrating camera motions in broadcast basketball

videos. In particular, it rectifies player trajectories
to the same coordinate system and enables stroke-
based basketball video retrieval. Although our system
is introduced to handle basketball videos, the same
methodology can be applied to many other sport
videos. We show the user-specified strokes and the
retrieved videos in Figures 1, 7, 9, 10 and our ac-
companying video to demonstrate the feasibility of
this novel interface. We also presented our system
to college basketball players to evaluate its usability.
They show high preference after using our system.

2 RELATED WORK
Basketball video processing. Basketball video pro-
cessing has received increasing attention in recent
years because of the urgent need from coaches and
spectators. The techniques were presented to track
ball positions [11], [12], [13], identify players [9], [14],
shots [15], enhance visual experience [4], and sum-
marize games [16], [17]. The information extracted
from this procedure is useful in tactical analysis and
development.

Camera calibration. Mapping player positions from
each video frame to a basketball court coordinate
is essential because the rectified information can be
further analyzed for many applications. The goal is
often achieved with a homography because a basket-
ball court can be regarded as a plane. Homography
provides quick mapping and is particularly useful in
intensive camera motions. Specifically, two classes of
algorithms are presented to map features from video
frames to a basketball court coordinate. The first class
[2], [3], [4], [5], [6], [7], [8] detects semantic features
such as court lines and corners, and maps the features
to the predefined court. Given that these features are
usually occluded by players in broadcast basketball
videos, Hu et al. [6] extended the algorithm intro-
duced by Farin et al. [2], [3] and further detected free
throw line from video frames to enhance calibration
quality. However, due to noise, illumination changes,
and player occlusions, this method has high failure
rate of detecting court features and is considered less
reliable. The second class of the algorithms [9], [18],
[19], [20] is based on a predefined court model manu-
ally registered to the first frame of a video. The model
points are matched with the detected edge pixels in
the next video frame and so on by conducting the ICP
method to determine the homographies. A model-
based homography estimation enjoys robustness but
suffers from tedious manual registration. In contrast,
our algorithm reconstructs a basketball court from the
video, followed by mapping the four corners of this
court to calibrate camera motions. The consideration
of all video frames in a clip enables our method to
achieve robustness and full automation.

Video retrieval. Most video retrieval methods use
either visual or non-visual features to compare con-
tent similarity. A brief descriptor used to represent
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Input video (a) Generated panoramic court (b) Extracted court pixels (c)

Convex hull of the court pixels (d)Closest quadrangular court (e)

Uniformly sampled quad mesh (f) Warped quad mesh (g) Rectified basketball court (h)

Fig. 2. Flowchart of our algorithm. Given a basketball video (a), a panoramic court is generated (b) based on the
tracked KLT features, and court pixels are extracted (c) according to the dominant color. The court may contain
logos, lines, and spectators; hence, our system computes a convex hull (d) of the component that connects the
most court pixels to represent the court region. Hull boundary edges are then partitioned into four groups based
on their orientations. Because each group of edges can be approximated using a straight line, a quadrangle (e)
that best fit the court shape is obtained. Considering that the panoramic court is not exactly quadrangular, we
represent the quadrangle (e) using a quad mesh (f), warp the mesh to fit the panoramic court (g), and apply the
inverse warping to rectify the court. Finally, the perspective effect is removed using a homography (h).

a video is especially important for executing video
browsing, querying, and navigation in a large-scale
database [21]. Previous methods retrieve videos by
considering motion flows [22], bag-of-features [23],
or textual annotation [24], to determine whether a
retrieved video matches the input query. Since this
work focuses on camera calibration, we refer readers
to the survey paper [25] for more details.

All of the above methods rely on low level features.
Using these methods to retrieve basketball videos,
however, often incurs unwanted results because low
level features are not informative enough to describe
strategies in a game. In contrast, our system allows
users to specify player trajectories and events during
retrieval, which effectively reduces the semantic gap
between humans and machines.

3 CAMERA CALIBRATION

Camera calibration enables the transformation of
player positions from a video coordinate to a bas-
ketball court coordinate. The objective is generally
achieved by multiplying a homography because a
basketball court can be considered a plane. However,
estimating the homography is challenging because
the correspondence between low level features of a
video frame and high level definitions of a basketball
court is unknown. To achieve robustness and full

automation, we calibrate camera motions with the
consideration of the whole video clip rather than a
single frame to prevent player occlusions and sudden
illumination changes. This work primarily aims to
generate a panoramic basketball court from a video.
According to the fact that this court is linearly pro-
jected from the real world, the four corners on the
reconstructed and the standard basketball courts can
be easily corresponded. We apply the mapped corners
to compute homographies and calibrate camera mo-
tions. Figure 2 shows the flowchart of our calibration
method.

3.1 Calibration in complete court videos

We generate the panorama from a video that contains
the whole basketball court. To determine the court
completeness of a video, we verify whether the lower
corners of the left court and the right court appear in
the video simultaneously. That is, the court region is
extracted from a video based on the dominant color
[6] because the court generally occupies most central
area in court view shot videos. To enhance robustness
against noise introduced by illumination, each pixel
color is first converted to YCrCb space. Our system
then computes a 16×16 histogram embedded with Cr
and Cb channels to represent the video. The bin with
the most pixels stands for the dominant color and the
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Fig. 3. The bar charts show the largest 10 bins in the
CrCb histogram, where the the horizontal and vertical
dimensions indicate the bin index and the percentage
of pixels in a bin.

pixels in that bin are considered court pixels. It is worth
noting that, the focus of a basketball video is the court
region. Hence, we multiply a central weight to each
pixel when it is added to the histogram. Formally,
the weight is given by w = di/dmax, where di is
the distance from pixel i to the closest top or bottom
boundary and dmax is half of the image height. We
also point out that this approach can stably extract
the court region under various illumination because
flashlights appear only in few frames. Figure 3 shows
the color histogram of a video clip. The largest bin is
composed of court pixels, which is 2.2x larger than
the second largest bin.

Considering that the detected court region is not
perfect due to the disturbances of noise, players, and
score board, the component that connects the most
court pixels is selected, and its convex hull is com-
puted to represent the court region. Observing that the
corner appears as a point (Figure 4), a frame contains
the left (right) lower corner if a long vertical hull edge
appears at right (left). In other words, we determine
the court completeness based on the existence of these
two video frames.

3.1.1 Panoramic court generation
We generate a panoramic basketball court based on
the OpenCV1 tracked KLT features [10] in consecutive
frames. Let Pf = {pf

1 ,p
f
2 , ...,p

f
n} be a set of KLT

feature positions in frame f , where p = {px,py} ∈ R2

and n is the total number of features. Considering
basketball courts are planar, our system computes a
homography that can transform features from Pf to
the corresponding positions Pf−1.

Our system rejects the KLT features on a score board
and on players to enhance the robustness of court re-
construction. It also rejects pixels within those regions
when blending the panoramic court. Observing that
the score board is fixed at a certain position in most

1. http://opencv.org/

Fig. 4. (Top) Left and right images show the left and
right court views, respectively. (Bottom) The compo-
nents that connect most of court pixels (white) and
corresponding convex hulls (green) are shown. Clearly,
convex hulls in these two viewpoints contain only one
vertical boundary. We apply this criteria to detect if both
left and right court views appear in a video clip.

broadcast basketball videos, we manually specify the
region. For the player regions, they are automatically
detected by using the deformable part model [26] and
the tracking algorithm [27].

3.1.2 Quadrangular court detection
Similar to the mechanism of court extraction in each
video frame, the basketball court is obtained from the
panoramic image based on the dominant color. The
largest component connecting court pixels is selected
(Figure 2(c)) and the convex hull of this component
is determined to resist noise. Given that the court
region is linearly projected from a rectangular court,
this court must be quadrangular. Hence, we compute
a quadrangle that approximates the court region. We
first trace the hull boundary in the clockwise direction
and get the angle of each edge (Figure 2(d)). We
then apply K-means algorithm to partition edges on
the hull boundary into four groups according to the
traced edge angles. After that, a straight line is esti-
mated to approximate edge centroids in each group
using the principal component analysis [28] because
these centroids should be collinear. Once the four
straight lines are determined, the quadrangle repre-
senting the basketball court is obtained by computing
the intersecting points (Figure 2 (e)).

3.1.3 Quadrangular court warping
The basketball court in a panorama may deviate from
a quadrangle due to the accumulated transformation
errors. We warp this panoramic court to a quadrangle
in a content preserving manner. Because uniform
sampling in a quadrangle is easier than that in the
panoramic court, we adopt an inverse strategy, which
warps the quadrangle to fit the panoramic basketball
court while minimizing the shape distortion of each
local region. Once the warped mesh is obtained, the
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Fig. 5. Left to right: video frames captured in the left, middle, and right viewpoints. The slope of the top court
boundary changes when the camera pans. We apply this characteristic to determine the viewpoint similarity
between two video frames before tracking KLT features and computing the homography transformation.

inverse warping of each local region can be used to
warp the panoramic court to a quadrangular one.
Figure 2 (f) and (g) show the original and warped
meshes used to calibrate the basketball court.

We represent the quadrangular court using a quad
mesh, in which each quad roughly contains 20 × 20
pixels. Let M = {V,F} be the quad mesh, where
V = {v0,v1, ...,vn}, n is the total number of vertices,
v ∈ R2 is the vertex position, and F is the set of
quad faces. We iteratively move the boundary vertices
∂V toward their closest court pixels while preventing
the shape of each quad from distortion. Specifically,
two energy terms Db and Ds are formulated accord-
ing to the constraints and the objective function is
minimized to obtain the warped vertex positions.
To approximate the panoramic court, we present the
energy term

Db =
∑
i∈∂V

|v̂i − ui|2 , (1)

where v̂ ∈ V̂ denotes the warped vertex position and
u is the court pixel closest to v̂. To retain the quad
shape, each quad is enforced to undergo a similarity
transformation. That is,[

s r
−r s

] [
vx

vy

]
+

[
u
v

]
=

[
v̂x

v̂y

]
. (2)

Let f0 − f3 be the four vertices of quad f and
[sf , rf , uf , vf ]

T be the unknown similarity transforma-
tion. The constraint is given by

vf0,x vf0,y 1 0
vf0,y −vf0,x 0 1

...
...

...
...

vf3,x vf3,y 1 0
vf3,y −vf3,x 0 1



sf
rf
uf

vf

 =


v̂f0,x

v̂f0,y

...
v̂f3,x

v̂f3,y

 (3)

and briefly represented by AfSf = Vf . Based on
the conformal mapping theory, the unknown simi-
larity transformation Sf can be eliminated and the
expression (Af (A

T
f Af )

−1AT
f − I)Vf = 0 is obtained.

Therefore, we introduce the term

Ds =
∑
f∈F

∣∣(Af (A
T
f Af )

−1AT
f − I)Vf

∣∣2 . (4)

Note that the only unknown variable in this expres-
sion is Vf . The term Ds is quadratic.

We integrate the weighted energy terms to form
the objective function ωDb+Ds. Given that spectators
usually appear around the boundaries of a court, in
which some court pixels are not detected, drastically
enforcing each boundary vertex to locate at the posi-
tion of the closest court pixel would introduce serious
artifacts. Therefore, we set ω = 0.2 in our experiments.
Apparently, the objective function ωDb + Ds is non-
linear because the unknown variables v and u are
correlated. Therefore, we begin the minimization by
setting ui to the court pixel position closest to vi. In
this scenario, the objective function becomes linear
and the warped vertex positions V̂ can be obtained by
solving a linear system. Once the new V̂ is computed,
we refine each closest court pixel u. Our system alter-
natively computes the two sets of unknown variables
until the solution converges or the energy ωDb +Ds

increases. We refer the readers to [29] for more details
on our optimization.

3.1.4 Homography calibration
We warp the quadrangular basketball court to a rect-
angle using a homography to remove the perspective
effect. The dimension of this rectangular court is
28.64 by 15.24 defined by International Basketball Fed-
eration (FIBA). The correspondence of four corners
between the two courts can be obtained according
to their positions. Accordingly, the homography H is
computed from q = Hp, where q and p denote the
corner positions on the rectangular and the quadran-
gular courts, respectively. Once the court is rectified,
we successfully calibrate camera motions.

3.2 Calibration in incomplete court videos
Our camera calibration method works only when the
video contains a complete basketball court. For the re-
maining videos, the calibration requires an additional
homography to a video that covers the whole court.
Let W = {w0, w1, ...} and Z = {z0, z1, ...} denote
the videos covering the whole and half basketball
courts, respectively. To calibrate frame zi, our goal is
to compute a homography that maps zi to wj based
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on the tracked KLT features, (Section 3.1.1). However,
given that frames zi and wj may be captured from
different viewpoints and have few objects in common,
the computed homography is not reliable or even
invalid. This problem can be solved by stochasti-
cally trying all frames in W. The system then uses
the transformation computed according to the largest
amount of corresponding KLT features. Given that
this approach suffers from heavy computational cost,
we alternatively determine frame wj based on the
court shape to speed up the matching process.

We observe that the camera is fixed at a certain po-
sition and performs only pan and zoom in court view
shot videos. Under these circumstances, the slope of
the top court boundary implies the viewpoint of a
frame, as indicated in Figure 5. Therefore, we apply
the convex hull that represents the court region in a
frame (Section 3) and extract the top court boundary
that is connected to the vertical edge. Frame wj , in
which the slope of the top court boundary is closest to
that of frame hi, is used to estimate the homography
for calibrating frame hi.

4 APPLICATION: VIDEO RETRIEVAL

We present a stroke-based interface of retrieving bas-
ketball videos to demonstrate the feasibility of the
presented camera calibration method (Figure 7). This
objective is achieved by first extracting player trajec-
tories from basketball videos. The trajectories are then
rectified to the standard basketball court. When stroke
queries are provided by users, our system compares
the similarity of the strokes and the rectified player
trajectories in the database. It then returns the results
(i.e., up to three in our default setting) that best fit
the query and renders the player trajectories on the
basketball court for illustration.

4.1 Preprocessing
The first step of this stroke-based retrieval is to extract
player trajectories from broadcast basketball videos.
Broadcast videos usually contain commercials, breaks,
and close-up views for highlights, in which obtaining
spatial information is difficult. Therefore, we extract
player trajectories from court view shot videos. Our
system partitions a broadcast video into short video
clips, in which each clip contains only one shot, using
the scene change detection algorithm presented by
Hanjalic et al. [30]. We then apply the support vector
machine to train a classifier, based on the color his-
togram of each video frame, to detect court view and
non-court view shot videos. Specifically, our system
transforms each pixel color to YCrCb color space and
computes a CrCb color histogram with 32 × 32 bins
to represent the feature of a video frame. Channel
Y is excluded to resist illumination changes. In our
experiment, we use 235 court view and 162 non-
court view shot frames to train the classifier. This

Fig. 6. User specified and retrieved player trajecto-
ries are rendered in complete and half saturated red,
respectively. (Left) Blue points are uniformly sampled
from the end point along each trajectory and the de-
viations (blue lines) of corresponding points are av-
eraged to measure similarity. (Right) Blue points are
uniformly sampled along the user specified stroke but
correspond to the closest points on the extracted player
trajectory. Dissimilar trajectory is obtained due to the
wrong point mapping.

classifier is then adopted to test another 216 videos
and obtain the correct rate of 96.76%. This simple
approach performs well because the backgrounds of
court view and non-court view shots are very different
in broadcast basketball videos.

Given by a court view shot video, we apply the
deformable part model [26] to detect player positions
in each frame and track their motions to extract player
trajectories [9]. To enable a precise query for basketball
video retrieval, players who assist and score should be
identified. This objective could be achieved by either
player identification [9] or ball tracking [11]. But we
build the information by manual annotation in our
current system.

4.2 Stroke-player trajectory comparison

We estimate the trajectory similarity using Andrienko
et al.’s method [31] to determine whether the video
fits user’s requirement. Denote by start point and end
point the two ends of a trajectory, in which the player
runs from the start point toward the end point. Our
system uniformly samples corresponding points from
the two end points along the stroke and rectified player
trajectory, respectively. The sampling stops whenever
it reaches the start point of the shorter curve. Figure
6 (left) illustrates our sampling approach. Once the
corresponding points are sampled, our system av-
erages the L2-norm deviations of the corresponding
points to determine trajectory similarity. The failed
example in Figure 6 (right) explains why the closest
points on the extracted trajectory are not used. Be-
sides the robustness of similarity measure, this partial
comparison also allows users to control the degree of
strictness during retrieval. Namely, drawing a short
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11:19 0-3 M. Chalmers makes 3-pt from 
25 ft (assist by M. Miller) 

11:16  T. Young misses 2-pt 
shot from 1 ft  0-3 

11:05  0-3 Defensive rebound by U. 
Haslem  

10:54  0-3 L. James makes 2-pt shot from 
16 ft 

Fig. 8. Example of play-by-play text; The columns from
left to right indicate game time, events of team one,
scores, and the events of team two, respectively.

stroke indicates where the player gets scores whereas
drawing a long stroke specifies how the player moves
in a game.

4.3 Play-by-play text

In addition to player trajectories, we employ the play-
by-play text to enhance the semantics of a query.
This play-by-play text is available on-line and records
important events in a game such as shot made, shot
miss, assists, fast break, ..., etc. (see Figure 8). Given
that the event time is provided in a play-by-play
text and the game time is depicted in each video
frame, we obtain the event of a video clip by time
matching. Given that the game time appears in bitmap
format, we apply optical character recognition [32] to
extract the information. The recognition has nearly
perfect accuracy because the game time is fixed at a
certain region and its background is homogeneous.
As a result, in addition to the strokes used to specify
player trajectories, our system allows users to indicate
the events to enhance retrieval correctness.

4.4 Video retrieval interface

To retrieve basketball videos, users can draw one or
two strokes to specify the moving trajectories of the
players who shoot and assist. Red and green strokes
indicate the scorer and assister, respectively. Users can
also set the events such as shot made, shot miss,
assist, and put back to further stipulate the videos
they are looking for. The query combined with strokes
and events clearly define each video clip to prevent
ambiguity. The strokes are drawn on a half court
because most tactical events activate at the positions
close to a basket and teams have to switch sides after
half of the game.

We describe how each kind of videos is retrieved
based on the stroke queries and the events in details.

Cut-in. A player moves to the basket and then lays
up or dunks to scores. This kind of video is retrieved
by drawing the stroke toward and ends close to the
basket. Users can also check the assist event during
retrieval, in which the ball is passed from a player
before he/she scores.

Cut-out. A player moves out to locate a wide open
area and receives the ball from a teammate to shoot.
This kind of video is retrieved by drawing the stroke
away from the basket. The assist event is checked in
this category because the scorer does not generally
handle the ball in the beginning. Remarkably few
players dribble the ball, move out, and shoot because
passing the ball to one’s teammate is always the better
choice.

Fade-away shot. A player initially moves toward
or around the basket but jumps back to acquire some
space for shooting. This kind of video is retrieved by
drawing the stroke with a small portion away from
the basket at the end. Given that the scorer locates an
open space for himself/herself to make a shoot, the
assist event in this category is not checked.

Fast break. A player moves toward the basket and
less than two or even no opposing player is in front
of him/her to defend the attack. This kind of video is
retrieved by drawing a long straight stroke that begins
from the other side of the court. The straightness of
the stroke signifies that tactics are not necessary and
event periods are short.

Put back. A player grabs the offensive rebound and
immediately scores. This kind of video is retrieved by
generally drawing the stroke toward the basket with
the put back event checked. This event is detected
when the score and rebound are simultaneously de-
noted in the play-by-play text.

Pick-and-roll tactic. A player first sets a screen
(pick) for his/her teammate who handles the ball,
slips behind the defender (roll) to receive the pass, and
then cuts in to make a score. In this tactic, the goal of
the assister is to draw attention from the opposing
players and let the scorer locate a space to shoot.
Therefore, two strokes are required to retrieve this
kind of video; one for the assister and one for the
scorer. In other words, only the videos in which both
player trajectories are matched will be retrieved. This
kind of video is retrieved by drawing two strokes,
in which a portion of them are parallel, close to
each other, and head toward the opposite directions,
because the open space immediately emerges when
the defenders move in a phase similar to that of the
assister.

5 RESULTS AND DISCUSSIONS
We have implemented the presented system and run
the code on a desktop PC with Core i7 3.0 GHz
CPU. Broadcast basketball videos with 1280×720 and
720 × 480 resolutions are used in our experiments.
Generally, calibrating a video frame by using our
unoptimized code required more or less 0.2 seconds,
where most of the time were taken in KLT feature
tracking. Given that the calibration of each frame
requires tracked KLT feature, the cost prevents our
system achieving interactive performance. This prob-
lem could be greatly reduced by leveraging the GPU,



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY XXXX 8

Fig. 7. Top to bottom: Retrieved basketball videos of fast break, fade away shot, and pick-and-roll tactics.
The leftmost column shows the specified strokes and events. Red and green rectangles specify the scorer
and assister; complete and half saturations denote the user specified strokes and retrieved player trajectories,
respectively. The remaining columns on the right display the key frames of the retrieved video. Similarly, the
red and green rectangles indicate the scorer and assister in the frames. Note that the length of a stroke query
involves with query strictness. The top example shows the strict query, whereas the middle example shows the
loose one.

yet we did not implement the part in our system. The
homography transformation from a video coordinate
to a panoramic court coordinate is efficient because of
few unknown variables in each frame. The calibration
from a panoramic court to a standard court is also fast
because linear interpolation and matrix multiplication
are used. As for the video retrieval application, given
that player trajectories are pre-calibrated and stored in
the database, our system achieves interactive perfor-
mance when measuring the similarity of trajectories.

5.1 Experimental results

We tested a number of broadcast basketball videos,
which contain zoom-in, zoom-out, fast camera pan-
ning, and flashes, to demonstrate the feasibility of our
technique. Our system does not require camera in-
trinsic parameters because only homographies, court
warping, and court rectification are applied to cali-
brate video frames. Figure 9 and our accompanying
video show the results. To visualize the calibration
quality, we place the standard basketball court at a
fixed position and calibrate each video frame to over-
lay the court. The calibrated frames are rendered with
half transparency to exhibit whether court features are
properly aligned. As can be seen, the court features
(i.e., boundary line, free throw line, and three-point
lines) of each video frame are well aligned with the
standard basketball court, which indicates that the
rectified player positions will be accurate enough for

basketball video retrieval. Moreover, the calibration
between consecutive frames is temporally coherent
and thus, the rectified player trajectories do not suffer
from jittering artifacts.

We show the basketball videos retrieved by using
our system in Figure 7. Users draw strokes and specify
events to achieve the objective. Our system subse-
quently returns the results in which the trajectories
of the scorer or assister best fit the query. Because the
retrieval interaction cannot be appreciated from still
images, we refer readers to our accompanying video.

5.2 Evaluations

Comparison. To demonstrate the effectiveness of our
camera calibration, we mainly compare the presented
system to Hu et al.’s [6] approach because both
methods are fully automatic and attempt to handle
broadcast basketball videos. All their results shown
in this paper were provided by the authors. Similarly,
we place the standard basketball court at a fixed
position and render their rectified video frames with
half transparency to exhibit the calibration quality. As
shown in Figure 9 and our accompanying video, the
approach of [6] cannot handle video frames that cover
insufficient court line features. Statistically, in this
example, only 18% (101 / 565) of video frames were
successfully calibrated. Their calibration also suffers
from temporal incoherence in consecutive frames be-
cause features in each frame are detected individually.
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Fig. 9. (Left) Original video frames. (Top right) Calibrated video frames achieved by [6]. (Bottom right) Calibrated
video frames achieved by our method. The images indicate that the method of [6] cannot calibrate both middle
and right court views because of the undetected court line features. In contrast, our system can calibrate all
video frames due to court reconstruction.

In contrast, 100% of video frames are calibrated by
using our system, and these calibrated frames are
temporally coherent. Accordingly, only our system
can rectify player trajectories that are good enough
to achieve basketball video retrieval. Figure 10 shows
the player trajectories rectified by Hu et al.’s method
[6], our system, and by a user. These trajectories
indicate that our result is close to the one perceived
by humans.

Our system is superior to that of [6] due to the
consideration of all video frames. In other words, Hu
et al.’s [6] method directly maps the detected features
in a frame to the standard basketball court. It fails
whenever court features in a frame are not detected. In
contrast, we track KLT features to build the connection
between video frames and reconstruct the basketball
court. The calibration is actually achieved based on
the four corners of the reconstructed court. As a result,
while court features in a frame are occluded, the
calibration from that frame to the standard court can
still be achieved via other frames in the video. These
conditions verify that our camera calibration is robust.

Basketball video retrieval. Our stroke-based sys-
tem allows users to retrieve basketball videos by
specifying player trajectories. This additional infor-
mation helps separate basketball videos that have
the same pre-defined event. For the examples shown
in Figure 11, the players cut in from different po-
sitions and make scores. Retrieving a single video
by using a conventional text-based query system is

Fig. 10. (Left) Key frames of a basketball video. The
goal in this example is to rectify the moving trajectory
of the player indicated by a red rectangle. (Right) The
trajectories rectified by using Hu et al.’s method [6]
(blue), our system (red), and by a user (black). As
indicated, the player trajectory rectified by our system
is complete, temporal coherent, and close to the trajec-
tory perceived by humans.

difficult because both events are identical. In addition,
our basketball video retrieval supports the partial
matching of a player trajectory and a given stroke.
This partial matching is helpful because users usually
have no idea when a trajectory begins and ends in
a video and cannot provide an exact stroke query.
Another advantage of this partial matching is the
control of strictness. Considering that our similarity
measure compares the stroke query to only a seg-
ment of player trajectory, stroke length involves query
strictness. Users can apply a short stroke to indicate
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Fig. 11. Players normally cut in from different positions.
The presented stroke query helps separate the videos
even though they have the same pre-defined event.

Fig. 12. Retrieved video may be unexpected due to the
tracking error. The tracked players of a single trajectory
are indicated using rectangles. The two frames of a
court view shot are shown in the left and the corre-
sponding zoom-in views are highlighted in the right.

where the player makes scores and apply a long one
to specify how the player cuts into the restricted area.
We show examples in Figure 7.

We have presented our system to college basketball
players. They indicated that our video retrieval sys-
tem is beneficial to basketball coaches and players.
That is, most coaches draw curves on a tactical board
to convey tactics, but such curves are too abstract
to players. With the help of our system, coaches can
draw strokes to retrieve the video that shows a real
example completed by professional players to provide
better explanation. Besides, players can experience by
real example how the opposing team may react for
tactics. Overall, the players expressed high preference
to our system because strokes are sufficient to define a
tactical event in most basketball videos. In particular,
they agree that our system is cost effective to find the
demanded results.

5.3 Limitations

Our camera calibration technique relies on the basket-
ball court reconstruction. It works only for court view

shot videos due to sufficient background features for
scene matching. For the videos with a close-up view,
in which players normally occupy a large area of
the frame, our system cannot obtain corresponding
background features and fails in this circumstance.
In addition, our camera calibration is based on the
four corners of a reconstructed basketball court. Court
lines, such as free throw lines, three point lines, and
center circle, in a video are not considered and may
not perfectly aligned with the real court features
after calibration. Given that accumulation errors are
inevitable, the calibration is visually good but not
geometrically correct. We plan to adopt these features
to enhance the calibration quality in the near future.

Our system does not guarantee the retrieved basket-
ball videos to always fit the query due to imperfect
player tracking techniques. Figure 12 and the accom-
panying video show a failure example. Besides, DPM
detection only outputs bounding boxes, which are
usually not accurate in telling the exact player po-
sitions. The calibrated player trajectories could suffer
from noise. Finally, without tracking ball trajectories,
our system is not sufficient to retrieve videos contain-
ing complex ball passing.

6 CONCLUSIONS

We have presented a fully automatic method of cali-
brating camera motions in basketball videos. The sys-
tem is robust to videos that contain zoom-in, zoom-
out, fast camera panning, and flashes. The success
of this approach comes from the consideration of
all frames in a court view shot video rather than
each frame individually. Therefore, when certain court
features are not available in some frames due to player
occlusions and illumination changes, they can still be
obtained from other frames for calibration. Although
our system is presented to calibrate camera motions in
basketball videos, it has the potential to handle many
other sport videos. Our supplemental result shows a
volleyball example.

This calibration technique has been applied to re-
trieve basketball videos by giving stroke and event
queries. Coaches, players, and spectators are expected
to benefit from our technique because the system
supports precise queries to prevent unwanted results
during retrieval. Our camera calibration is also useful
in many applications, including tactical analysis, wide
open detection, and player statistical data visualiza-
tion, because player positions are transformed to the
same coordinate system. Accordingly, we intend to
discover more interesting applications based on this
technique in future.
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