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Spatially and Temporally Optimized Video
Stabilization

Yu-Shuen Wang, Feng Liu, Pu-Sheng Hsu and Tong-Yee Lee

Abstract—Properly handling parallax is important for video stabilization. Existing methods that achieve the aim require either
3D reconstruction or long feature trajectories to enforce the subspace or epipolar geometry constraints. In this paper, we present
a robust and efficient technique that works on general videos. It achieves high-quality camera motion on videos where 3D
reconstruction is difficult or long feature trajectories are not available. We represent each trajectory as a Bézier curve and
maintain the spatial relations between trajectories by preserving the original offsets of neighboring curves. Our technique
formulates stabilization as a spatial-temporal optimization problem that finds smooth feature trajectories and avoids visual
distortion. The Bézier representation enables strong smoothness of each feature trajectory and reduces the number of variables
in the optimization problem. We also stabilize videos in a streaming fashion to achieve scalability. The experiments show that our
technique achieves high-quality camera motion on a variety of challenging videos that are difficult for existing methods.

Index Terms—Video stabilization, Warping, Optimization, Bézier curve
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1 INTRODUCTION

Most amateur videos are captured using hand-held
cameras. They are often very shaky and difficult to
watch. Therefore, video stabilization techniques have
been developed to smooth shaky camera motion.
Most existing methods work in 2D and are efficient
and robust. However, these methods use homography,
which cannot model parallax induced by a moving
camera imaging a 3D scene, so they cannot aggres-
sively stabilize shaky camera motions.

To handle parallax well, 3D video stabilization
methods apply 3D reconstruction from structure from
motion (SFM) [1] or depth acquisition from sensors
[2]. However, SFM solves a highly non-linear opti-
mization problem to reconstruct a 3D scene, which is
computationally expensive and is often brittle. Depth
acquisition is limited to depth cameras and thus is
not applicable to general videos. Closely related to
our technique, where scene modeling is not required,
Liu et al. [3] developed a method that makes use
of “eigen-trajectories”, a middle-level representation
between 2D and 3D, and smoothes camera motion
in the subspace of feature trajectories. However, the
method requires a certain number of long feature
trajectories. It potentially breaks down when such
trajectories are not enough, which usually occurs in
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videos suffering from serious blurriness. Goldstein
and Fattal developed a method that uses a projective
scene reconstruction [4] to handle parallax without
3D reconstruction. Their method, however, cannot
work well on videos with strong occlusions and non-
Lambertain surfaces.

In this paper, we introduce a video stabilization
method that can handle parallax and is robust to
poor motion estimation results. Our key insight is
that the tracked features are spatially and tempo-
rally correlated. Solving a video stabilization problem
in separate passes, say, computing spatial relations
(such as planar assumption, SFM and subspace ex-
traction) followed by smoothing the reduced param-
eters, cannot make use of all the feature trajectories.
Accordingly, we formulate stabilization as a spatial-
temporal optimization problem that considers both
smoothing and spatial rigidity simultaneously to han-
dle parallax. This formulation enables our system to
utilize both long and short feature trajectories and
approach global optimal solutions when stabilizing
videos. To achieve high performance, we represent
each smoothed feature trajectory using a Bézier curve
when minimizing the objective function. Since the
unknowns are reduced from feature positions to only
curve control points, heavy computational cost and
memory consumption can be prevented. By setting a
lower degree to Bézier curves, this representation also
achieves strong stabilization because each smoothed
feature trajectory is interpolated from the optimized
control points. Although the Bézier curve idea may
be not new [3], [5], [6], we embed this reduced model
in the spatial-temporal optimization problem and en-
able high-performance video stabilization that creates
high-quality camera motion.

During the optimization, we explicitly constrain the
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Fig. 1. The original (a) and the stabilized (b) feature trajectories are shown in the spatial-temporal coordinate
system. We smooth feature trajectories while retaining the neighboring feature offsets (c) in each frame to handle
parallax. We then warp each video frame based on the stabilized features and crop the maximal overlapping area
to produce the result (d).

spatial offsets of neighboring features in each frame
when smoothing their motions. Each local region is
enforced to undergo a rigid transformation because
the stabilization will typically not change the view-
point too much and thus will not distort the interior
content, unless the video suffers from rolling shutter
artifacts. In addition, the Bézier representation enables
our method to directly smooth feature trajectories and
thus, our system can handle parallax well. Although
the number of variables in each trajectory has already
reduced, the computational cost of our system would
still increase as more and more trajectories are added
when the video becomes long. We therefore optimize
the feature trajectories within the moving time win-
dow in a streaming manner while constraining the
smoothness in the overlapping frames to achieve scal-
ability. Once all trajectories are optimized, we consider
the smoothed features as positional constraints and
apply the content preserving methods to warp video
frames sequentially. Finally, a cropping window is de-
termined to capture the maximal area containing only
valid information to produce the stabilizing result.

We demonstrate the effectiveness of our technique
by comparing it to state-of-the-art techniques [3], [4],
[7] on a variety of videos containing large parallax,
strong occlusions, and rolling shutter artifacts. Exper-
iments show that our method can handle parallax
and is robust to challenging examples. Since the L1-
Optimization method provided by Youtube [7] is the
most robust technique among these recent works, we
also evaluate the performance of our framework by
conducting a user study with 74 participants, which
showed strong preference of our method over [7].

2 RELATED WORK

Video stabilization techniques have been developed
to smooth shaky camera motions. Two-dimensional
stabilization methods estimate a homography se-
quence from the input video, dampen this sequence,
and warp video frames based on the smoothed se-
quence [8], [9], [10], [11], [12], [13]. A recent method

achieves aggressive smoothing using L1 optimiza-
tion [7], in which the gradient of the camera motion
at each frame can be strongly suppressed, to produce
very high quality results. However, the use of 2D
motion models still limits its ability to handle parallax.

Three-dimensional stabilization methods use SFM
to estimate 3D camera motion and scene structure,
followed by smoothing the camera motion. These
methods then render a new video according to the
smoothed camera path using image-based render-
ing [14], [15], homography approximation [16], or
content-preserving warp [1], [17]. However, SFM is a
difficult and time-consuming computer vision prob-
lem. It often fails when the video 1) lacks parallax, 2)
contains camera zooming, or 3) suffers from rolling
shutter artifacts. Therefore, these three-dimensional
methods are not practical in many examples.

Liu et al.’s method [3] smoothes feature trajecto-
ries with subspace constraints to achieve robustness
and efficiency. The tracked feature trajectories are
factorized into low dimensional key bases and re-
construction coefficients. Their method then smoothes
the bases followed by trajectory reconstruction to
stabilize videos. However, the streaming factorization
requires long feature trajectories to cover the entire
factorization window, which do not usually appear
in videos containing dynamic backgrounds and large
foreground motions. Goldstein et al. [4] applied the
projective reconstruction to account for simple geo-
metric relations between points and epipolar lines,
which raises the robustness of scene modeling. They
also derived a time-view point reprojection to stabilize
trajectories of moving objects so that the defined
warping constraints can be spread more uniformly
across the frame to capture the scene shape. However,
the projective reconstruction relies on relative posi-
tions of corresponding features between images, so
the method fails at examples that have strong occlu-
sions and non-Lambertian surfaces. Liu et al. [2] sta-
bilized videos that are captured by depth cameras, in
which the relative motions of neighboring content can
be estimated and then preserved when smoothing the
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Fig. 2. We show the features and the neighboring
relations using red dots and green triangles. Clearly,
the spatial preservation based on only green triangles
potentially causes instability artifacts due to the sudden
appearance of right features. We thus further retain
the relative offsets of four corners to features (purple
triangles) in each frame to prevent this problem.

camera motion. As this method requires depth acqui-
sition, it cannot work for regular videos. In contrast,
our method, which smoothes each feature motion
while retaining the offsets to neighboring features in
the spatial-temporal coordinate system, achieves high-
quality stabilization without requiring long feature
trajectories, scene reconstruction, or depth acquisition.

3 FEATURE TRAJECTORY SMOOTHING

We stabilize videos by smoothing the trajectories that
are integrated from the KLT features [18]. Similar to
the subspace method [3], the tracked features on mov-
ing objects are ruled out in advance using the epipolar
constraint [19]. We then smooth the remaining feature
trajectories while retaining their spatial relations to
stabilize videos. Note that this outlier rejection is not
necessarily perfect because the remaining foreground
features have nearly static motions and those regions
can be treated as backgrounds.

Let the ith trajectory be Pi = {pm
i ,p

m+1
i , ...,pn

i },
where pi = (xi, yi) ∈ R2 is the feature position,
and m and n are the start and the end frames of
Pi, respectively. Our goal is to solve an optimization
problem that can minimize the acceleration of Pi in
each frame while constraining the offsets of neigh-
boring trajectories to be consistent within the input
video. To achieve high performance, we represent
each smoothed trajectory using a Bézier curve and
reduce the unknown variables from all feature posi-
tions to Bézier control points. This reduced model also
achieves strong stabilization because the smoothed
feature positions are interpolated from the control
points. We show the details of our technique in the
following subsections.

3.1 Objective function
Spatial rigidity preservation. We compute the neigh-
bor relations between features in each frame using
the Delaunay triangulation. To achieve spatial rigidity
when stabilizing a video, we enforce each triangle to
undergo a rigid transformation. This constraint works
well in most videos that are free from rolling shutter
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Fig. 3. We compare the smoothness of stabilized fea-
ture trajectories using acceleration minimization and
Bézier curve fitting.

artifacts because the change to the camera motion is
typically small in video stabilization. That is, triangles
are allowed to move and rotate but their sizes and
shapes should be retained. Since features are not
uniformly distributed, they may be very different in
consecutive frames (see Figure 2) and thus, preserving
only relative positions of features is not sufficient
to stabilize the regions that have no features in the
current frame but have some previously. We thus
add four corners of each frame when computing the
Delaunay triangulation and introduce the energy term

Ωc =
∑
t

∑
f

∑
{i,j}∈E(f)

∣∣∣(r′ti − r′
t
j)−Rt(rti − rtj)

∣∣∣2 , (1)

where t is the frame index, E(f) denotes the edges
of triangle f , r = {c,p}, c is the original corner
position, R is the unknown rotation matrix and r′ is
the smoothed version of r.

Original camera motion approximation. Clearly,
video stabilization cannot deviate the smoothed cam-
era motion from its original trajectory too much be-
cause the motion usually has important meanings.
This requirement also reduces the content loss because
video frames are transformed during the stabilization
and only the overlapped areas throughout the entire
video will remain. Therefore, let p′ be the smoothed
feature position, we give the energy term:

Ωp =
∑
Pi

∑
t

∣∣∣p′ti − pt
i

∣∣∣2 . (2)

Individual trajectory smoothing. To achieve video
stabilization, we can minimize the acceleration of each
feature motion using the energy term

Ωs =
∑
Pi

∑
t

∣∣∣p′t−1i − 2p′
t
i + p′

t+1
i

∣∣∣2 . (3)

However, minimizing the objective function Ωc+Ωp+
Ωs requires solving all feature positions in one step,
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where the number of unknown variables is tremen-
dous. This requirement would lead to heavy compu-
tational cost and large memory consumption when a
long and high-resolution video is processed. In addi-
tion, as pointed out by [7], least squares optimization
satisfies Equation 3 on average, which would result
in small but non-zero gradients between consecutive
frames. It means that the optimized video is only
less shaky but still not stable (see Figure 3 and our
supplemental video Bezier.mp4). To solve these two
problems, we represent the smoothed trajectory using
a Bézier curve so that feature motions can be strongly
smooth and the unknown variables are greatly re-
duced. Specifically, each node on a trajectory is writ-
ten as pt

i =
∑d

`=0 ω
t,`
i q`

i , where ωt,` =
(
d
`

)
(1− r)d−`r`,

d is the degree of Bézier curve, qi are the control
points and r = t−n

m−n is the interpolation coefficient.
Thus, our goal becomes approximating each jittering
feature trajectory using a Bézier curve while retaining
the offsets of neighboring features in each frame.
Formally, we rewrite the unknown feature position
p′

t
i in Equations 1 and 2 to

∑d
`=0 ω

t,`
i q`

i and neglect
Equation 3 when solving the optimization.

Generally, a larger value of d can retain more
content after cropping while a smaller value enjoys
stronger camera stabilization due to the different de-
grees of Bézier curve fitting. For generality, we set
d = 2 in all our experimental results, except the sup-
plemental video DegreeComparison.mp4 that we used
to illustrate the effect of different degrees.

Reliability constraints. When video frames con-
taining no features, there is no way to determine their
smoothed positions. The minimization of Equations
1 and 2 subject to the Bézeir constraint is not suf-
ficient to stabilize such jittering videos because the
unknowns are not correlated. Therefore, we slightly
enforce the corners of these extremely difficult frames
to have smooth transitions between consecutive time
steps, so that our system can be robust to all challeng-
ing examples. Specifically, we add the energy term

Ωr =
∑
t∈U

3∑
i=0

∣∣∣ct−1i

′ − 2cti
′
+ ct+1

i

′
∣∣∣2 , (4)

where i is the corner index and U is the set of frames
that have no features.

3.2 Optimization

By integrating the mentioned energy terms, we search
for the control points of Bézier curves that can mini-
mize the objective function

Ω = wcΩc + wpΩp + wrΩr (5)

to stabilize videos, where wc, wp and wr are the
weighting factors (wc = 10, wp = 1 and wr = 0.01
in all our experiments). The optimization is trans-
formed to a linear system Ax = b and we solve for

the unknown variables x = (ATA)−1ATb. Thanks
to the Bézier curve representation, the size of x is
linear to the number of control points. The system
will be greatly reduced when AT is multiplied to
its both sides. We solve the objective function by
iteratively updating the unknown corners, the control
points of Bézier curves and the rotation matrixes
because they are correlated. Specifically, we first set
R = I and compute q and c by solving a linear
system. R is then determined by first computing a
homography transformation between the original and
the smoothed features and corners, and followed by
using the singular value decomposition to eliminate
the shear and the scale components. Please refer to
[20] for more optimization details. Once the control
points of each Bézier curve are obtained, we compute
the stabilized feature positions at each frame using
p̂t
i =

∑d
`=0 ω

t,`
i q`

i .
It deserves noting that the Bézier and the rigidity

constraints conflict when handling videos that have
parallax. Expecting each region to undergo an exact
rigid transformation cannot stabilize the video since
features with different depth values have different
shaking magnitudes. When this conflict happens, our
system can still smooth feature motions to handle
parallax because our Bézier representation is a hard
constraint but Ωc is a soft one. While the triangles may
be slightly distorted, each stabilized feature trajectory
is definitely smooth because it is interpolated from the
optimized Bézier control points.

clip λ 

clip λ+1 

Kλ-g K(λ+1) Kλ 

••• ••• 

Fig. 4. We streamingly stabilize a long video to achieve
scalability. The feature positions in the overlapping
frames are smoothed to prevent the discontinuity ar-
tifacts.

3.3 Implementation details.
Scalability. We solve for a subset of video frames
instead of the whole video cube at a time to prevent
the scalability problem, even though each feature tra-
jectory is already transformed into a reduced model.
This streaming strategy is very helpful to our system
because the captured videos are usually long and the
computational cost would increase rapidly. Therefore,
we segment the video into shorter clips, with each clip
containing k frames, and with g frames overlapping
between consecutive clips (k = 200 and g = 50 in all
our experiments). During the optimization of the λth

clip, we solve for the smoothed feature positions from

http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/Bezier.mp4
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/DegreeComparison.mp4
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Fig. 5. (left) The warped quad mesh and the smoothed
features. (top right) The warped frame. (bottom right)
The original frame. We warp each video frame by en-
forcing features to be located at the smoothed positions
so that some grid lines bend although each local region
is transformed homographically.

frame k×λ−g to frame k×(λ+1) (see Figure 4). Hence,
a long trajectory will be approximated using several
Bézier curves. We thus set positional constraints in
the overlapping frames to prevent the discontinuity
artifacts caused by our streaming approach. Specifi-
cally, when stabilizing the λth (λ > 0) clip, we replace
pt
i by p̂t

i in Equation 2 if k × λ − g ≤ t ≤ k × λ,
where p̂ is the stabilized feature position obtained in
the (λ − 1)th clip. Since some features are computed
twice in consecutive clips, they may have very similar
but different positions. We determine their smoothed
positions by linear blending.

Bézier curve fitting. Apparently, a Bézier curve
may not well fit the shape of a long and twisting
trajectory. Although our streaming implementation
that solves a subset of video frames at a time can ease
the problem, it potentially happens to some compli-
cated camera motions and results in waving artifacts.
Therefore, before the minimization of Ω shown in
Equation 5, we compute a best fit Bézier curve for
each trajectory without considering spatial rigidity.
We then determine the fitting error by computing
the largest distance between the pair of the original
and the smoothed feature positions. For the trajectory
having a fitting error larger than µ pixels, we partition
it into two sub-trajectories at that position. This fitting
detection repeats until each partitioned trajectory can
be well fit by a Bézier curve. We set µ =

√
A in our

system, where A is the averaged triangle area.

4 VIDEO WARPING

We warp video frames according to the optimized fea-
ture positions to determine the result. We render each
video frame based on the deformed grid mesh, rather
than the triangular one shown in Figure 2 because the
appearing and the missing features are less reliable
(pointed out by Liu et al. [1]), and additional stability
constraints are needed.

Specifically, we represent each video frame using
a regular grid mesh Mt = {Vt,Et} with each quad
covering roughly 10 × 10 pixels, where vt

i ∈ Vt

and {i, j} ∈ E are the grid vertices and edges,
respectively. During the frame warping, we expect
each quad to undergo a homography transformation
Ht while constraining each feature to locate at the
smoothed position according to the feature reliability.
The transformation Ht can be considered as a 2D
stabilization and it is computed according to the
original and the smoothed features and corners. We
use this homography to stabilize the regions with no
features, including homogeneous regions and moving
foregrounds. Although the transformation Ht treats
each moving foreground as a plane, our system does
not introduce noticeable visual artifacts because the
foreground motions are usually much larger than the
jittering caused by depths.

Due to the discrete representation, we constrain
each feature position using the linear combination of
surrounding vertices when warping a video frame.
We also compute the reliability value of each feature
using γti = min(1, t−m10 , n−t10 ), which is mainly based on
distances to end points of a trajectory. By considering
the above criteria, we minimize the objective function
Dt

h +Dt
p to warp each video frame, where

Dt
h =

∑
{i,j}∈Et

∣∣(v̂t
i − v̂t

j)−Ht(vt
i − vt

j)
∣∣2 , (6)

Dt
p =

∑
p̂t

i

γti

∣∣∣∑j∈Lt
i
δtjv̂

t
j − p̂t

i

∣∣∣2 , (7)

Lt
i are the indexes of vertices surrounding p̂t

i and
δ is the combination weight. Note that solving the
mentioned objective function does not degenerate our
algorithm to a 2D stabilization even though the energy
term Dt

h treats each video frame as a plane, because
the features are still constrained at the smoothed
positions by Dt

p. As Figure 5 shows, the quad de-
formations are similar but not identical to ensure
all features moving smoothly. Once all meshes are
transformed to achieve stabilization, we linearly in-
terpolate pixel colors in each quad and determine the
maximal window that covers only valid information
to produce the stabilized video.

5 RESULTS AND DISCUSSIONS

We implemented and tested our algorithm on a desk-
top PC with Core i7 3.0 GHz CPU. We use the direct
solver with Cholesky factorization to minimize Ω in
Equation 5 and use the conjugate gradient method
to warp each video frame because the frame can
be pre-warped using the homography transformation
and used as an initial guess for fast convergence.
In general, the performance of our algorithm mainly
depends on the number of feature trajectories. The
trajectory lengths do not affect the performance too
much because we have already transformed each
trajectory into a Bézier curve and only three control
points are solved to obtain its smoothed version. Table
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Fig. 7. We show the warped video frames (top row) and the cropped results (bottom row) that are determined
by our system.

Fig. 6. From left to right are the consecutive frames. In
this example, the appearing, existing and the missing
features are shown in blue, red and green, respectively.
The subspace [3] and the epipolar [4] methods fail
at this example due to short feature trajectories. Our
approach successfully stabilizes the video since the
global optimization is solved.

1 shows the timing statistics. Our method uses the
Voodoo camera tracker [21] to track KLT features.
While the KLT implementation used in our method is
not real-time, feature trajectory estimation is a com-
mon step in existing video stabilization methods. Our
method achieves real-time performance after we pre-
process the input video to estimate the KLT feature
trajectories.

We have tested diverse examples containing dy-
namic backgrounds, strong occlusions and large par-
allax to demonstrate the effectiveness of our system.
All the results are generated automatically using the
default parameters. Many of the examples involve
large foreground objects occupying almost the whole
video frame, making the stabilization rather chal-
lenging. While previous methods [3], [4], [7] all fail
in such difficult examples, our technique success-
fully stabilizes the videos with no visual artifacts.
To achieve a fair comparison, we also tested the
videos chosen from previous methods to demonstrate
that our system not only works well in our selected
examples but also in theirs. Please refer to Figures
1, 5, 6, 7, the accompanying videos and our project

resolution # frame # trajectory smoothing (sec.) fps
640 × 360 609 6366 6.791 90
720 × 480 389 18670 10.81 36
720 × 480 331 12319 5.931 56

1280 × 720 775 42229 26.06 30

TABLE 1
Video information and the corresponding timing

statistics. Note that the timing of KLT feature
extraction is not included.

webpage1 for more results and comparisons, especially
as the temporal stabilities are difficult to visualize and
appreciate in still images.

Robustness. Our system can leverage very short
feature trajectories because we solve a global opti-
mization to achieve video stabilization. When some-
times the frame number of a trajectory n−m+ 1 may
be smaller than the number of Bézier control points
d+1, we represent that trajectory using a Bézier curve
with degree n −m in our implementation. Although
our stabilizing result will be equal to the original
video if all trajectories are two frames long, this
extreme case rarely appears. Moreover, our reliability
constraint allows some video frames to have even
no features because constraining corner vertices to
have smooth transitions ensures all unknowns being
correlated when solving the optimization. Although
the frames with no features may not be effectively
stabilized in this scenario, our system can produce the
result for such a challenging example, which is much
more stable than its original version (see Figure 8 and
our supplemental video limitation.mp4).

Comparisons. We have compared our results with
those stabilized by state-of-the-art techniques, includ-
ing L1-optimization [7], the subspace [3] and the
epipolar [4] methods. The 3D stabilization [1] is not
included because the latter two approaches [3], [4]
can also handle parallax and have been demonstrated
to be more robust. We show that our method can
work well on videos that are shown in the pa-

1. http://people.cs.nctu.edu.tw/∼yushuen/VideoStabilization/

http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/limitation.mp4
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/
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Fig. 8. Although our algorithm is robust to all challeng-
ing examples, the stabilization is not effective if there
are no background features in some frames.
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Fig. 9. The bar chart shows the participants’ prefer-
ences among examples from U01 to U08.

per of [3], [4], [7] in our supplemental materials
(CompToLiu.mp4, CompToGrundmann.mp4, and Comp-
ToGoldstein.mp4). Meanwhile, we focused on the se-
lected challenging examples containing large parallax,
strong occlusions and fast camera motions to demon-
strate the effectiveness of our technique. Since the
methods of [3], [4] fail at producing many results
among these examples, we thus mainly compare our
technique to [7] in our demo video Main.mp4. For
those examples that the subspace and epipolar meth-
ods [3], [4] can stabilize, we show their results as well
as ours in challenging.mp4.

The L1-optimization results we used for the com-
parison are from the YouTube Video Stabilizer2, which
is implemented based on Grundmann et al.’s tech-
nique [7]. This strategy strongly smoothes camera
paths by solving inequality constraints. Hence, it
achieves only 10–20 fps in low resolution videos even
though only a transformation of each frame is com-
puted. In addition, although their system is robust to
challenging examples, its 2D nature limits the ability
to handle parallax, in which case global shaking po-
tentially appears after stabilization, as demonstrated
in the accompanying video. In contrast, we smooth
feature trajectories in the spatial-temporal coordinate
system to coherently transform features with different
depth values. Although we solve all feature trajec-
tories simultaneously to handle parallax, our system
achieves higher stabilization performance than [7].

User study. Based on the selected challenging exam-
ples, we conducted a user study with 74 participants

2. http://youtube.com/editor

coming from diverse backgrounds and ages to evalu-
ate our method. The participants were presented with
an original video and two stabilizing results side by
side, and they were asked to answer which result they
prefer. During the study, the questions are presented
in a random order to avoid bias. The results are
automatically stabilized using [7] and our technique.
The methods of [3], [4] were not included in the study
because they fail to produce results for the examples
due to the lack of long feature trajectories.

Figure 9 shows the summary of the obtained results,
which shows the significant preference of our method.
Overall, it was favored over the method of [7] in 77%
of 616 comparisons. In particular, the participants pre-
fer our results that contain large parallax (see Figure 9,
U03.mp4, U07.mp4 and U08.mp4 in our supplemental
material) due to the less noticeable jittering artifacts.
This obtained statistic is not unexpected, because our
stabilization system can handle parallax well.

Rolling shutter artifacts. Our system is robust
against rolling shutter artifacts caused by camera
shaking because Bézier curves are always smooth. The
offset deformations of neighboring trajectories will be
stabilized by our system and the objects can thus
become rigid. Unlike the videos free from rolling shut-
ter artifacts, we compute optical flows [22] between
consecutive frames and seed trajectories to track the
wobbling motion of each local region. The presented
trajectory smoothing and video frame warping steps
are then used without any modification. Although
optical flows are less accurate than KLT features, they
are not easily interrupted by content deformations so
as to capture the artifacts. In addition, we chose the
features that have only backgrounds because ruling
out foreground but keeping wobbling features auto-
matically is nearly impossible. Although our method
is robust against rolling shutter artifacts, it alone
cannot correct all kinds of rolling shutter artifacts
because it does not estimate the object geometries of
the video [23], [24]. For the skew artifacts caused by a
large but smooth camera motion, our system requires
an additional rectification of each video frame after
the stabilization to achieve a high-quality result.

Limitations. Our system relies on the tracked fea-
tures to stabilize videos. Since even state-of-the-art
trackers are not perfect, our stabilizing results are
not always satisfactory. Some video frames potentially
fall back to the shaky states due to excessive blur
caused by extremely fast motions or lack of rigid
background objects (see Figure 8). In addition, as
video frames are warped to achieve stabilization, our
system may crop too much information if the given
video is aggressively stabilized. We consider solving
this problem using motion inpainting as our future
work.

While our method is robust against rolling shutters,
it cannot eliminate these artifacts because it only
smoothes the offset deformations of neighboring tra-

http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/CompToLiu.mp4
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/CompToGrundmann.mp4
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/CompToGoldStein.mp4
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/CompToGoldStein.mp4
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/Main.mp4
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/Challenging.mp4
http://youtube.com/editor
http://people.cs.nctu.edu.tw/~yushuen/VideoStabilization/data/userstudy.rar
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jectories. Even when the video can be stabilized, it
is also hard to find out the real shape of an object
because their captured appearances are different in
frames. We intend to investigate the possibility of es-
timating object geometries to improve the stabilization
quality.

6 CONCLUSIONS AND FUTURE WORKS

We have introduced a robust, efficient and stream-
able technique to video stabilization. Thanks to the
spatial preservation of features in each video frame,
our system successfully handles parallax without the
reconstruction of a 3D scene. Although we achieve
high robustness by solving a global optimization,
our Bézier curve fitting greatly reduces the compu-
tational cost when stabilizing a video. In addition,
this strategy strongly stabilizes the video because the
feature positions are linearly interpolated based on the
optimized control points. Our technique matches or
performs even better than the quality of state-of-the-
art stabilizing systems while being robust to wide and
diverse set of examples. We show the experimental
results in our accompanying and the supplemental
videos to verify our technique.

Our streaming implementation achieves scalability
and real-time performance when stabilizing long and
high-resolution videos, as long as KLT features are
pre-computed. Since real-time KLT implementations
are currently available3, we plan to embed this GPU-
accelerated feature extraction into our system in the
near future.
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