
A Sink-N-Hoist Framework for Leakage Power Reduction

Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee
Department of Computer Science

National Tsing Hua University
Hsinchu 30013, Taiwan

{ypyou, cwhuang}@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

ABSTRACT
Power leakage constitutes an increasing fraction of the to-
tal power consumption in modern semiconductor technolo-
gies. Recent research efforts have tried to integrate architec-
ture and compiler solutions to employ power-gating mech-
anisms to reduce leakage power. This approach is to have
compilers perform data-flow analysis and insert instructions
at programs to shut down and wake up components when-
ever appropriate for power reductions. While this approach
has been shown to be effective in early studies, there are
concerns for the amount of power-control instructions be-
ing added to programs with the increasing amount of com-
ponents equipped with power-gating control in a SoC de-
sign platform. In this paper, we present a Sink-N-Hoist
framework in the compiler solution to generate balanced
scheduling of power-gating instructions. Our solution will
attempt to merge power-gating instructions as one com-
pound instruction. Therefore, it will reduce the amount of
power-gating instructions issued. We perform experiments
by incorporating our compiler analysis and scheduling poli-
cies into SUIF compiler tools and by simulating the energy
consumptions on Wattch toolkits. The experimental results
demonstrate that our mechanisms are effective in reducing
the amount of power-gating instructions while further in re-
ducing leakage power compared to previous methods.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimization

General Terms
Algorithms, Experimentation, Languages

Keywords
Compilers for low power, data-flow analysis, leakage power
reduction, balanced scheduling, power-gating mechanisms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

1. INTRODUCTION
Minimization of power dissipation can be considered at al-

gorithmic, architectural, logic, and circuit levels [4]. Studies
on low power design are abundant in the literature in which
various techniques were proposed to synthesize designs with
low transitional activities. Recently, new research directions
in reducing power consumptions have begun to address the
issues on the aspect of architecture designs and on soft-
ware arrangements at instruction-level to help reduce power
consumptions. [1, 5, 8, 11, 12, 17, 19, 20]. In order to reduce
the dynamic power, several research work have been pro-
posed to reduce the dissipation. For example, software re-
arrangements to utilize the value locality of registers [5], the
swapping of operands for booth multiplier [12], the schedul-
ing of VLIW instructions to reduce the power consumption
on the instruction bus [11], gating clock to reduce work-
loads [8,19,20], cache sub-banking mechanism [17], the uti-
lization of instruction cache [1], etc.

As semiconductor technology continues to scale down, the
leakage power gains more significance in the total power
dissipation. It is predicted that the leakage power will be-
come comparable to the dynamic power in only a few gen-
erations [18]. Therefore, power gating in addition to clock
gating should be used to reduce both leakage power and dy-
namic power, as clock gating is only able to reduce the dy-
namic power [3,10]. Recent research efforts have tried to in-
tegrate architecture and compiler solutions to employ power-
gating mechanisms to reduce leakage power [6, 13, 22–25].
This approach is to have compilers perform data-flow anal-
ysis and insert instructions at programs to shut down and
wake up components whenever appropriate for power reduc-
tions. While this approach has been shown to be effective in
early studies, there are concerns for the amount of power-
control instructions being added to programs with the in-
creasing amount of components equipped with power-gating
control in a SoC design platform for embedded systems.
Note that architecture designers can custom the processor
with unique operation functions [7,9,21]. Examples of these
modules are abundant. For example, one may have exten-
sible instructions for crypto modules, 3D graphic modules,
motion estimation modules, a variety of wireless communi-
cation modules, etc.

In this paper, we present a Sink-N-Hoist framework in
the compiler solution to generate balanced scheduling of
power-gating instructions. Our solution will attempt to
merge power-gating instructions as one compound instruc-
tion. Therefore, it will reduce the amount of power-gating
instructions issued. Note that power-gating instructions

124

A

PowerOn A

PowerOff A

PowerOn B

PowerOff B

B
 A

PowerOff A, B

B

PowerOn A, B

A
 B

Bootup A, B

T

i
m

e

Figure 1: Scenario of power-gating control (the
shadowed area indicates that the component is in
use).

can significantly reduce leakage power, but produce recov-
ery penalties, increase the execution time of programs, and
increase code sizes of programs. Figure 1 illustrates an ex-
ample of power-gating controls. In the LHS of the figure,
it shows two different components in use. Next, the cur-
rent practice will attempt to issue power-on and power-off
instructions at programs for these two hardware compo-
nents separately. The one in the RHS of Figure 1 shows
our scheme to try to merge these instructions. In our re-
search work, we will provide cost model and a software
foundation to guide this process. Our solution includes a
set of data-flow equations for code motions of power-gating
instructions. Our work gives a theoretical foundation and
step-by-step framework to group power-gating instructions,
together. We perform experiments by incorporating our
compiler analysis and scheduling policies into SUIF compiler
tools and by simulating the energy consumptions on a plat-
form integrating Wattch toolkits [2]. The experimental re-
sults done with DSP-stone benchmark demonstrate that our
mechanisms are effective in reducing the amount of power-
gating instructions as well as producing power reductions
over previous methods. It results in average 31.2% of re-
duction in the amount of power-gating instructions over the
scheme without incorporating our Sink-N-Hoist framework
for merging power-gating instructions. In fact, we further
reduce the energy consumption in our framework. This is
due to that the effect of a block version of power-gating in-
structions gives better power and performance effects than
the pointwise version of power-gating instructions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes a machine architecture for the target plat-
form. Section 3 overviews the leakage-power reduction frame-
work. Section 4 presents our analysis and merging tech-
niques for reducing the amount of power-gating instructions.
Section 5 gives the experimental results of our work. Finally,
Section 6 concludes this work.

2. MACHINE ARCHITECTURE
The architecture model in our design is a modern sys-

tem with an instruction set to support the control of power
gating in the component level. We focus on reducing the
power consumption of the certain components by invoking
the power gating technology. Power gating is analogous to
clock gating; power gating powers off devices by switching off
their supply voltage rather than the clock. It can be done by
forcing transistors to be off or using multi-threshold voltage
CMOS technology (MTCMOS) to increase threshold volt-
age [3, 10,14].

Figure 2 illustrates an example of our target machine ar-
chitecture based on Alpha 21264 processor having the in-
teger function unit (Execution Box) and the floating point
function unit (Floating-point Box). In the adapted ALPHA
21264 architecture model, the E box and F box were added
the power-gated functions. The power gating of each unit
can be controlled by the ”Power Gating Control Register”
(”PGCR” for short). The PGCR is a 64-bit integer register.
In this case, there are one bit used for Integer Multiplier
and 3 bits for Floating Point Function Units. Setting the
power gating bit true will cause the corresponding module
to be powered on. Clearing the bit to zero will power off the
corresponding module immediately in the following clock. A
new instruction was implemented to control units with the
power gated function by move a proper value from a general
purpose register to the PGCR. The Integer ALU unit is al-
ways powered on, due to that it takes response to performs
the data movement to the PGCR.

3. LEAKAGE-POWER REDUCTION
FRAMEWORK

In this section, we present a compiler framework for em-
ploying power-gating mechanisms to reduce leakage power
dissipation. In our earlier work, we have presented a data-
flow analysis framework, called Component-Activity Data-
Flow Analysis, to estimate the component activities on a
microprocessor within a given program [23, 24]. The analy-
sis collects the information of the utilization of components
at each point in the program. After that, a power-gating in-
struction scheduling is performed to determine when, where,
and whether power-gating control should be employed with
the concern of power reduction. Finally, power-gating in-
structions are inserted into the program accordingly. In
this research work, we present a Sink-N-Hoist framework,
which is applied in the phase right before power-gating in-
structions are inserted, to generate balanced scheduling of
power-gating instructions. Our solution will attempt to
merge power-gating instructions as one compound instruc-
tion. Figure 3 presents our compiler flow of the leakage
power reduction framework. Step (i), (ii), and (iii) are the
steps in conventional methods [23,24] and step (iv) and (v)
are the steps proposed in this paper to perform mergings of
power gating instructions. Among the stages of design flow,
step (i) and (ii) gives component activity flow analysis, step
(iii) decides where and if power gating instruction should
be inserted. Next, step (iv) attempts to merge the power
gating instructions with our proposed Sink-N-Hoist frame-
work. Finally, step (v) performs code emits for the group
case. A motivating example of power-gating control over
floating-point units (a floating-point ALU, a floating-point
multiplier, and a floating-point divider) with this framework
is illustrated in Figure 4, where each plot shows the status of
a component in timeline and the shadowed plot represents
that it is in use. Three scenarios are given as follows: the
leftmost figure shows the case without power-gating control,
the middle one shows the case when (i), (ii), (iii), and (v) in
the framework are applied, and the rightmost one shows the
case when all phases in the framework are applied. The num-
ber of power-gating instructions inserted can be decreased
from six to two when the Sink-N-Hoist Analysis is applied.

In the following, we first describe the the methods in step
(ii) and (iii) and then present step (iv) and step (v) with

125

Program

Counter

Instruction
Decoder

Instruction
Bus
(32bits)

Integer

ALU/Normal

Operation

Integer

Multiplier

Power
Gating
Control
Register
(64
bits)

FP
Registers
Integer
Registers

Constant

Supplying
Voltage

Input/Output

(64
bits)

Floating
Point

Divider

Floating
Point

Multiplier

Floating
Point

Adder

E
Box

Micro
Codes

3
2
b
i
t
s

F
Box

P
C

+

4

.
.
.

.
.
.

P
C

-
4

.
.
.

.
.
.

P
C

+

8

P
C

3

Figure 2: Alpha 21264 architecture with power gating support.

Leakage-Power Reduction Framework

Input: A source program
Output: The program with power-gating control

i. Construct the interprocedural control-flow graph
of the program.

ii. Perform Component-Activity Data-Flow Analy-
sis.

iii. Perform power-gating instruction scheduling.

iv. Perform Sink-N-Hoist Analysis.

v. Emit power-gating instructions for groups.

Figure 3: The leakage-power reduction framework.

the Sink-N-Hoist Analysis for code motion of power-gating
instructions in Section 4.

3.1 Component-Activity Data-Flow Analysis
The goal of the Component-Activity Data-Flow Analysis is

to collect the information of the utilization of components at
each point in a program. A set of data-flow equations is pro-
posed to compute such information. We say a component-
activity c is generated at a block b if a component is required
for the execution, symbolized as COMPONENTloc(b), and it
is killed if the component is released by the last request,
symbolized as COMPONENTblk(b). The predicates of the
data-flow equations for collecting component-activity infor-
mation are given as follows:

• COMPONENTloc(b) is a set of components which are
required for the first cycle of the execution.

• COMPONENTblk(b) is a set of components which are
released by the execution.

• COMPONENTin(b) is a set of components which are
required for the execution in the beginning of block b.
It can be computed by

COMPONENTin(b) =
[

p∈Pred(b)

COMPONENTout(p),

where Pred(b) is the set of predecessor program blocks
of p.

• COMPONENTout(b) is a set of components which are
required for the execution in the end of block b. It can
be computed by

COMPONENTout(b) = COMPONENTloc(b) ∪
(COMPONENTin(b)− COMPONENTblk(b))

and can be read as, “the information at the end of
a statement is either generated within the statement,
or enters at the beginning and is not killed as control
flows through the statement.”

• INACTIVITY(b) is a set of components which are not
active at block b. In fact, INACTIVITY(b) is the com-
plementary set to COMPONENTout(b), i.e.,

INACTIVITY(b) = Ω− COMPONENTout(b),
where Ω is the universal set.

3.2 Power-Gating Instruction Scheduling
With the utilization information of components, we can

insert power-gating instructions into programs at the ap-
propriate points (i.e. the beginning and the end of an in-
active block) to power off and on unused components so
as to reduce the leakage power. However, both shut-down
and wake-up procedures are associated with an additional
penalty, especially the latter due to peak voltage require-
ments. The following equation represents a cost model for
deciding if the insertion of power-gating instructions will
provide energy-consumptions benefits:

Pleak(C) · ITVLidle > Eoff(C) + Eon(C) + Prleak(C) · ITVLidle,

126

PowerOn
FP_ALU

PowerOn
FP_Mul.

PowerOff
 FP_Mul.

PowerOff
 FP_ALU

PowerOn
FP_Div

PowerOff
 FP_Div.

PowerOn
FP_ALU,
 FP_Mul.,
 FP_Div.

PowerOff
FP_ALU,
 FP_Mul.,
FP_Div.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU

FP
ALU

FP
Div.

FP
Div.

FP
Mul.

FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU
 FP
Div.
FP
Mul.

FP
ALU

FP
ALU

FP
Div.

FP
Div.

FP
Mul.

FP
Mul.

T

i
m

e

Figure 4: An example of power-gating control over floating-point units. (The shadowed components represent
that they are in use.)

where functions E and P return the value of energy and
power consumption, respectively; Eoff(C) represents the en-
ergy consumption of issuing a power-off instruction for com-
ponent C and Eon(C) represents the energy consumption of
issuing a power-on instruction for component C; Pleak(C)
represents the leakage power consumption of component C
in a cycle; Prleak(C) represents the leakage power consump-
tion of component C in a reduced level in a cycle1 ; and
ITVLidle is the length of the idle interval. Accordingly, we
have a break-even length of idle intervals for each component
C, called BE-ITVLidle

C , that sustains the above inequality and
it is given by

BE-ITVLidle
C =

ż
Eoff(C) + Eon(C)

Pleak(C)− Prleak(C)

ĳ
.

Hence, the compiler must be aware that power-gating con-
trol of a certain component C is employed only when there
exists a continuous idle interval whose length is greater than
BE-ITVLidle

C on the component. Moreover, the latency asso-
ciated with powering a component on should also be consid-
ered.

The component activity information gathered and the cost
model for deciding if the power-gating instructions should be
employed now to consider the scheduling mechanisms when
inserting the power-gating instructions into given programs.
As the duration of power-gating control on components is in-
fluenced to conditional branches in programs, we propose a
set of scheduling policies Basic Blk Sched, MIN Path Sched,
and AVG Path Sched with power-gating instructions. The
details are given below. A naive mechanism to control the
power-gating instructions will set the on and off instructions
at each basic block according to the component activities
gathered by the data-flow equation. We call this scheme
Basic Blk Sched. Another case to consider in power gating
is that of an inactive block containing conditional branches,
since the length of the two inactive blocks — which follow
the branch targets — may be different. For example, only
one of the branchings may benefit from power gating, in

1An effective way to reduce leakage power is to power off a
component with power-gating mechanisms, which shut down
the component and make Prleak(C) be zero, while others may
increase threshold voltage to cause smaller Prleak(C). We
model this factor as a variable rather than treat it as zero.

which case taking power-gating control in that branch when
the other branch is instead taken may not reduce the power
requirements. In other words, the path lengths of the taken
and not-taken paths of a branch may not be equal and there-
fore one path may satisfy the cost model and the other path
may not. Hence, we propose a MIN Path Sched policy to
ensure that power-gating control is activated only when the
inactive lengths of both branching paths exceed the power-
gating threshold; that is, the minimum length of those paths
reaches the criteria for power gating. Finally, since the be-
havior of program branches depends on the structure and
the input data of programs, some branches may be followed
rarely or even never. To accommodate this, we propose an
eclectic policy, called AV G Path Sched, to schedule power-
gating instructions. AV G Path Sched returns the average
length of two branchings instead of the minimum.

4. SINK-N-HOIST ANALYSIS
The main idea of the Sink-N-Hoist Analysis is to abate

the problem of too many instructions being added with code
motion techniques. The approach attempts to merge several
power-gating instructions into one compound instruction by
‘sinking’ power-off instructions and ‘hoisting’ power-on in-
structions, i.e., postponing the issue of power-off instruc-
tions late and advancing the issue of power-on instructions
early. This will result in profits mainly for code size, but
also in performance and energy via grouping effects. For
instance, a power-off instruction can be postponed for some
cycles to be merged with other adjacent power-off instruc-
tions. Nevertheless, there should be a limitation on the num-
ber of cycles to be sank or hoisted since sinking or hoisting a
power-gating instruction will cause more leakage dissipation.
A cost model is given below to determine the feasibility. For
a component C, we have

Eoff(C) + Prleak(C) · SINK-SLK >
Pleak(C) · SINK-SLK + Efet-dec-off(C)/N + Eexe-off(C),

where SINK-SLK is the number of cycles a power-off state-
ment (or instruction2) is sank, i.e., the power-off statement

2In the following context, ‘statement’ and ‘instruction’ are
interchangeably used since a statement in the assembly level
means an instruction.

127

Sinkable-N-Hoist Algorithm

Input: INACTIVITY(b) for each block b and posi-
tions for power-gating instructions.

Output: Appropriate positions for power-gating in-
structions.

1. Perform the Sinkable Analysis and Hoistable
Analysis. (Equation (3)–(6))

2. Perform the Grouping-Off Analysis and
Grouping-On Analysis. (Equation (7)–(10))

3. Perform the Power-Gating Instruction Place-
ment.

Figure 5: Sink-N-Hoist algorithm.

is delayed for SINK-SLK cycles, Efet-dec-off(C) returns the en-
ergy consumption of fetching and decoding a power-off in-
struction, Eexe-off(C) returns the energy consumption of exe-
cuting a power-off instruction, and N is the number of power-
gated components. Note that the sum of Efet-dec-off(C) and
Eexe-off(C) is equal to Eoff(C). The right-hand side of the in-
equality represents the energy consumed when the power-off
statement is delayed for SINK-SLK cycles and merged with
other (N − 1) power-off statements while the left-hand side
stands for the energy consumed when the power-off state-
ment is called right after the end of the active interval. In
consequence, we have a maximum sinkable slack for each
component C, called MAX-SINK-SLKC , that sustains the
above inequality and it is given by

MAX-SINK-SLKC =

ź
(N − 1) · Efet-dec-off(C)

N · (Pleak(C)− Prleak(C))

ž
.

Similarly, we have a maximum hoistable slack for each com-
ponent and it is given by

MAX-HOIST-SLKC =

ź
(N − 1) · Efet-dec-on(C)

N · (Pleak(C)− Prleak(C))

ž
.

With such cost constraint as the basis, we now present
a set of data-flow equations to collect the information for
code motion of power-gating instructions. Figure 5 shows
the algorithm of the Sink-N-Hoist Analysis. The whole set
of equations used are presented in Figure 6. The Sink-N-
Hoist Analysis mainly consists of three phases: 1) the Sink-
able and Hoistable Analysis, which compute the information
of possible positions for each power-gating instruction, 2)
the Grouping-Off and Grouping-On Analysis, which group
together the power-gating instructions that can be merged,
and 3) the determination of the appropriate positions for
power-gating instructions. The details are discussed as fol-
lows.

4.1 Sinkable and Grouping-Off Analysis
The predicates for collecting SINKABLE and GROUP-OFF

information are given as follows: The SINKABLE gives the
data flow equation to collect how far the turn-off instruc-
tions of component activities can be sank. In addition,
GROUP-OFF gives the data flow equation to partition the
turn-off instructions into groups, and we can then use this

information to group them by selecting emitting instruc-
tions.

• SINKABLEloc(b) is a set of power-off statements which
occur within block b and can be safely moved to the
end of the block. Each statement is associated with
a number, named SINK-SLKb

C , which keeps an integer
value of slack time for component C for indicating how
many cycles the power-off statement can be sank at the
current position. The initial value of SINK-SLKb

C is set
as MAX-SINK-SLKC .

• SINKABLEblk(b) is a set of power-off statements which
cannot be safely moved from the start to the end of
bock b, i.e., a set of power-off statements whose value
of the associated SINK-SLKb

C is zero.

• SINKABLEin(b) is a set of power-off statements which
can be safely moved to the beginning of block b. The
SINKABLEin(b) is computed as follows:

SINKABLEin(b) =
\

p∈Pred(b)

SINKABLEout(p).

Meanwhile, the value of SINK-SLKb
C would be the min-

imum one among the predecessors of b if the value of
SINK-SLKp

C is inconsistent with each other, where p is
a predecessor of block b. It means that the sinkable-
slack from one predecessor would be shrunk if other
predecessors have a smaller sinkable-slack. This is for
the consideration that a power-off statement should
not be sank far away to the position that may cause a
reverse effect. Moreover, the value of each SINK-SLKb

C

is decreased by one to be in accordance with the defi-
nition. In brief, the value of SINK-SLKb

C is given by

SINK-SLKb
C = MINp∈Pred(b)(SINK-SLKp

C)− 1,

where MIN is a function that returns the minimum
value among its parameters.

• SINKABLEout(b) is a set of power-off statements which
can be safely moved to the end of block b. The SINK-
ABLEout(b) is computed as follows:

SINKABLEout(b) = SINKABLEloc(b) ∪
(SINKABLEin(b)− SINKABLEblk(b)).

Meanwhile, the value of SINK-SLKb
C is given from the

value of the associated SINK-SLKb
C in SINKABLEloc(b)

if there exists a power-off-C statement in SINKABLEloc

(b); otherwise, it is given from the one in SINKABLEin

(b).

We now gives the data flow equation for GROUP-OFF. It
will partition the turn-off instructions into groups, and we
can then use this information to group them by selecting
emitting instructions.

• GROUP-OFFloc(b) is a set with at most one element,
i.e., a singleton or an empty set, in which the element
(if it exists) is an integer representing a group num-
ber and never appears in other sets of GROUP-OFFloc.
The block b belongs to the group it numbered and is
the beginning block of a set of successive blocks if the
GROUP-OFFloc(b) is not empty. The GROUP-OFFloc(b)
set is not empty only when

SINKABLEout(b) 6= ∅ and
[

p∈Pred(b)

SINKABLEout(p) = ∅.

128

COMPONENTin(b) =
[

p∈Pred(b)

COMPONENTout(p) (1)

COMPONENTout(b) = COMPONENTloc(b) ∪ (COMPONENTin(b)− COMPONENTblk(b)) (2)

SINKABLEin(b) =
\

p∈Pred(b)

SINKABLEout(p) (3)

SINKABLEout(b) = SINKABLEloc(b) ∪ (SINKABLEin(b)− SINKABLEblk(b)) (4)

HOISTABLEout(b) =
\

s∈Succ(b)

HOISTABLEin(s) (5)

HOISTABLEin(b) = HOISTABLEloc(b) ∪ (HOISTABLEout(b)− HOISTABLEblk(b)) (6)

GROUP-OFFin(b) =

({MINp∈Pred(b)(Φ(GROUP-OFFout(p)))}
∅, if MINp∈Pred(b)(Φ(GROUP-OFFout(p))) = ∞ (7)

GROUP-OFFout(b) = GROUP-OFFloc(b) ∪ (GROUP-OFFin(b)− GROUP-OFFblk(b)) (8)

GROUP-ONin(b) =

({MINp∈Pred(b)(Φ(GROUP-ONout(p)))}
∅, if MINp∈Pred(b)(Φ(GROUP-ONout(p))) = ∞ (9)

GROUP-ONout(b) = GROUP-ONloc(b) ∪ (GROUP-ONin(b)− GROUP-ONblk(b)) (10)

Figure 6: Component-Activity and Sink-N-Hoist data-flow equations.

A simple way to ensure that all the numbers in the sets
of GROUP-OFFloc of all blocks are unique is using a
integer counter to assign each element with the value of
the counter. Once an element is assigned, the counter
increases.

• GROUP-OFFblk(b) is a universal set of integers, namely
Ω, or an empty set. The set is not empty (set to be a
set with an Ω value) only when

SINKABLEout(b) = ∅ and
[

s∈Succ(b)

SINKABLEout(s) 6= ∅.

In all other cases, it will be an empty set.

• GROUP-OFFin(b) is an integer singleton, a group num-
ber, which can be assigned to the start of block b or
an empty set. The GROUP-OFFin(b) is computed by

GROUP-OFFin(b) =
({MINp∈Pred(b)(Φ(GROUP-OFFout(p)))}
∅, if MINp∈Pred(b)(Φ(GROUP-OFFout(p))) = ∞

where Φ returns the value of the element of its param-
eter and returns infinity if the parameter is an empty
set. In addition, all the GROUP-OFFout set in the
same group of its predecessors can be replaced by the
GROUP-OFFin(b) if the GROUP-OFFout set of the pre-
decessor of b is not empty. This will allow opportunity
for further grouping effects.

• GROUP-OFFout(b) is an integer singleton, a group num-
ber, which can be assigned to the end of block b or an
empty set. In fact, the element in GROUP-OFFout(b)
gives the group number that block b belongs to. The
GROUP-OFFout(b) is computed by

GROUP-OFFout(b) = GROUP-OFFloc(b) ∪
(GROUP-OFFin(b)− GROUP-OFFblk(b)).

In the following, we give a running example to illustrate
how the analysis works. Suppose that two components,
namely A and B, are considered for analyses. Given a
control-flow graph as shown in Figure 7(a), where each block
in the graph contains only a statement, we can determine
where power-gating statements should be located by per-
forming step (i), (ii), (iii), and (v) in Figure 3. It includes the
Component-Activity Data-Flow Analysis and power-gating
instruction scheduling. In this example, it is found that
component A and B should be powered off at Bm+2 and
Bn+2 and at Bm+5 and Bn+5, respectively. The shadowed
blocks represent that components are in use (the left half
is for component A and the right half is for component
B). To reduce the amount of power-gating instructions is-
sued, we then apply the Sinkable Analysis. By the defini-
tion of the SINKABLEloc(b), a set of power-off statements
which occur within block b, we have SINKABLEloc(Bm+2) =
{PowerOff A(4)}, SINKABLEloc(Bm+5) = {PowerOff B(2)},
SINKABLEloc(Bn+2) = {PowerOff A(4)}, and SINKABLEloc

(Bn+5) = {PowerOff B(2)}, where the numbers in parenthe-
ses indicate the value of the associated SINK-SLKC (in fact,
the values come from the MAX-SINK-SLKA and MAX-SINK-
SLKB), and the SINKABLEloc of the other blocks are empty
sets. To simplify the representation, the word ‘PowerOff’ is
removed and the value of the associated SINK-SLKC is super-
scripted, e.g., SINKABLEloc(Bm+2) = {A4}. Table 1 shows
the computation results of the SINKABLEblk(b), SINKABLEin

(b), and SINKABLEout(b) for each block. Actually, the SINK-
ABLEout(b) indicates the set of power-off statements that
can be issued at block b without energy penalties if the
statements could be merged with other statements. In other

129

PowerOff
A

B

m
+1

PowerOff
B

PowerOff
A

PowerOff
B

PowerOff
A
,
B

PowerOff
A
,
B

B

m
+2

B

m
+3

B

m
+4

B

m
+5

B

m
+6

B

m
+7

B

n
+1

B

n
+2

B

n
+3

B

n
+4

B

n
+5

B

n
+6

B

n
+7

B

m
+1

B

m
+2

B

m
+3

B

m
+4

B

m
+5

B

m
+6

B

m
+7

B

n
+1

B

n
+2

B

n
+3

B

n
+4

B

n
+5

B

n
+6

B

n
+7

(a)
 (b)

Figure 7: An example of sinking power-off state-
ments. (The shadowed blocks represent that com-
ponents are in use.)

words, the power-off statements of component A can be is-
sued at Bm+2 to Bm+5 and Bn+2 to Bn+6. Next, we com-
pute the GROUP-OFFloc(b), GROUP-OFFblk(b), GROUP-OFF

in(b), and GROUP-OFFout(b) for each block to group the
blocks in which the power-off statements of the component
that appear in this group should be issued only and exactly
once. Table 2 gives the grouping results: Bm+2 to Bm+6

belong to group number one and Bn+2 to Bn+6 belong to
group number two.

4.2 Hoistable and Grouping-On Analysis
The Hoistable Analysis and Grouping-On Analysis are sim-

ilar to the Sinkable Analysis and Grouping-Off Analysis,
but the Hoistable Analysis is a backward data-flow analy-
sis. Similarly, we can define a set of predicates for collecting
HOISTABLE and GROUP-ON information as follows.

• HOISTABLEloc(b) is a set of power-on statements which
occur within block b and can be safely moved to the
start of the block. Each statement is associated with a
number, named HOIST-SLKb

C , which keeps an integer
value of slack time for component C for indicating how
many cycles the power-on statement can be hoisted at
the current position. The initial value of HOIST-SLKb

C

is set as MAX-HOIST-SLKC .

• HOISTABLEblk(b) is a set of power-on statements which
cannot be safely moved from the end to the start of
bock b, i.e., the set of power-on statements whose value
of the associated HOIST-SLKb

C is zero.

• HOISTABLEout(b) is a set of power-on statements which
can be safely moved to the end of block b. The HOIST-
ABLEout(b) is computed as follows:

HOISTABLEout(b) =
\

s∈Succ(b)

HOISTABLEin(s).

Meanwhile, the value of HOIST-SLKb
C would be the

minimum one among the successors of b if the value of

Block SINKABLEblk(b) SINKABLEin(b) SINKABLEout(b)
Bm+1

Bm+2 {A4}
Bm+3 {A3} {A3}
Bm+4 {A2} {A2}
Bm+5 {A1} {A1, B2}
Bm+6 {A} {A0, B1} {B1}
Bm+7 {B} {B0}

...

Bn+1

Bn+2 {A4}
Bn+3 {A3} {A3}
Bn+4 {A3} {A3}
Bn+5 {A2} {A2, B2}
Bn+6 {A1, B1} {A1, B1}
Bn+7 {A,B} {A0, B0}

Table 1: SINKABLE predicates. (The superscript rep-
resents the value of the associated SINK-SLKb

C .)

Block GROUP-OFFblk(b) GROUP-OFFin(b) GROUP-OFFout(b)

Bm+1

Bm+2 {1}
Bm+3 {1} {1}
Bm+4 {1} {1}
Bm+5 {1} {1}
Bm+6 {1} {1}
Bm+7 Ω {1}

...

Bn+1

Bn+2 {2}
Bn+3 {2} {2}
Bn+4 {2} {2}
Bn+5 {2} {2}
Bn+6 {2} {2}
Bn+7 Ω {2}

Table 2: GROUP-OFF predicates.

HOIST-SLKs
C is inconsistent with each other, where s

is a successor of block b. It means that the hoistable-
slack from one successor would be shrunk if other suc-
cessors have a smaller hoistable-slack. This is for the
consideration that a power-on statement should not be
hoisted far away to the position that may cause a re-
verse effect. Moreover, the value of each HOIST-SLKb

C

is decreased by one to be in accordance with the def-
inition. In brief, the value of HOIST-SLKb

C is given
by

HOIST-SLKb
C = MINs∈Succ(b)(HOIST-SLKs

C)− 1.

• HOISTABLEin(b) is a set of power-on statements which
can be safely moved to the start of block b. The
HOISTABLEin(b) is computed as follows:

HOISTABLEin(b) = HOISTABLEloc(b) ∪
(HOISTABLEout(b)− HOISTABLEblk(b)).

Meanwhile, the value of HOIST-SLKb
C is given from the

value of the associated HOIST-SLKb
C in HOISTABLEloc

(b) if there exists a power-on-C statement in HOIST-
ABLEloc(b); otherwise, it is given from the one in
HOISTABLEout(b).

130

• GROUP-ONloc(b) is a set with at most one element,
i.e., a singleton or an empty set, in which the element
(if it exists) is an integer representing a group num-
ber and never appears in other sets of GROUP-ONloc.
The block b belongs to the group it numbered and is
the beginning block of a set of successive blocks if the
GROUP-ONloc(b) is not empty. The GROUP-ONloc(b)
set is not empty only when

HOISTABLEin(b) 6= ∅ and
[

p∈Pred(b)

HOISTABLEin(p) = ∅.

A simple way to ensure that all the numbers in the
sets of GROUP-ONloc of all blocks are unique is using a
integer counter to assign each element with the value of
the counter. Once an element is assigned, the counter
increases.

• GROUP-ONblk(b) is a universal set of integers, namely
Ω, or an empty set. The block b is one, or the only
one, of the end blocks of a set of successive blocks if the
GROUP-ONblk(b) is not empty. The set is not empty
only when

HOISTABLEin(b) = ∅ and
[

s∈Succ(b)

HOISTABLEin(s) 6= ∅.

• GROUP-ONin(b) is an integer singleton, a group num-
ber, which can be assigned to the start of block b or
an empty set. The GROUP-ONin(b) is computed by

GROUP-ONin(b) =
({MINp∈Pred(b)(Φ(GROUP-ONout(p)))}
∅, if MINp∈Pred(b)(Φ(GROUP-ONout(p))) = ∞

where Φ returns the value of the element of its pa-
rameter and returns infinity if the parameter is an
empty set. In addition, we can also replace all the
GROUP-ONout set of its predecessors by the GROUP-
ONin(b), i.e. if GROUP-ONout set of the predecessor
of b is not empty. Note that this gives further oppor-
tunity for grouping effects.

• GROUP-ONout(b) is an integer singleton, a group num-
ber, which can be assigned to the end of block b or an
empty set. In fact, the element in GROUP-ONout(b)
gives the group number that block b belongs to. The
GROUP-ONout(b) is computed by

GROUP-ONout(b) = GROUP-ONloc(b) ∪
(GROUP-ONin(b)− GROUP-ONblk(b)).

4.3 Power-Gating Instruction Placement
With the SINKABLEout, HOISTABLEin, and GROUP-OFF/

ONout collected in Section 4.1 and 4.2, we then use these in-
formation to determine how to place power-gating instruc-
tions, i.e., whether power-gating instructions should be com-
bined together or issued separately. Figure 8 gives a brief
algorithm of the power-gating instructions placement. The
basic idea of the algorithm is to place power-gating instruc-
tions in a group-by-group manner. It first determines all
possible policies for issuing power-gating instructions — a
legal policy is that all power-gating instructions should be is-
sued at the block b in which SINKABLEout(b) or HOISTABLE

in(b) is not empty and each type of power-gating instructions
appearing within a group must be issued only and exactly

Power-Gating Instruction Placement Algorithm

Input: SINKABLEout, GROUP-OFFout, HOISTABLEin,
and GROUP-ONout information for each block.

Output: Appropriate positions for power-gating instruc-
tions.

placement() {
for each group

/* determine all possible policies for issuing
power-gating instructions */
policy list = get possible policies(

SINKABLEout,GROUP-OFFout,
HOISTABLEin,,GROUP-ONout);

/* determine which policy consumes least power*/
best policy = get best policy(policy list);

/* annotate the positions of power-gating
instructions */
make annotation(best policy);

end
}

Figure 8: Power-Gating Instruction Placements.

once. Next, it uses an energy-cost model, which describes
the energy, such as the leakage energy, the energy of issuing
power-off instructions, etc., to determine which policy has
the best benefit in energy consumption aspects.

In the following, we elaborate the idea by continuing the
example in Section 4.1. With the information of SINKABLE

out and GROUP-OFFout, an energy-cost model is established
and evaluated for each case of issuing-power-off-instruction
policies under the guideline that power-off instructions must
be issued at the block in which the SINKABLEout is not
empty and each type of power-gating instructions appear-
ing within a group must be issued only and exactly once,
e.g., the policy could be ‘powering off A at Bm+2 and pow-
ering off B at Bm+5’ or ‘powering off A and B at Bm+2’ in
group number one. The final decision of which policy to be
taken depends on the energy cost evaluated by the model;
certainly, the one with the minimum cost is chosen as it
should be for low-power consideration. Finally, power-off
instructions are inserted at appropriated points as shown in
Figure 7(b): the power-off statements within each group are
merged.

5. EXPERIMENTAL RESULTS
We use a DEC-Alpha-compatible architecture with power-

gating control and instruction sets described in Figure 2 as
the target architecture for our experiments. The proposed
leakage-power reduction framework is incorporated into the
compiler tool with SUIF [16] and MachSUIF [15], and evalu-
ated by the Wattch simulator with .10µm process parameter
and 1.9 V supply voltage [2]. Figure 9 illustrates the phases
in the compilation and simulation framework. We incorpo-
rate the low-power optimization phase following MachSUIF
phase. As Wattch does not model leakage at the component
level per se, we assume that leakage power contributes 10%
of total power consumption. Furthermore, we assume that
wake-up operations of power-gating control take 20-cycle la-
tency, although 7.5 cycles are introduced in [3], and it takes

131

Simulation
MachSUIF

SUIF

Classical Optimization

High SUIF to Low SUIF

.c Source Code

Alpha Code Generation

CFG construction

Pseudo Code Elimination

Register Allocation

Stack Frame HouseKeeping

.s Alpha Assembly Code

Alpha Executable Code

Wattch/SimpleScalar

Simulator

Power/Performance

Results

Low-Power Optimization

Component-Activity

Data-Flow Analysis

Power-Gating

Instruction Scheduling

Sink-N-Hoist Analysis

Power-Gating

Instruction Insertion

Representation

Translation

Alpha Assembler & Liner

Complication

Figure 9: Compilation and simulation framework.

two times and ten times of leakage energy per cycle to power
off and power on a component, respectively. The energy
consumption of fetching and decoding a power-gating in-
struction is assumed to be two times of leakage power. Also
the baseline data is provided by Wattch’s cc3 clock-gating
power estimation, which gates the clocks of those unused
resources in multiported hardware to reduce the dynamic
power; however, leakage power is still leaked. The bench-
marks used in our experiment are from the floating-point
version of DSP-stone benchmark suite [26].

Three versions are compared. The base version is the one
without power gating mechanism. The original version is
the one from a previous work [23,24] that only performs the
step (i), (ii) and (iii) in Figure 3. The Sink-N-Hoist Analysis
scheme is the one proposed in this work to perform all phases
in Figure 3. In addition, three policies for power-gating in-
struction scheduling were proposed in step (iii) of Figure 3
to deal with conditional branches in programs. Without
loss of generality, we use the Min Path Sched policy to
schedule power-gating instructions in this experiment. Fig-
ure 10–12 give the compilation and simulation results of two
approaches: the original one and the Sink-N-Hoist one when
the integer ALU, floating-point adder, and floating-point
multiplier are considered for power gating, and the com-
parison baseline in these figures is the one without power-
gating controls. Figure 10 presents the ratio of power-gating
instructions over total instructions in program codes. It
shows that the Sink-N-Hoist approach has about 31.2% of
improvement (from 17.0% to 11.8%) in the reduction of
the amount of power-gating instructions generated compar-
ing to the one without Sink-N-Hoist framework. Moreover,
our scheme also further reduces the total energy consump-
tion compared to the one without Sink-N-Hoist framework.
This is due to that the effect of a block version of power-
gating instructions gives better power and performance ef-
fects than the pointwise version of power-gating instructions.
Figure 11 shows our scheme gives average 18.0% reduction
(from 7.2% to 8.5% of total power) comparing to the base
method. Note that the average reduction of total energy is
less than 10%, but we should recall that only three types
of functional units (the integer ALU, floating-point adder,
and floating-point multiplier) are under power-gating con-
trols in this experiment. In fact, the base method already
achieved average 70.4% and 72.6% energy reduction for the

0%

5%

10%

15%

20%

25%

complex_multip
ly

complex_update

convolution

dot_product

fir2

dim
 fir

irr_
biquad_N_sections

irr_
biquad_one_section

lms

matrix
 1x3

matrix

n_complex_updates

n_real_updates

real_update

average

DSPstone Benchmark Suite (Floating-point Version)

R
at

io

Original
 Sink-N-Hoist

Figure 10: Ratio of power-gating instructions over
total instructions in program codes.

0%

2%

4%

6%

8%

10%

12%

matrix

complex_update

convolution

dot_product

fir2
dim
 fir

irr_
biquad_N_sections

irr_
biquad_one_section

lms

matrix
 1x3

matrix

n_complex_updates

n_real_updates

real_update

average

DSPstone Benchmark Suite (Floating-point Version)

T
ot

al
 E

ne
rg

y
R

ed
uc

tio
n

Original
 Sink-N-Hoist

Figure 11: Total energy reduction.

floating-point adder and floating-point multiplier in com-
bined dynamic and leakage power, respectively [23,24]. Fig-
ure 11 also shows our scheme holding edges over the original
scheme in energy reduction. This is due to the effect of a
block version of power-gating instructions gives better power
effects than the pointwise version as illustrated in our cost
model.

Finally, Figure 12 shows the detailed information of the
performance impact caused by power-gating mechanisms,
and it says that the performance degradation is reduced
about 2.9% (from 2.01% to 1.95%) over the original method.
Our method holds a small edge over the one without Sink-
N-Hoist framework due to the reduction of the amount of
power-gating instructions. Note that the performance pe-
nality is not as bad as the amount of instructions added due
to most instructions were added outside the loop kernel.
Nevertheless, the reduction of the amount of power-gating
instructions still gives performance edges.

6. CONCLUSION
In this paper, we presented a Sink-N-Hoist Analysis for

merging several power-gating instructions. In summary, our
experiment shows that the Sink-N-Hoist Analysis framework
results in benefits for code sizes as well as energy consump-

132

0%

1%

2%

3%

4%

5%

6%

complex_multip
ly

complex_update

convolution

dot_product

fir2
dim
 fir

irr_
biquad_N_sections

irr_
biquad_one_section

lms

matrix
 1x3

matrix

n_complex_updates

n_real_updates

real_update

average

DSPstone Benchmark Suite (Floating-point Version)

P
er

fo
rm

an
ce

 D
eg

ra
da

tio
n

Original
 Sink-N-Hoist

Figure 12: Performance degradation.

tion and performance. As the compiler phase is done one
phase after another, our framework gives a sound theoretical
foundation capable to work with other phases such as adding
more slackness for low power with code motions. Finally, we
are in the process of incorporating more components, such
as crypto modules, into our architecture and simulator. We
expect the effects of our scheme will be even more important
as more extensible modules are equipped with power-gating
control in this platform.

7. ACKNOWLEDGEMENTS
This work was supported in part by Ministry of Economic

Affairs under grant no. 93-EC-17-A-03-S1-0002 and 94-EC-
17-A-01-S1-034, by National Science Council under grant
no. 93-2220-E-007-019, 93-2220-E-007-020, and 94-2752-E-
007-004-PAE in Taiwan.

8. REFERENCES
[1] Nikolaos Bellas, Ibrahim N. Hajj, and Constantine D.

Polychronopoulos. Architectural and compiler techniques for
energy reduction in high-performance microprocessors. IEEE
Transactions on Very Large Scale Integration Systems,
8(3):317–326, June 2000.

[2] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch:
A framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture (ISCA’00), pages
83–94, June 2000.

[3] J. Adam Butts and Gurindar S. Sohi. A static power model for
architects. In Proceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’00),
pages 191–201, December 2000.

[4] Anantha P. Chandrakasan, Samuel Sheng, and Robert W.
Brodersen. Low-power CMOS digital design. IEEE Journal of
Solid-State Circuits, 27(4):473–484, 1992.

[5] Jui-Ming Chang and Massoud Pedram. Register allocation and
binding for low power. In Proceedings of the Design
Automaton Conference, pages 29–35, June 1995.

[6] Steven Dropsho, Volkan Kursun, David H. Albonesi, Sandhya
Dwarkadas, and Eby G. Friedman. Managing static leakage
energy in microprocessor functional units. In Proceedings of
the 35th International Symposium on Microarchitecture
(MICRO’02), pages 321–332, November 2002.

[7] Ricardo E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 20(2):60–70, 2000.

[8] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power
digital design. In Proceedings of the IEEE Symposium on Low
Power Electronics, pages 8–11, October 1994.

[9] Henry Ip, James Low, Peter Y. K. Cheung, George A.
Constantinides, Wayne Luk, Shay P. Seng, and Paul Metzgen.

Strassen’s matrix multiplication for customisable processors. In
Proceedings of the IEEE International Conference on
Field-Programmable Technology (FPT’02), pages 453–456,
December 2002.

[10] J. T. Kao and A. P. Chandrakasan. Dual-threshold voltage
techniques for low-power digital circuits. IEEE Journal of
Solid-State Circuits, 35(7):1009–1018, 2000.

[11] Chingren Lee, Jenq Kuen Lee, Ting-Ting Hwang, and Shi-Chun
Tsai. Compiler optimizations on VLIW instruction scheduling
for low power. ACM Transactions on Design Automation of
Electronic Systems, 8(2):252–268, 2003.

[12] Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, and
Masahiro Fujita. Power analysis and minimization techniques
for embedded DSP software. IEEE Transactions on Very
Large Scale Integration Systems, 5(1):123–133, March 1997.

[13] Siddharth Rele, Santosh Pande, Soner Onder, and Rajiv
Gupta. Optimizing static power dissipation by functional units
in superscalar processors. In Proceedings of the 11th
International Conference on Compiler Construction (CC’02),
pages 261–275, April 2002.

[14] K. Roy and S. C. Prasad. SYCLOP: Synthesis of CMOS logic
for low power applications. In Proceedings of the IEEE
International Conference on Computer Design (ICCD’92),
pages 464–467, October 1992.

[15] Michael D. Smith. The SUIF Machine Library. Division of of
Engineering and Applied Science, Harvard University, 1998.

[16] Stanford Compiler Group. The SUIF Library. Stanford
Compiler Group, Stanford University, 1995.

[17] Ching-Long Su and Alvin M. Despain. Cache designs for energy
efficiency. In Proceedings of the 28th Annual Hawaii
International Conference on System Sciences, pages 306–315,
January 1995.

[18] Scott Thompson, Paul Packan, and Mark Bohr. Mos scaling:
Transistor challenges for the 21st century. Intel Technology
Journal, 1998.

[19] V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez. Dynamic
power management for microprocessors: A case study. In
Proceedings of the International Conference on VLSI Design,
pages 185–192, January 1997.

[20] Vivek Tiwari, Deo Singh, Suresh Rajgopal, Gaurav Mehta,
Rakesh Patel, and Franklin Baez. Reducing power in
high-performance microprocessors. In Proceedings of the
Design Automaton Conference (DAC’98), pages 732–737,
June 1998.

[21] Hiroshi Tsutsui, Takahiko Masuzaki, Tomonori Izumi, Takao
Onoye, and Yukihiro Nakamura. High speed JPEG2000 encoder
by configurable processor. In Proceedings of the IEEE Asia
Pacific Conference on Circuits and Systems (APCCAS’02),
pages 45–50, December 2002.

[22] Hongbo Yang, R. Govindarajan, Guang R. Gao, George Cai,
and Ziang Hu. Exploiting schedule slacks for rate-optimal
power-minimum software pipelining. In Proceedings of the 3rd
workshop on Compilers and Operating Systems for Low
Power (COLP’02), September 2002.

[23] Yi-Ping You, Chingren Lee, and Jenq Kuen Lee. Compilers for
leakage power reduction. Accepted, ACM Transactions on
Design Automation of Electronic Systems.

[24] Yi-Ping You, Chingren Lee, and Jenq Kuen Lee. Compiler
analysis and supports for leakage power reduction on
microprocessors. In Proceedings of the International
Workshop on Languages and Compilers for Parallel
Computing (LCPC’02), pages 63–73, July 2002. Lecture Notes
in Computer Science, Vol. 2481, Springer Verlag.

[25] W. Zhang, Mahmut T. Kandemir, Narayanan Vijaykrishnan,
Mary Jane Irwin, and V. De. Compiler support for reducing
leakage energy consumption. In Proceedings of the 6th Design
Automation and Test in Europe Conference (DATE’03),
pages 1146–1147, March 2003.

[26] V. Zivojnovic, J. Martinez, C. Schlager, and H. Meyr.
DSPstone: A DSP-oriented benchmarking methodology. In
Proceedings of the International Conference on Signal
Processing and Technology (ICSPAT’94), pages 715–720,
October 1994.

133

