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SUMMARY

Embedded processors developed within the past few years have employed novel hardware designs to reduce
the ever-growing complexity, power dissipation, and die area. Although using a distributed register file
architecture is considered to have less read/write ports than using traditional unified register file structures,
it presents challenges in compilation techniques to generate efficient codes for such architectures. This
paper presents a novel scheme for register allocation that includes global and local components on a
VLIW DSP processor with distributed register files whose port access is highly restricted. In the scheme,
an optimization phase performed prior to conventional global/local register allocation, named global/local
register file assignment (RFA), is used to minimize various register file communication costs. A heuristic
algorithm is proposed for global RFA to make suitable decisions based on local RFA. Experiments were
performed by incorporating our schemes on a novel VLIW DSP processor with non-uniform register files.
The results indicate that the compilation based on our proposed approach delivers significant performance
improvements, compared with the solution without using our proposed global register allocation scheme.
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1. INTRODUCTION

Embedded processors developed in the recent years have attempted to employ novel hardware
designs to reduce the ever-growing complexity, power dissipation, and die area. Although using
a distributed register file architecture with hierarchical access constraints is considered to have
less read/write ports than using traditional unified register file structures, conventional compilation
techniques cannot produce the optimal performance from such new register file organizations. Our
research work is focused on compiler schemes for a VLIW DSP with distributed register files,
known as parallel architecture core (PAC) architectures [1].
The appearance of multiple banks of register files, distributed register clusters, and ping-pong

architectures on embedded VLIW DSPs (e.g. PAC architectures) presents a great challenge for
compilers attempting to generate efficient codes for multimedia applications. Current research
results on compiler optimizations for such problems in the literature have been limited to addressing
issues related to cluster-based architectures. This includes work on partitioning register files to work
with instruction scheduling [2], loop partitions for clustered register files [3], and cluster register
files [4]. This complex optimization issue for embedded DSPs has been addressed previously [5]
only in the layer of copy propagation optimizations, and attempts have been made to deal with
software pipelining issues with distributed register files [6]. In this paper, we address the issues
related to global register allocation (GRA).
This study relates to a compiler based on a PAC DSP [1,7–9] designed with distinctively banked

register files where port access is highly restricted. The PAC DSP employs a heterogeneous de-
sign with a single scalar unit (for light-weight arithmetic, address calculation, and program flow
control) plus two data-stream-processing clusters, each of which contains a load/store unit and
an ALU/MAC unit with powerful SIMD capabilities; every unit in the clusters collocates three
diverse types of register files, providing different accessing methods and constraints, and the scalar
unit has its own accessible register file. The major specialization of the register file architectures
in the PAC DSP is the incorporation of a so-called ping-pong register file structure [10]. This is
divided into two banks, each of which can only be accessed mutually exclusively, with a semi-
centralized register file among clusters and functional units within a cluster. This design decreases
the power consumption because there are fewer port connections, but its clustered nature makes
register access across clusters problematic, and the switched access nature of the ping-pong register
file prompts the investigation of further register assignment methods for increasing the degree of
instruction-level parallelism.
This paper presents a novel scheme for register allocation comprising GRA and local register

allocation (LRA) on aVLIWDSP processor with distributed register files whose port access is highly
restricted. In the scheme, a phase performed prior to conventional GRA/LRA, named global/local
register file assignment (RFA), is introduced to minimize various register file communication costs.
Our study is based on the open research compiler (ORC) software framework, in which register
allocation comprises GRA and LRA. There are two kinds of temporary name (TN): local and
global. LRA manages to allocate registers for local TNs, whose liveness is bounded within a
single basic block, and GRA does this for global TNs (GTNs), whose liveness will cross basic
blocks. GRA proceeds before LRA in the back-end of the ORC. For featured register file structures
where each cluster contains heterogeneous register files, the conventional register allocation scheme
with the cluster assignment has to be enhanced to cope with both inter-cluster and intra-cluster
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communications. Owing to the potential heavy influences of global RFA (GRFA) on local RFA
(LRFA), a heuristic algorithm is proposed where GRFAmakes suitable decisions on communication
for LRFA. Experiments were performed with a compiler developed based on the ORC, with the
results indicating that compilation based on proposed approach delivers significant performance
improvements, compared with the solution without using our proposed GRA scheme.
The remainder of this paper is organized as follows. In Section 2, we introduce the processor

architecture and register file structure of the PAC VLIW DSP. The proposed register allocation
scheme involving RFA is covered in Section 3. Section 4 compares register allocation schemes,
and Section 5 presents related work on cluster assignment and our previous work on the processor.
Finally, conclusions are drawn in Section 6.

2. PAC DSP ARCHITECTURE

The PAC DSP features a clustered VLIW architecture that boosts scalability, and a large number
of registers arranged as innovative heterogeneous and distinct partitioned register file structures.
Unlike the symmetric architectures of most DSPs available nowadays, the PAC DSP is constructed
as a heterogeneous five-way issue VLIW architecture, comprising two integer ALUs (I-unit), two
memory load/store units (M-unit), and the program sequence control unit/scalar unit (B-unit) that
is mainly in charge of control-flow instructions such as branch and jump. Each unit has its own
executable subset of the instruction set, and each executable instruction is subject to its own register
accessibility constraints. The M- and I-units are organized in pairs, with each pair containing one
M-unit and one I-unit in a cluster with associated register files. Each cluster is logically appropriate
for processing one data stream, and the current design of the PAC DSP consists of two clusters to
support a maximum workload capacity of two concurrent data streams. However, the scalability of
the cluster design in the PACDSP could allow the processor to use more clusters to increase the data-
processing workload. The B-unit consists of two subcomponents—the program sequence control
unit and the scalar unit—due to the hierarchical decoder design for variable-length instruction
encoding in the PAC DSP. The program sequence control unit is primarily responsible for the
operations of control-flow instructions. The scalar unit, which is capable of simple load/store and
address arithmetic, is placed separately from data-stream-processing clusters, with its own register
file. The overall architecture is presented in Figure 1.
Registers in the PACDSP are organized into several distinct partitioned register files and placed as

cluster structures to reduce wire connections between functional units and registers so as to minimize
chip area and power consumption. Local register files are attached to all units in the processor,
including the R-register file, AC-register file, and A-register file, which are only accessible by the
B-, I-, and M-units, respectively. Global register file named the D-register file is designed to be
shared by the pair of M- and I-units in each cluster. The D-register file is further partitioned into two
banks to utilize instructional port switching technology in order to further reduce wire connections
between the M- and I-units. This technology is the ping-pong register file structure, which decreases
the register bank port connections that limit the accessibility of the two banks; in each cycle, the
two functional units must access different banks. Each instruction bundle encodes the information
of which bank is to be accessed by each functional unit in the cycle, so that the hardware can
perform port switching between D-register file banks and functional units to facilitate data sharing
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Figure 1. PAC DSP architecture.

within a cluster. Overlapping two data-stream operations in a cluster minimizes occasions when
M- and I-units access the same data at the same time, and hence the access constraints of the ping-
pong register file structure should have little impact on the performance. The ping-pong register file
structure is designed to consume less power because of the reduced number of read/write ports [11]
while retaining the data communication capability. Each cluster also contains an additional constant
register file that is shared by both M- and I-units as one of the read-only operand sources usable
by certain instructions. Only M-units can initialize the data in the constant register file.

3. LOCAL-CONSCIOUS GRFA

This section describes our proposed local-conscious GRFA (LC-GRFA) employing LRFA to guide
the assignment. We also introduce our previously proposed ping-pong-aware-local-favorable LRFA
(PALF-LRFA) [12,13], acting as LRFA in the later examples and experiments.

3.1. Motivation and RFA

Because the PAC DSP has a clustered organization with non-uniform distributed register files,
the more common ‘cluster assignment’ problem often seen in code generation for VLIW pro-
cessors [14–16] does not directly apply to this design. Communications in the PAC DSP can be
divided into intra-cluster and inter-cluster communications. Intra-cluster communication, which
occurs within a single cluster, uses the public register file as the communication channel. For func-
tional unit FUa , if there is an operand in the same cluster that it cannot access (i.e. belonging to the
private register file of another functional unit, called FUb), intra-cluster communication is required,
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and hence data must be copied from the private register file of FUb into the public register file to
make it accessible to FUa . Furthermore, inter-cluster communication will also be required if an
operand needed by FUa is on the other cluster. In the case of inter-cluster communication, one
cluster must issue a send instruction and the other one must issue a receive instruction in the same
bundle (one of the hardware constraints) to complete the inter-cluster communication.
Figure 2 illustrates the complicated communication in the PAC DSP. In Figure 2(a) the original

instruction is an addition and is unbundlized, whereas in Figure 2(b) the instruction has its TN
register files assigned. Figure 2(c) has a bundle where the instruction is bound to I2. However, be-
cause I2 cannot access 1A, inter- and intra-cluster communication is required. Thus, in Figure 2(d),
a bundle that contains send/receive instructions is inserted for inter-cluster communication, which
copies from 1A to 2A, while a nop bundle has to follow to meet the latency requirement of these in-
structions. Although there is an inter-cluster copy, intra-cluster communication is necessary because
2A is still out of reach of I2. This leads to a bundle including a copy, as shown in Figure 2(e).
Complicated communication scheme in the PAC DSP makes it desirable to use a new phase, RFA,

to handle communications. RFA includes three major subphases: CA, register file class assignment,
and copy insertion. The first two subphases handle inter- and intra-cluster communications and
assign suitable register files to TNs, whereas the third subphase inserts and unfolds copy instructions

(a)

(b)

(c)

(d)

(e)

Figure 2. Example of inter-/intra-cluster communication in the PAC DSP: (a) original instruction, (b) each
TN has its register file assigned, (c) bundlized, (d) after inter-cluster communication insertion, and (e) after
intra-cluster communication insertion. In the figure, A is the private register file of the M-unit, AC is the private
register file of the I-unit, and D is the public register file, and A, AC, and D are together defined as the register
file class of TN, which are prefixed with a number representing the cluster. Thus, 1D is the public register file

in cluster 1, and 2AC is the private register file of the I-unit in cluster 2.
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Figure 3. Register allocation scheme involving register file assignment with three major subphases.

Figure 4. Flowchart of PALF scheme.

to establish the communications derived in the other subphases. The PAC DSP compiler, derived
from the ORC, also divides register allocation into GRA and LRA, which are register allocations for
GTNs and TNs, respectively. Owing to various differences between GRA and LRA, the mentioned
RFA has to be extended into GRFA and LRFA, as shown in Figure 3.

3.2. PALF-LRFA

This section reviews our previously proposed PALF-LRFA that, given a dependency directed acyclic
graph (DAG) [17] describing the compilation regions, heuristically determines the appropriate
register file/bank assignment and employs state-of-the-art graph-coloring register allocation for
each assigned register file/bank in PAC architectures.
The flow of the PALF-LRFA is shown in Figure 4. Our approach requires building an extended

data dependence DAG, which preserves the information of the execution and storage relationship for
hierarchical access constraint analysis, in addition to the original partial order imposed by instruction
precedence constraints. Nodes in the extended data dependence DAG represent instructions of
the input code block, with the component-type association (that indicates which functional unit
should preferentially be scheduled for this node) and the register-type association (that annotates
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the appreciated physical register file/bank, to where the operands/results will be allocated); the
edges linked between the nodes represent data dependency that serializes the execution order to be
followed in the scheduled code sequence. The PALF-PALF could be organized into the following
five phases:

1. Perform the preferable functional unit assignment to the default execution type of each in-
struction using maximal localization analysis.

2. Assign operands/results (required to be allocated to physical registers) of each node in the
extended data dependence DAG to the desirable register files.

3. Partition the operands/results assigned to the global ping-pong register files to the preferred
register banks according to the strategy of optimizing ping-pong parallelism.

4. Optionally partition the nodes in the extended data dependence DAG into two clusters properly
if we would like to compile for two clusters.

5. Insert nodes of the required communication code to avoid invalid register file/bank assignment
and cluster partitioning, followed by the physical register allocation for each register file.

3.3. Proposed method for GRFA

Owing to the variety of distributed register files involved and hierarchical access constraints in the
design of PAC DSP architectures, we developed the PALF-LRFA before the actual LRA, allowing
state-of-the-art graph-coloring-based methods for allocating homogeneous registers in the same
register file. This design simplifies the optimization of register allocation for the non-uniform
distributed register files used in the PAC DSP, but achieves adequate performance.
Although the proposed PALF-LRFA performs well with the local optimizations and instruction

scheduling, GRFA cannot be directly derived from the PALF-LRFA as the original design decisions
in the heuristics are based on the data dependence DAG. Therefore, we add a new phase of GRFA,
named LC-GRFA, which refers to the local preference of the PALF-LRFA for each basic block and
determines the appropriate RFA for GTNs across multiple blocks. Our proposed LC-GRFA extends
the PALF-LRFA to obtain RFA of GTNs that is advantageous for both LRFA and local instruction
scheduling. We now introduce two LC-GRFA methods: one-pass and two-pass.
The one-pass GRFA is proposed in Algorithm 1, which includes the following steps:

1. Basic block prioritization: The prioritization will prioritize basic blocks in the programming
unit based on static or dynamic score. The static score is calculated based on factors such as
the loop depth and scheduling length, whereas the dynamic score is based on profiling. Basic
blocks with higher scores have a greater impact on overall performance, so they should be
given higher priority to be processed earlier.

2. RFA: This step employs LRFA virtually on basic blocks in the order of priority until all basic
blocks are traversed or all GTNs have register files. For each iteration, if there are previous
assignments to GTN register files, the iteration uses them as a precondition for the LRFA to
be employed. After the LRFA, the step preserves GTN register files given by LRFA but resets
TN register files to unassigned. Because some phases in GRA will produce new TNs, such as
spilling, it is preferable to leave all TN register files to be assigned in LRFA after GRA.

3. Communication insertion: The third step involves simply inserting intra- or inter-cluster com-
munication codes so as to make all operations legal.
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Algorithm 1 One-pass LC-GRFA
Require: BB Listall and GTN Listall
Ensure: Register file assignment of all GTNs
{Step 1: Basic block prioritization}
BB Listprio ← Prioritize the basic blocks in BB Listall;
{Step 2: Register file assignment}
while (BB Listprio is not empty) or (GTN Listall is not empty) do

BBprio ← Pop the basic block from BB Listall with the highest priority;
GTN Listfixed ← All the global temporary names whose register files have been fixed in
GTN Listall;
Reg File Assignprio ← Local Reg File Assign(BBprio, GTN Listfixed);
for all GTNprio ∈ GTN List(Reg File Assignprio) do
Fix register file of GTNprio;

end for
end while
{Step 3: Communication insertion}
for all BB ∈ BB Listall do

Insert Comm(BB);
end for

In addition to the one-pass method, we propose the two-pass method that employs separate
two passes of register file class assignment and CA. As either passes refer LRFA to make their
assignment, the method is considered to be advantageous for local optimizations in some cases.
This method is displayed in Algorithm 2, which mainly includes the following passes:

1. Register file class assignment: In the first pass, the method manages to assign register file
classes to all GTNs, such as A, AC, and D. After collecting LRFA of each basic blocks, the
method assigns each GTN register file class based on whether a GTN is ‘consistent’ or not. A
GTN is considered ‘consistent’ in register file class assignment if LRFA of each basic block
assigns the GTN to the same register file class. If this condition occurs, it indicates that LRFA
may agree with the consistent register file class, and hence the method assigns the GTN to
the class. Otherwise, it assigns the GTN to the public register file class, as the disagreement
suggests that intra-communication may be required.

2. Cluster assignment: After all GTN register file classes are assigned, CA is performed in the
second pass, which operates like the one-pass method.

3.4. Examples of LC-GRFA

This section provides simple examples to illustrate the current version of the proposed LC-GRFA
methods. Figure 5(a) shows an example of the one-pass method with 10 GTNs in the programming
unit, which are listed in the left most column. And each assignment of GTN comprises two parts:
the cluster and the register file class. For example, an assignment of a GTN to D in cluster 2
is represented by 2D. The one-pass method is based on the basic block priority. Referring to
Figure 5(a), in Step 1 the method chooses BB5 (which has the highest priority), which references
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Algorithm 2 Two-pass LC-GRFA
Require: BB Listall and GTN Listall
Ensure: Register file assignment of all GTNs
{Pass 1: Register file class assignment}
{1.1: Local register file assignment collection of basic blocks}
Reg File Class Assign List← Empty;
for all BB ∈ BB Listall do

Reg File Class Assign List [BB]
← Reg File Class Assign(Local Reg File Assign(BB));

end for
{1.2: Register file class assignment}
for all GTN ∈ GTN Listall do

Reg File Class← Consistent Reg File Class(GTN, Reg File Class Assign List);
if (Reg File Class is Nothing) then
Reg File Class(GTN)← Reg File Class;

else
Reg File Class(GTN)← Public Register File Class;

end if
Fix register file class of GTN;

end for
{Pass 2: Cluster assignment}
{2.1: Basic block prioritization}
BB Listprio ← Prioritize the basic blocks in BB Listall;
{2.2: Cluster assignment}
while (BB Listprio is not empty) or (GTN Listall is not empty) do

BBprio ← Pop the basic block from BB Listall with the highest priority;
GTN Listfixed ← All the global temporary names whose clusters or cluster file classes have
been fixed in GTN Listall;
Cluster Assignprio ← Cluster Assign(Local Reg File Assign(BBprio, GTN Listfixed));
for all GTNprio ∈ GTN List(Cluster Assignprio) do
Fix cluster of GTNprio;

end for
end while
{Communication insertion}
for all BB ∈ BB Listall do

Insert Comm(BB);
end for

four GTNs: GTN4, GTN5, GTN6, and GTN12. The method performs LRFA and assigns the GTNs
to 1D and 2D. BB6 chosen in Step 2 references GTN5, GTN7, GTN8, GTN9, and GTN11. Because
GTN5 has been assigned in Step 1, the GTN cannot be modified and used as a precondition for
the subsequent LRFA. Hence, LRFA is performed in Step 2 using the assignment of GTN5 as a
precondition, with GTN7, GTN8, GTN9, and GTN11 being assigned. This process continues in
Steps 3 and 4. Finally Step 4, there are no more unassigned GTNs, and hence the method terminates.
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(a) (b)

Figure 5. Examples of LC-GRFA. (a) Example of one-pass LC-GRFA. In the figure, each column is headed by
the basic blocks involved in each step and (b) example of two-pass LC-GRFA.

Figure 5(b) presents an example of the two-pass method. First of Pass 1 involves performing
LRFA on each basic block independently and collecting the assignment of the register file class of
each basic block as a reference. For example, BB2 references four GTNs: GTN1, GTN2, GTN3,
and GTN6. LRFA produces an assignment of A for GTN1 and GTN2, AC for GTN3, and D for
GTN6. Pass 1 also makes a compromise among these assignments. For example, based on our
method, Pass 1 assigns GTN1 to A, GTN6 to D, and GTN10 to AC. This is followed by Pass 2
performing CA based on Pass 1, which assigns GTN1 to 1A, GTN6 to 2D, and GTN10 to 1AC.

4. EXPERIMENTS AND DISCUSSION

This section describes our preliminary experiments on the proposed LC-GRFAmethods. Figure 6(a)
compares various prioritization methods and (b) compares various register allocation schemes, us-
ing the DSPstone benchmark suite [18] in the PAC DSP. Figure 6(c) compares register allocation
schemes on applications, including G.723, G.727, and programs from MiBench [19]. All the exper-
iments were performed with our developed compiler based on ORC infrastructures and evaluated
with a cycle-accurate instruction set simulator of the PAC DSP. The simulator is provided by SoC
Technology Center of Industrial Technology Research Institute (STC/ITRI) in Taiwan.
Our method is based on prioritization of basic blocks, which influences the performance.

Figure 6(a) compares among three prioritization methods: block length, random, and frequency. The
results for the random method are the averages of 10 runs of the benchmarks. The frequency method
refers to using the frequency utility provided by the ORC. Related to block-length method, the ran-
dom method exhibits impaired performance, whereas the frequency method improves performance
by 7% on average.
In Figure 6(b), the following register allocation schemes with different RFA combinations were

compared: (1) O1 with PALF-LRFA, (2) O2 with PALF-LRFA plus naı̈ve GRFA, (3) O2 with PALF-
LRFA plus the one-pass LC-GRFA, and (4) O2 with PALF-LRFA plus the two-pass LC-GRFA.
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(a)

(b)

(c)

Figure 6. Experiment results. (a) Comparison of various prioritization methods; (b) comparison of register
allocation schemes on DSPStone; and (c) comparison of register allocation schemes on applications.
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Note that O2 disables the software pipelining in our compiler, whereas O2 enables it in original
ORC. Although PALF-LRFA and LC-GRFA methods have been explained in the earlier part, the
naı̈ve GRFA assigns all GTN register files to one single cluster. In other words, it utilizes only one
cluster and leaves the other idle. As a whole, the comparison indicates that the last two schemes
provide 45% speedup on an average relative to the PALF-LRFA and 30% speedup on an average
relative to the PALF-LRFA plus naı̈ve GRFA. Although most of the programs in DSPstone bench-
mark suite have fine speedup using the scheme, some disclose flaws of our methods. First, in some
program, such as matrix1 and matrix2, the one-pass LC-GRFA beats two-pass method though the
one-pass LC-GRFA and two-pass LC-GRFA have close speedup on average. One possibility is
that RFCA in the two-pass LC-GRFA does not involve priority and it leads to less sensitiveness of
the two-pass LC-GRFA to LRFA than the one-pass LC-GRFA. Second, n complex updates, where
the two-pass method degrades, reveals another issue in compiler development for the PAC DSP.
For n complex updates, some register files are highly utilized in the proposed two-pass GFRA
and leads to considerable spilling in the LRA, which degrades the performance for the bench-
mark. This could be solved using register pressure control in every register file in RFA to provide
appropriate apportionment between LRA and GRA. As the number of registers in register files
on the PAC DSP is limited, the control relies on precise modeling of potential register usage
scenarios.
Figure 6(c) presents overall performance of our compiler on the applications. These optimizations

are: (1) O0 with PALF-LRFA, (2) O1 with PALF-LRFA, and (3) O2 with PALF-LRFA plus the
one-pass LC-GRFA. In the experiment, we used the one-pass LC-GRFA, which is more stable than
the two-pass GRFA. The figure shows that O1 and O2 can achieve 116 and 167% speedup on
average, respectively.

5. RELATED WORK

Hiser et al. have described global register partitioning for CA in [4], where a register component
graph (RCG) is built on data dependence DAGs and an optimal schedule is used to model the
relationship between registers. Every node in the RCG represents register operands, and the weight
of an edge represents the ‘affinity’ of the connected nodes: positive weight indicates that the related
nodes should be put in the same cluster, and vice versa. They used a greedy heuristic algorithm to
divide these nodes into two clusters. The experimental results show that their algorithm exhibits
a performance degradation of only about 10% when compared with an unrealizable monolithic-
register-bank architecture with the same level of ILP. However, their architecture is simpler than
the PAC DSP, which is subjected to the ping-pong constraint, and hence it is difficult to implement
the algorithm in the PAC DSP.
Terechko et al. provided another method for CA of global values [20]. Local values have short-

lived ranges, whereas global values can be alive throughout the whole programming unit. Those
authors provided several methods for performing the task, one of which is involved using the
‘affinity’ as mentioned above. The affinity between two global values indicates the benefit of
assigning them to the same cluster based on the data flow graph. Equations were used to represent
the affinity between two global values, rather than the RCG mentioned in [4]. They also provided
detailed experimental comparisons.
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Besides PALF, we have previously proposed a simultaneous instruction scheduling/RFA method
based on simulated annealing [21], which iteratively optimizes the entire RFA state of a single basic
block and uses the instruction scheduler itself as the evaluation function. This local approach was
borrowed from [2], and can also be globally extended in the same manner as PALF as presented in
this paper.
In addition to work on the register allocation scheme, the copy propagation in the original ORC

could also be modified [5]. Owing to the non-uniform distributed register file structure in the
PAC DSP, conventional copy propagation might degrade the performance. In the present study,
a communication cost model was derived for copy propagation, which was based on the cluster
distance, register port pressure, and movement type of register sets. The model was used to guide
data flow analysis for better performance on the PAC DSP architecture. This scheme is effective in
preventing the performance anomaly.

6. CONCLUSION

This paper proposes a new register allocation scheme involving a separate phase named RFA, which
comprises LRFA and GRFA. Owing to the non-uniform distributed register file structures on PAC
DSP architectures, where the conventional register allocation is not sufficient, RFA could form the
core procedure of the scheme to boost performance on the architecture. The preliminary experi-
mental results presented here show that the proposed scheme can efficiently utilize the distributed
register file architectures and deliver good performance. Our future work will include a complete
exploration of the various issues involved in our proposed scheme.
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