
US007904736B2 

(12) United States Patent 
You et a]. 

US 7,904,736 B2 
Mar. 8, 2011 

(10) Patent N0.: 
(45) Date of Patent: 

(54) 
CONTROL DESIGN 

(75) 

MULTI-THREAD POWER-GATING 

Inventors: Yi-Ping You, Taichung County (TW); 
Jeng Kuen Lee, Tainan (TW); Kuo Yu 
Chuang, Yilan County (TW); 
Chung-Hsien Wu, Taipei (TW) 

(73) Assignees: Industrial Technology Research 
Institute, Hsinchu (TW); National 
Tsing Hua Universitiy, Hsinchu (TW) 

Notice: (*) Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 746 days. 

(21) 

(22) 

Appl. No.: 11/961,487 

Filed: Dec. 20, 2007 

(65) 
Us 2008/0256376 A1 

(30) 

Apr. 13,2007 

(51) 

(52) 
(58) 

Int. Cl. 
G06F 1/00 

(TW) .......... .. 

US. Cl. ............................ .. 

Field of Classi?cation Search ................. .. 713/300 

Prior Publication Data 

Oct. 16, 2008 

Foreign Application Priority Data 

................. .. 96112996 A 

(2006.01) 
........................ .. 713/300 

See application ?le for complete search history. 

r....__ 

(56) References Cited 

U.S. PATENT DOCUMENTS 

6,035,376 A * 3/2000 James ......................... .. 711/145 

7,111,182 B2 * 9/2006 713/324 
7,380,039 B2* 5/2008 710/244 

2003/0204560 A1* 10/2003 709/203 
2003/0226046 A1* 12/2003 713/300 
2007/0061808 A1* 3/2007 718/102 
2009/0007120 A1* 1/2009 Fenger et a1. ............... .. 718/102 

FOREIGN PATENT DOCUMENTS 

TW 519599 2/2003 
TW 200725391 7/2007 

* cited by examiner 

Primary Examiner * Thomas Lee 

Assistant Examiner * Mohammed H Rehman 

(57) ABSTRACT 
The invention relates to a multi-thread poWer gating control 
design, setting idle components into a sleep mode to reduce 
poWer consumption due to current leakage. Based on com 
piler techniques, the invention arranges predicted-poWer-gat 
ing instructions into every thread of a may-happen-in-parallel 
region. A predicted-poWer-on instruction determines Whether 
the corresponding component has been powered on, and poW 
ers on the component When it has not been poWered on yet. A 
predicted-poWer-off instruction determines Whether the com 
ponent is required in the rest of the may-happen-in-parallel 
region, and poWers off the component When it is required 
later. 

25 Claims, 10 Drawing Sheets 

BM 



US. Patent Mar. 8, 2011 Sheet 1 0f 10 US 7,904,736 B2 

100 

_] 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 
I 

I 
F-_____________________________________ 

FIG. 1 



US. Patent Mar. 8, 2011 Sheet 2 0f 10 US 7,904,736 B2 

B m+1 

B m+2 

B m+3 

B m+4 

B m+5 

1 
I | 
I | 
I | 
I | 
I | 
I | 
I | 
I l 
I | 
I | 
I | 
I I 
I | 
I | 
I l 
I 1 
I | 
I | 
I | 
I O O O O O O I 

I l 

i : : B n B 3+1 : 

I Bj+2 | : Bn : 
: B j+3 : 
' - ff3 | : E03 I 
I | 
i B n+3 B n+4 : 
I | 
I | 
I | 
I | 
I | 
I | 
I | 
I | 
I | 
I l 
I | 
I | 
I | 
I | 
I | 
I J 

[I] H. $ 

+2 

m 

- BM 



US. Patent US 7,904,736 B2 Mar. 8, 2011 Sheet 3 0f 10 

___—TI‘£r_e;d_1 _____ "-1 200 |r_____-'i‘-];I_ea_d_2 _____ "T 

FUl FUZ FU3 {__§__J'I FU1 PU: FU3 I 
SSEBM |l___Jl___ll___lB+1 i 

+ + l 

:[Iq/EEIM SEJIGBH i 
[E] B ,3 @ B i 

IIIIEHI] “‘ ITITWFT ‘+3 l 
+ w { 

Q55 @B @HEEIBH 1 EDGE“ IWIIWIIWJ‘ i 
\L \l/ | 

EH'EJGBM IIIIIIWIIIBM i 
ESWEBM GGWE B,-+1 5 
IIIIIIIIIBM [1153mm i 
w w w Ww ; 

@ EEIIIBH E 
EIIIHIIIBM @l J i 
@ i 
IIIEIHIIB '—"——JL__IBH : n+4 ' 

@iw EIIIIIGBM i 
Gill-IBM i 
w__——' |_|| || |Bj+6 : 

IIHIHIBM ; 
\b ,_ _____________ ___| 

:“IIIB 7 | 3 



US. Patent Mar. 8, 2011 Sheet 4 0f 10 US 7,904,736 B2 

@5 Egg; SJ G mr%:@@@ EEG GIST wlmsmg_m_s.@@g Eda? mg? E??w?kwg EFQE .... -.E.-.@.---@ ............... 



US. Patent Mar. 8, 2011 Sheet 5 0f 10 US 7,904,736 B2 

QZU A Now) aonomaoo 

m .UE 
o w m \/\ 83%8 @8335 

22H? 



US. Patent Mar. 8, 2011 Sheet 6 0f 10 US 7,904,736 B2 

w .UE 
85%2 ©2285 

QZG 

|—\ 828300 

F w??wlBBom 

New) EunomEoo w 
q #3 

%> » 53mm?“ 

Gabon mqumm¢o>pom 

w wow 







US. Patent Mar. 8, 2011 Sheet 9 0f 10 US 7,904,736 B2 

Q26 a 

QZG A IT 

@ .QE 
QZU 

Eamon wqumwékom 
(\lmom 

m J 

J 





US 7,904,736 B2 
1 

MULTI-THREAD POWER-GATING 
CONTROL DESIGN 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The invention relates to poWer-gating control techniques 

and particularly to poWer-gating control methods and systems 
applied to multi-thread programs. 

2. Description of the Related Art 
PoWer dissipation of electronic components comprises: 

static poWer dissipation and dynamic poWer dissipation. 
Static poWer dissipation is caused by Complementary Metal 
Oxide-Semiconductor (CMOS) current leakage. Dynamic 
poWer dissipation is generated by sWitching transient current 
and charging/discharging current of load capacitors. With 
continued development of semiconductor processing tech 
nology, the siZe of transistors has reduced, the total number of 
functional units has increased, and static poWer dissipation 
has become more of a problem. As such, it is an important 
issue to reduce static poWer dissipation. 
A common technique used to solve static poWer dissipation 

from occurring is poWer-gating control design, Which con 
trols the poWer of idle components by poWer-gating control 
instructions. The static poWer dissipation caused by current 
leakage of idle components can be dramatically reduced by 
the poWer-gating control design. The prior art of the invention 
comprises TaiWan patent publication No. 172459 and TaiWan 
patent application No. 94147221. The TaiWan publication 
No. 172459 discloses techniques comprising, obtaining 
information on the utiliZation of the components by data How 
analysis and arranging poWer-off instructions prior to the idle 
regions of the components andpoWer-on instructions after the 
idle regions of the components. By setting the idle compo 
nents to a sleep mode, current leakage is reduced. To deal With 
cases having too much components, TaiWan application No. 
94147221 discloses techniques comprising, determining 
Whether the poWer-gating control instructions are mergeable 
by data How analysis and arranging merged poWer-gating 
control instructions in proper places to replace the original 
poWer-gating control instructions. The merged poWer-gating 
control instructions With proper design save more poWer than 
the original poWer-gating control instructions. 

The above mentioned techniques are applied to programs 
With single thread, but cannot be applied to multi-thread 
programs. 

For example, “A conservative data How algorithm for 
detecting all pairs of statements that may happen in parallel 
for rendeZvous-based concurrent programs,” G. Naumovich 
and G. S. Avrunin disclosed in Proceedings of the 6th ACM 
SIGSOFT Symposium on the Foundations of Software Engi 
neering, discloses that a may-happen-in-parallel region of a 
multi-thread program comprises a plurality of threads. The 
threads are executed in uncertain order so that the idle region 
of the component is uncertain. The techniques disclosed by 
TaiWan publication No. 172459 and TaiWan patent applica 
tion No. 94147221, therefore, cannot be applied to multi 
thread programs. Thus, poWer-gating control techniques for 
multi-thread programs are called for. 

BRIEF SUMMARY OF THE INVENTION 

The invention discloses poWer-gating control methods and 
poWer-gating control mechanism for multi-thread programs. 

In one embodiment of the invention, a poWer-gating con 
trol method comprises obtaining information on the utiliZa 
tion of a component in a plurality of threads of a may-happen 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
in-parallel region, arranging a predicated-poWer-on 
instruction in each thread prior to the utiliZation of the com 
ponent, and arranging a predicated-poWer-off instruction in 
each thread after the utiliZation of the component. The predi 
cated-poWer-on instruction determines the poWer state of the 
component and poWers on the component that has not been 
poWered on yet. The predicated-poWer-off instruction deter 
mines Whether the component is required later in the may 
happen-in-parallel region. When the component is not 
required later in the may-happen-in-parallel region, the predi 
cated-poWer-off instruction sets the component to a sleep 
mode. 

In another embodiment of the invention, the poWer- gating 
control method comprises obtaining information on the uti 
liZation of a plurality of components in a plurality of threads 
of a may-happen-in-parallel region, arranging a pair of predi 
cated-poWer-gating instructions for each component in each 
thread. In each thread, the predicated-poWer-on instruction is 
arranged prior to the utiliZation of the corresponding compo 
nent, and the predicated-poWer-off instruction is arranged 
after the utiliZation of the corresponding component. The 
method further comprises determining Whether the predi 
cated-poWer-gating control instructions (including the predi 
cated-poWer-on instructions and the predicated-poWer-off 
instructions) in one thread are mergeable. When the predi 
cated-poWer-gating control instructions are mergeable, the 
invention provides a grouped predicated-poWer-on instruc 
tion to replace the predicated-poWer-on instructions in the 
thread and provides a grouped predicated-poWer-off instruc 
tion to replace the predicated-poWer-off instructions in the 
thread. The grouped predicated-poWer-on instruction deter 
mines the poWer state of the components, and poWers on all 
the components at the same time When the components have 
not been poWered on yet. The grouped predicated-poWer-off 
instruction determines Whether the components are required 
later in the may-happen-in-parallel region. When the compo 
nents are not required later in the may-happen-in-parallel 
region, the grouped predicated-poWer-off instruction poWers 
off the all components at the same time. 
The invention further provides a poWer-gating control 

mechanism comprising a component comprising a poWer 
sWitch, a compiler, a poWer-gating controller, a poWer-gating 
control register, a sWitch, and a predicated register. The 
poWer-gating control register is controlled by the poWer-gat 
ing controller, and the state of a poWer sWitch is dependent on 
the value of the poWer-gating control register. The sWitch is 
coupled betWeen the poWer- gating controller and the poWer 
gating control register, and is activated/ deactivated according 
to the state of the predicated register. The initial state of the 
predicated register is a poWer-gating controllable state Which 
activates the sWitch. The predicated register deactivates the 
sWitch When in a poWer-gating non-controllable state. 

In such a case, the compiler obtains information on the 
utiliZation of the component in a plurality of threads of a 
may-happen-in-parallel region, arranges a predicated-poWer 
on instruction in each thread prior to the utiliZation of the 
component, and arranges a predicated-poWer-off instruction 
in each thread after the utiliZation of the component. When 
executing the predicated-poWer-on instruction, the poWer 
gating controller determines the state of the predicated regis 
ter. When the predicated register is in the poWer-gating con 
trollable state, the sWitch is activated, and the poWer-gating 
controller sets the poWer-gating control register to a poWer-on 
state to activate the poWer sWitch and sets the predicated 
register to a poWer-gating non-controllable state. When 
executing the predicated-poWer-off instruction, the poWer 
gating controller determines Whether the component is still 



US 7,904,736 B2 
3 

required later in the may-happen-in-parallel region. When the 
component is not required later in the may-happen-in-parallel 
region, the poWer-gating controller sets the predicated regis 
ter to the poWer-gating controllable state to activate the 
sWitch, and sets the poWer-gating control register to a poWer 
off state to deactivate the poWer sWitch. 

In another embodiment of the invention, a poWer-gating 
control mechanism comprises a plurality of components each 
comprising a poWer sWitch, a compiler, a poWer-gating con 
troller, a poWer-gating control register, and a predicated reg 
ister. The poWer-gating control register is controlled by the 
poWer-gating controller. The states of all the poWer sWitches 
are dependent on the value of the poWer-gating control reg 
ister. The sWitch is coupled betWeen the poWer-gating con 
troller and the poWer- gating control register, and is activated/ 
deactivated according to the state of the predicated register. 
The initial state of the predicated register is a poWer-gating 
controllable state Which activates the sWitch. When the predi 
cated register is in a poWer-gating non-controllable state, the 
sWitch is deactivated. 

In such a case, the compiler obtains information on the 
utiliZation of the components in a plurality of threads of a 
may-happen-in-parallel region, arranges a predicated-poWer 
on instruction for each component in each thread, and 
arranges a predicated-poWer-off instruction for each compo 
nent in each thread. In each thread, the predicated-poWer-on 
instruction is arranged prior to the utiliZation of the corre 
sponding component, and the predicated-poWer-off instruc 
tion is arranged after the utiliZation of the corresponding 
component. The compiler determines Whether the predi 
cated-poWer-gating control instructions in one thread are 
mergeable. When they are mergeable, the compiler provides 
a grouped predicated-poWer-on instruction to replace the 
predicated-poWer-on instructions in the thread and provides a 
grouped predicated-poWer-off instruction to replace the 
predicated-poWer-off instructions in the thread. When 
executing the grouped predicated-poWer-on instruction, the 
poWer-gating controller determines the state of the predicated 
register. When the predicated register is in the poWer-gating 
controllable state that activates the sWitch, the poWer-gating 
controller sets the poWer-gating control register to a poWer-on 
state to turn on the poWer sWitches of all components. The 
poWer-gating controller then sets the predicted register to a 
poWer-gating non-controllable state to indicate that the com 
ponents are active. When executing the grouped predicated 
poWer-off instruction, the poWer- gating controller determines 
Whether the components are still required later in the may 
happen-in-parallel region. When the components are not 
required later in the may-happen-in-parallel region, the 
poWer-gating controller sets the predicated register to the 
poWer-gating controllable state to activate the sWitch and sets 
the poWer-gating control register to a poWer-off state that 
deactivates all poWer sWitches. All components are sWitched 
to a sleep mode at the same time. 

The above and other advantages Will become more appar 
ent With reference to the folloWing descriptions taken in con 
junction With the accompanying draWings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention can be more fully understood by reading the 
subsequent detailed description and examples With refer 
ences made to the accompanying draWings, Wherein: 

FIG. 1 shoWs a control How graph for a may-happen-in 
parallel region comprising tWo threads of a multi-thread pro 
gram; 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
FIG. 2 shoWs hoW the poWer-gating control method of the 

invention is applied to the threads shoWn in FIG. 1; 
FIG. 3 shoWs a control How graph for a may-happen-in 

parallel region comprising tWo threads of a multi-thread pro 
gram; 

FIG. 4 shoWs hoW the poWer-gating control method of the 
invention is applied to the threads shoWn in FIG. 3; 

FIG. 5 shoWs an embodiment of the poWer-gating control 
mechanism of the invention that comprises a single poWer 
gating controllable component; 

FIG. 6 shoWs another embodiment of the poWer-gating 
control mechanism of the invention that comprises a single 
poWer-gating controllable component; 

FIG. 7 shoWs yet another embodiment of the poWer- gating 
control mechanism of the invention that comprises a single 
poWer-gating controllable component; 

FIG. 8 shoWs an embodiment of the poWer-gating control 
mechanism of the invention that comprises a plurality of 
poWer-gating controllable components; 

FIG. 9 shoWs another embodiment of the poWer-gating 
control mechanism of the invention that comprises a plurality 
of poWer-gating controllable components; and 

FIG. 10 shoWs yet another embodiment of the poWer-gat 
ing control mechanism of the invention that comprises a 
plurality of poWer-gating controllable components. 

DETAILED DESCRIPTION OF THE INVENTION 

The folloWing description is made for the purpose of illus 
trating the general principles of the invention and should not 
be taken in a limiting sense. The scope of the invention is best 
determined by reference to the appended claims. 
The invention is applied to multi-thread programs. The 

invention analyZes the program by compiler techniques and 
arranges predicated-poWer-on instructions and predicated 
poWer-off instructions in a plurality of threads of a may 
happen-in-parallel region. The processor sets idle component 
into a sleep mode by executing the predicated-poWer-gating 
control instructions (including the predicated-poWer-on 
instructions and the predicated-poWer-off instructions). The 
predicated-poWer-gating control instructions avoid repeat 
edly poWering on the component or untimely poWering off of 
the component. The invention loWers current leakage When 
executing multi-thread programs and reduces static poWer 
dissipation. 

FIG. 1 shoWs a control How graph for a may-happen-in 
parallel region 100 of a multi-thread program. For simplicity, 
the example only comprises one single poWer-gating control 
lable component. The component may be an operational unit 
of a computer system, such as an integer multiplexer, a ?oat 
ing point adder, a ?oating point multiplexer, or a ?oating point 
divider, etc., or a peripheral device of a processor, such as a 
graphics accelerator, a SSL accelerator, or etc. Referring to 
FIG. 1, the may-happen-in-parallel region 100 comprises tWo 
threads, Thread1 and Thread2, respectively. Thread1 com 
prises tWo branches after BN2. Thread2 comprises a loop 
betWeen Bj+3 and Bj+6. The loop repeats at least three times. 
Label ‘W’ indicates that the component is Working. As shoWn 
in FIG. 1, the component Works at Bm+3, Bm+5, BN2, BN3, 
and B”+4 in Thread1 and Bi+4, Bj+2, and Bj+3 in Thread2. 
The processor executes threads concurrently in the may 

happen-in-parallel region 100. For instance, the processor 
may execute some jobs of Thread1 ?rst, and then all jobs of 
Thread2, and ?nally the rest jobs of Thread1. Because the 
executing sequence of threads is unpredictable, the poWer 
gating control technique disclosed in TaiWan Patent Publica 
tion No. 172348 is improper. 



US 7,904,736 B2 
5 

The invention provides poWer-gating control methods for 
multi-thread programs. Based on the utilization status of the 
component in a plurality of threads of a may-happen-in 
parallel region, the invention arranges a predicated-poWer-on 
instruction in each thread prior to the utiliZation of the com 
ponent and arranges a predicated-poWer-off instruction in 
each thread after the utiliZation of the component. FIG. 2 
shoWs hoW the poWer-gating control method of the invention 
is applied to the threads shoWn in FIG. 1. Referring to FIGS. 
1 and 2, Threadl starts using the component at Bm+3 and stops 
using the component after Bm+3 or BN4, Thread2 starts using 
the component at Bi+4 and stops using the component after 
Bj+3. In Thread1, the invention arranges a predicated-poWer 
on instruction C-on1 prior to Bm+3, a predicated-poWer-off 
instruction C-offl after BN3, and a predicated-poWer-off 
instruction C-off2 after BN4. In Thread2, the invention 
arranges a predicated-poWer-on instruction C-on2 prior to 
Bi+4 and a predicated-poWer-off instruction C-off3 right after 
Bj+3. 

The predicated-poWer-on instruction (C-onl or C-on2) 
determines the poWer state of the component. When the com 
ponent has not been poWered on yet, the predicated-poWer-on 
instruction (C-onl or C-on2) poWers on the component. The 
predicated-poWer-off instruction (C-offl, C-off2, or C-off3) 
determines Whether the component is required later in the 
may-happen-in-parallel region 100. When the utiliZation of 
the component has ?nished in the region 100, the predicated 
poWer-off instruction (C-offl, C-off2, or C-off3) sets the 
component to a sleep mode. The predicated-poWer-on 
instructions (C-onl and C-on2) avoid poWering on the com 
ponent repeatedly. The predicated-poWer-off instructions 
(C-offl, C-off2, and C-off3) avoid powering off the compo 
nent While the component is required later in the may-hap 
pen-in-parallel region 100. 

In another embodiment of the invention, the invention fur 
ther provides a predicated register and a citing counter. The 
initial state of the predicated register is a poWer-gating con 
trollable state, and the initial value of the citing counter is 
Zero. When executing the predicated-poWer-on instruction, 
the invention determines the state of the predicated register, 
poWers on the component and sets the predicated register to a 
poWer-gating non-controllable state When the predicated reg 
ister is in the poWer-gating controllable state, and adds one to 
the citing counter. When executing the predicated-poWer-off 
instruction, the invention subtracts one from the citing 
counter and then determines the value of the citing counter. 
Once the citing counter is Zero, the invention sets the predi 
cated register to the poWer-gating controllable state. After 
setting the predicated register to the poWer-gating control 
lable state, the invention sets the component to the sleep 
mode. 

Referring to FIG. 2, in one example, Threadl and Thread2 
of the may-happen-in-parallel region 100 are executed 
according to the folloWing order: (Bm+l~Bm+3), (Bl.+l~Bj+6) 
and then (Bm+4~Bn+7), Wherein the program chooses the 
branch comprising BN3. The predicated-poWer-on instruc 
tion C-onl is the ?rst predicated-poWer-gating instructions 
executed in the may-happen-in-parallel region 100. Before 
executing the predicated-poWer-on instruction C-onl, the 
predicated register is in its initial state-poWer-gating control 
lable state, indicating that the component has not been poW 
ered on yet. The predicated-poWer-on instruction C-on1, 
therefore, poWers on the component and then sets the predi 
cated register to a poWer-gating non-controllable state indi 
cating that the component has been poWered on, and adds one 
to the citing counter (initially Zero). With the value of the 
citing counter now 1, the value indicates that there is one 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
executing thread still requiring the component later. The 
predicated-poWer-on instruction C-on2 is the next predi 
cated-poWer-gating instruction executed in the may-happen 
in-parallel region 100. Because the predicated register is in 
the poWer-gating non-controllable state indicating that the 
component has been poWered on previously, the predicated 
poWer-on instruction C-on2 only adds one to the citing 
counter Without poWering on the component. With the value 
of the citing counter noW 2 (l+l:2), the value indicates that 
there are tWo executing threads still requiring the component 
later. The next predicated-poWer-gating instruction is the 
predicated-poWer-off instruction C-off3. The predicated 
poWer-off instruction C-off3 subtracts one from the citing 
counter. With the value of the citing counter now 1 (2—l:l) 
again, the value indicates that there is one executing thread 
still requiring the component later so that the predicated 
poWer-off instruction C-off3 doesn’t change the poWer state 
of the component. The predicated-poWer-off instruction 
C-offl is the next predicated-poWer-gating instruction, Which 
subtracts one from the citing counter. With the value of the 
citing counter noW 0 (l-lIO) again, the value indicates that 
there is no executing thread still requiring the component later 
so that the predicated-poWer-off instruction C-offl sets the 
predicated register to the poWer-gating controllable state and 
then sets the component to the sleep mode. 

HoWever, in some cases, the above mentioned method may 
Waste more energy. In a case Where Thread2 is executed after 
completely executing Threadl, the ?rst predicated-poWer 
gating instruction is the predicated-poWer-on instruction 
C-onl. Before executing C-onl, the predicated register is in 
its initial state-poWer-gating controllable state, Which indi 
cates that the component has not been poWered on yet. The 
predicated-poWer-on instruction C-on1 poWers on the com 
ponent, sets the predicated register to a poWer-gating non 
controllable state to indicate that the component has been 
poWered on, and adds one to the citing counter. The value of 
the citing counter is l (0+l:l), Which indicates that there is 
one executing thread still requiring the component later in the 
may-happen-in-parallel region 100. Assuming that the pro 
gram chooses the branch comprising BN3, the predicated 
poWer-off instruction C-offl is the next predicated-poWer 
gating instruction. The predicated-poWer-off instruction 
C-offl subtracts 1 from the citing counter. Because the value 
of the citing counter is noW 0 (l —l:0), the value indicates that 
Threadl ?nished the utiliZation of the component, and the 
predicated-poWer-off instruction C-offl sets the predicated 
register to the poWer-gating controllable state and then sets 
the component to the sleep mode. The next predicated-poWer 
gating instruction is the predicated-poWer-on instruction 
C-on2. Because the predicated register is in the poWer-gating 
controllable state (representing that the component is inac 
tive), the predicated-poWer-on instruction C-on2 poWers on 
the component, sets the predicated register to the poWer 
gating non-controllable state indicating that the component 
has been poWered on, and adds one to the citing counter. The 
value of the citing counter is now 1 (0+l:l), indicating that 
Thread2 still requires the component later. The next predi 
cated-poWer-gating instruction is the predicated-poWer-off 
instruction C-off3. C-off3 subtracts one from the citing 
counter. Because the value of the citing counter is 0 (l —l:0) 
noW, the value indicates that Thread2 ?nished the utiliZation 
of the component so that the predicated-poWer-off instruction 
C-off3 sets the predicated register to the poWer-gating con 
trollable state and then sets the component to the sleep mode. 

In this case, the component is poWered on and off in 
Threadl and then poWered on and off in Thread2. The rep 
etition of poWering on and off the component in one may 



US 7,904,736 B2 
7 

happen-in-parallel region may Waste more power than that 
Without using the poWer-gating control method. To reduce 
poWer dissipation generated by repeatedly powering on and 
off the component, the invention further provides a thread 
counter having an initial value equal to the total amount of the 
threads in the may-happen-in-parallel region. When execut 
ing the predicated-poWer-on instruction, the invention deter 
mines the state of the predicted register, poWers on the com 
ponent and sets the predicated register to the poWer-gating 
non-controllable state When the predicated register is in the 
poWer-gating controllable state, adds one to the citing 
counter, and subtracts one from the thread counter. When 
executing the predicated-poWer-off instruction, the invention 
subtracts one from the citing counter and determines the value 
of the citing counter and the thread counter. When both the 
citing counter and the thread counter are Zero, the predicated 
poWer-off instruction sets the predicated register to the 
poWer-gating controllable state and then sets the component 
to the sleep mode. 
When the invention comprising the thread counter is 

applied to the above mentioned example (completely execut 
ing Thread1 and then completely executing Thread2), the 
unnecessary poWering on and off is canceled. Referring to 
FIG. 2, the ?rst predicated-poWer-gating instruction is the 
predicated-poWer-on instruction C-on1. Before executing the 
predicated-poWer-on instruction C-on1, the predicted register 
is in its initial state-poWer-gating controllable state, indicat 
ing that the component has not been poWered on yet. The 
predicated-poWer-on instruction C-on1, therefore, poWers on 
the component and then sets the predicated register to the 
poWer-gating non-controllable state to indicate that the com 
ponent has been poWered on. In addition, the predicated 
poWer-on instruction C-on1 adds one to the citing counter and 
subtracts one from the thread counter (having an initial value 
of 2). The vale of the citing counter is l (0+l:l), indicating 
that Thread1 requires the component later. The value of the 
thread counter is l (2—l:l), indicating that the total amount 
of the unexecuted threads is one. Assuming that the program 
chooses the branch comprising BN3, the next predicted 
poWer-gating control instruction is the predicted-poWer-off 
instruction C-offl. C-offl subtracts one from the citing 
counter. The value of the citing counter is now 1 (l-OIO), 
indicating that Threadl ?nished the utiliZation of the compo 
nent. Although the value of the citing counter is Zero, the 
predicted-poWer-off instruction C-offl does not change the 
poWer state of the component because the value of the thread 
counter is not Zero (indicating that there are some threads left 
unexecuted in the may-happen-in-parallel region 100 and 
may require the component later). The next predicted-poWer 
gating instruction is the predicted-poWer-on instruction 
C-on2. Because the predicted register is in the poWer-gating 
non-controllable state (indicating that the component has 
been poWered on previously), the predicted-poWer-on 
instruction C-on2 does not have to poWer on the component. 
The predicted-poWer-on instruction C-on2 adds one to the 
citing counter and subtracts one from the thread counter. The 
value of the citing counter is now 1 (0+l:l), indicating that 
Thread2 requires the component later. The value of the thread 
counter is noW 0 (l-OIO), indicating that no thread are left 
unexecuted in the may-happen-in-parallel region 100. The 
next predicted-poWer-gating instruction is the predicted 
poWer-off instruction C-off3. C-off3 subtracts one from the 
citing counter. The value of the citing counter is noW 0 
(l-lIO), indicating that no executing thread requires the 
component later. Because both the citing counter and the 
thread counter are Zero (indicating that all threads of the 
may-happen-in-parallel region 100 ?nished the utiliZation of 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
the component), the predicted-poWer-off instruction C-off3 
sets the component to the sleep mode. 
The above mentioned poWer-gating control methods, hoW 

ever, may not reduce the poWer dissipation in some multi 
thread programs. The conventional poWer-gating control 
methodsiarranging a poWer-on instruction at the start of the 
may-happen-in-parallel region and arranging a poWer-off 
instruction at the end of the may-happen-in-parallel regioni 
may reduce more poWer dissipation than the poWer-gating 
control methods of the invention. The invention further dis 
closes a decision-making rule determining Whether the 
poWer-gating control methods of the invention save more 
poWer than the conventional poWer-gating control method. 
After con?rming that the poWer-gating control methods of the 
invention save more poWer than the conventional one, the 
poWer-gating control methods of the invention are adopted. 

In one embodiment, the decision-making rule is the fol 
loWing inequality: 

E pseudoion (C ) + Epseudo’ojf (C) 
M(C) +M(C) > K>< 

Pleak(C) — Prleak(C) 

When the inequality is satis?ed, the poWer-gating control 
method of the invention saves more poWer than the conven 

tional one. C represents the component. M(C):minvi5S(i,C) 
and M(C):minvi6(i,C), Wherein i represents the thread num 
ber, BYLC) represents the time difference betWeen the start of 
the ith thread and the time point the ith thread starts to use the 
component C, and 6(i,C) represents the time difference 
betWeen the time point the ith thread ?nishes the use of the 
component C and the end of the ith thread. PZeak(C) represents 
the poWer consumption due to current leakage When the com 
ponent C is active. P,Zeak(C) represents the poWer consump 
tion due to current leakage When the component C is inactive. 
K indicates the total amount of the threads. EPSEMdOJAC) 
represents energy dissipation While executing the predicted 
poWer-on instruction Without poWering on the component C. 
EPSeud0i017(C) represents energy dissipation While executing 
the predicted-poWer-off instruction Without poWering off the 
component C. 

Referring to FIG. 1, C represents the component being 
poWer-gating controlled. Thread1 and Thread2 are numbered 
‘ l ’ and ‘2’, respectively. The total amount of the threads is 2, 
that means K:2. 15(l,C):2 and 5(2,C):3 so that 
M(C):min(2,3):2. 6(1,C) may be 2 When the program 
chooses the branch c_omprising B”+3 or 3 When the program 
chooses the branch comprising B”+4 and BN5. 
6(2,C):2><3+l:7 since the loop of Thread2 repeats at least 
three times. Therefore, M(C):min(2,3,7):2. The summation 
ofM(C) and M(C) is 4.— 

In one embodiment, both EPSEMdOJAC) and EpseudoioAC) 
are 5, PZeak(C) is 7, and P?eak(C) is Zero. 

XX _ 

Pleak(C)_Prleak(C) 7-0 7 , 

Which is smaller than the value of M(C)+M(C). In the case, 
the poWer- gating control methods of the inWmtion save more 
poWer than the conventional one. 

In addition to directly poWering off the component, multi 
threshold voltage control or any hardWare control techniques 
can all be applied to reduce the poWer dissipation When the 
poWer-gating control methods of the invention suggest setting 
the component to the sleep mode. 



US 7,904,736 B2 

Although the above mentioned embodiments only com 
prise a single poWer-gating controllable component, the 
invention can further be applied to designs comprising a 
plurality of poWer-gating controllable components. The 
design may be a computer system, and the poWer-gating 
controllable components may be an integer multiplexer, a 
?oating point adder, a ?oating point multiplexer, a ?oating 
point divider, etc., of the computer system. 

The amount of the predicted registers, citing counters, 
thread counters increases With the increasing amount of the 
poWer-gating controllable components. For example, in a 
system comprising N poWer-gating controllable components, 
the above mentioned poWer- gating control techniques require 
N citing counters and N thread counters. To reduce the 
amount of the citing counters and the thread counters, the 
invention further discloses poWer-gating controllable meth 
ods merging the predicted-poWer-gating instructions of a sig 
nal thread. In such cases, the components share a single 
predicted register, a single citing counter, and a single thread 
counter. 

In some embodiments, the poWer-gating control methods 
obtains information on the utiliZation statuses of the compo 
nents in a plurality of threads of a may-happen-in-parallel 
region, arranges a predicted-poWer-on instruction in each 
thread for each component, and arranges a predicted-poWer 
off instruction in each thread for each component. In each 
thread, each predicted-poWer-on instruction is arranged prior 
to the utiliZation of its corresponding component, and each 
predicted-poWer-off instruction is arranged after the utiliZa 
tion of the corresponding component. FIG. 3 shoWs a control 
?oW graph for a may-happen-in-parallel region 200 compris 
ing tWo threads of a multi-thread program. Thread2 com 
prises a loop repeating at least three times. Referring to FIG. 
3, the system comprises three poWer-gating controllable com 
ponents FUl, FU2, and FU3 . After analyZing the utiliZation of 
the components FUl, FU2, and FU3, predicted-poWer-on 
instructions C-on1~C-on6 and predicted-poWer-off instruc 
tions C-offl~C-off8 are arranged into the program, Wherein 
‘W’ indicates that the program requires the component at that 
time point. 

According to the control ?oW graph comprising the 
arranged predicted-poWer-gating instructions (FIG. 3), the 
invention determines Whether the predicted-poWer-gating 
instructions for different components in one thread are mer 
geable. When they are mergeable, the invention provides a 
merged predicted-poWer-on instruction to replace the pre 
dicted-poWer-on instructions in the thread and provides a 
merged predicted-poWer-off instruction to replace the pre 
dicted-poWer-off instructions in the thread. 

FIG. 4 shoWs hoW the grouped predicted-poWer-gating 
control instructions replace the predicted-poWer-gating 
instructions shoWn in FIG. 3. Referring to FIG. 4, the com 
ponent FU2 is the ?rst poWer-gating controllable component 
used in Thread1 and its utiliZation starts at Bm+3, so that a 
grouped predicted-poWer-on instruction is arranged prior to 
Bm+3 to replace the predicted-poWer-on instructions C-on1, 
C-on2 and C-on3 shoWn in Thread1 of FIG. 3. The grouped 
predicted-poWer-on instruction C-C-onl determines Whether 
the components FUl, FU2, and FU3 have been poWered on. 
When the components FUl, FU2, and FU3 are still inactive, 
the grouped predicted-poWer-on instruction C-C-onl poWers 
on the components FUl, PU2 and FU3 at the same time. 
Referring to FIG. 4, component FUl is the ?rst poWer-gating 
controllable component used in Thread2 and its utiliZation 
starts at EH3, so that a grouped predicted-poWer-on instruc 
tion C-C-on2 is arranged prior to Bi+3 to replace the pre 
dicted-poWer-on instructions C-on4, Con5, C-on6 shoWn in 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
Thread2 of FIG. 3. The predicted-poWer-on instruction C-C 
on2 determines Whether the components FUl, FU2, and FU3 
have been poWered on, and poWers on all the components 
FUl, PU2 and FU3 together When the components FUl, FU2, 
and FU3 are inactive. 

Referring to FIG. 4, When the program chooses the branch 
comprising BN3, component FU2 is the last poWer-gating 
controllable component used in Threadl and its utiliZation 
ends at BN3. The invention arranges a grouped predicted 
poWer-off instruction C-C-offl after B”+3 to replace the pre 
dicted-poWer-off instructions C-offl, C-off2, and C-off4 
shoWn in Thread1 of FIG. 3. The grouped predicted-poWer 
off instruction C-C-offl determines Whether the components 
FUl, FU2, or FU3 are still required later in the may-happen 
in-parallel region 200. When they are not required later, the 
grouped predicted-poWer-off instruction C-C-offl poWers off 
all the components FUl, FU2, and FU3 together. Referring to 
FIG. 4, When the program chooses the branch comprising 
B”+4 and BN5, components PU2 and FU3 are the last poWer 
gating controllable components used in Thread1 and their 
utiliZation end at BN4. The invention arranges a grouped 
predicted-poWer-off instruction C-C-off2 after B”+4 to 
replace the predicted-poWer-off instructions C-offl, C-off3, 
and C-off5 shoWn in Threadl of FIG. 3. The grouped pre 
dicted-poWer-off instruction C-C-off2 determines Whether 
the components FUl, FU2, or FU3 are still required later in the 
may-happen-in-parallel region 200. When they are not 
required later, the grouped predicted-poWer-off instruction 
C-C-off2 poWers off all the components FUl, FU2, and FU3 
together. Referring to FIG. 4, component FU2 is the last 
poWer-gating controllable component used in Thread2 and its 
utilization ends at Bj+3. The invention arranges a grouped 
predicted-poWer-off instruction C-C-off3 after B].+3 to replace 
the predicted-poWer-off instructions C-off6, C-off7 and 
C-off8 in Thread2 of FIG. 3. The grouped predicted-poWer 
off instruction C-C-off3 determines Whether the components 
FUl, FU2, or FU3 are still required later in the may-happen 
in-parallel region 200. When they are not required later, the 
grouped predicted-poWer-off instruction C-C-off3 poWers off 
all the components FUl, FU2, and FU3 together. 

In some embodiments, the invention further provides a 
predicted register and a citing counter. The initial state of the 
predicted register is a poWer-gating controllable state, and the 
initial value of the citing counter is Zero. Referring to FIG. 4, 
in a case that the thread of the may-happen-in-parallel region 
200 are executed by the folloWing order: portion of Thread1 
(Bm+l~Bm+3), the complete Thread2 (Bl.+l~Bj+6), and rest of 
Thread1 (Bm+4~Bn+7), the ?rst poWer-gating control instruc 
tion is the grouped predicted-poWer-on instruction C-C-onl. 
C-C-onl determines the state of the predicted register. 
Because the predicted register is in its initial stateithe 
poWer-gating controllable state, indicating that all compo 
nents FUl, PU2 and FU3 have not been poWered on yet, 
C-C-onl poWers on all the components FUl, FU2, and FU3 
together and then sets the predicted register to a poWer- gating 
non-controllable state to indicate that the components FUl, 
FU2, and FU3 have been poWered on. The grouped predicted 
poWer-on instruction C-C-onl further adds one to the citing 
counter, irrelevant of the predicted register state, to record the 
amount of executing threads requiring any of the components 
FUl, FU2, and FU3 later in the may-happen-in-parallel region 
200. The value of the citing counter, therefore, is now 1 
(0+l:l). The next poWer-gating control instruction is the 
grouped predicted-poWer-on instruction C-C-on2. Because 
the predicted register is in the poWer-gating non-controllable 
state indicating that the components FUl, FU2, and FU3 have 
been poWered on previously, C-C-on2 does nothing to the 



US 7,904,736 B2 
11 

power state of the components FUl, FU2, and FU3 to avoid 
repeating the poWer-on action. The grouped predicted-poWer 
on instruction C-C-on2 only adds one to the citing counter, 
and the value of the citing counter is noW 2 (1 +1:2), indicat 
ing that both Threadl and Thread2 require any of the com 
ponents FUl, FU2, and FU3 later. The next poWer-gating 
control instruction is the grouped predicted-poWer-off 
instruction C-C-off3. C-C-off3 subtracts one from the citing 
counter to indicate that Thread2 does not need the compo 
nents FUl, FU2, and FU3 later so that the value of the citing 
counter is 1 (2—1:1). Because the value of the citing counter 
is not Zero, it means that Threadl still require any of the 
components FUl, FU2, and FU3 later, so that the grouped 
predicted-poWer-off instruction C-C-off3 does not proceed 
With the poWer-off action. Depending on the branch chosen 
by the program, the next poWer-gating control instruction 
may be C-C-offl or C-C_off2. When the branch comprising 
B”+3 is chosen, the grouped predicted-poWer-off instruction 
C-C-offl is the next poWer-gating control instruction. C-C 
offl subtracts one from the citing counter. The value of the 
citing counter is noW 0 (1 —1:0), indicating that both Threadl 
and Thread2 ?nished the use of the components FUl, FU2, 
and FU3, so that the grouped predicted-poWer-off instruction 
C-C-offl sets the predicted register to the poWer-gating con 
trollable state and then sets the components FUl, FU2, and 
FU3 to the sleep mode to reduce poWer consumption caused 
by current leakage. 

In some cases, the original arrangement of the predicted 
poWer-gating instructions saves more poWer than the grouped 
predicted-poWer-gating instructions. In some embodiments, 
the invention further discloses an inequality, 

2 [(MW) — V + MW) — M) X (PM (C) — Prleak (CD1 < 
VC 

The grouped predicted-poWer-gating instructions save more 
energy When the inequality is satis?ed. C represents the com 
ponent. M(C):minvi5(i,C) and M(C):minvi6(i,C), Wherein i 
represents the thread number, BTiZC) represents the time dif 
ference betWeen the start of the ith thread and the time point 
the ith thread starts to use the component C, and 6(i,C) rep 
resents the time difference betWeen the time poTnt the ith 
thread ends the utiliZation of the component C and the end of 
the ith thread. M:minvCM(C) and M:minvCM(C). PZeak(C) 
represents poWer consumption cuHent leakgge When the 
component C is active. P,Zeak(C) represents poWer consump 
tion current leakage While the component C is inactive. K is 
the total amount of threads in the may-happen-in-parallel 
region. Epseudoion represents energy dissipation of a grouped 
predicted-poWer-on instruction that does not execute a 
poWer-on action. Epseudoiofrepresents energy dissipation of a 
grouped predicted-poWer-off instruction that does not 
execute a poWer-off action. KC represents the total amount of 
threads for the component C. Epseudoion (C) represents energy 
dissipation of the predicted-poWer-on instruction of the com 
ponent C, Wherein the predicted-poWer-on instruction does 
not execute a poWer-on action on the component C. 
EpseudoioAC) represents energy dissipation of the predicted 
poWer-off instruction of the component C, Wherein the pre 
dicted-poWer-off instruction does not execute a poWer-off 
action on the component C. 

Referring to FIG. 3, Thread1 and Thread2 are numbered 
‘1’ and ‘2’, respectively. The total amount of the threads is 2, 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
K:2. KFUIIKFUQIKFIBI2. 15(1,FUl):3 and 5(2,FUl):2, so 
that M(FUl):minvi5(i,FUl):2. 5(1,FU2):2 and 5(2,FU2):3, 
so that M(FU2):minvl-5(i,FU2):2. 15(1,FU3):3 and 
15(2,FU3):3, so that M(FU3):minvl-15(i,FU3):3. Therefore, 
M:min(M(FUl),M(FU2),M(FU3)):min(2,2,3):2. 

Depending on the branch chosen by the program, 6(1 ,FUl) 
may be 3 (equal to 1+2) or 4 (equal to 2+2), 6(1,FU2) may be 
2 or 3 (equal to 1+2). 6(1,FU3) may be 3 (equal to 1+2) or 3 
(equal to 1+2). _ Because 6(2,FU1):1+2><3+1:8, 
6(2,FU2):2><3+1:7, and 5(2,FU3):1+2><3+1:8, 
M(FUl):minvl-6(i,FU1):3, M(FU2):_minvl-6(i,FU2):2 and 
M(FU3):minvl-5(i,FU3):3, 51d M:min(M(FUl),M(FU2), 
M(FU3)):2. _ — — — 

—The processor further substitutes the values of PZeak(FU1) 
~PZeak(FU3)$ PrZeak(FU1)~PrZeak(FU3)$ Epseudoion? pseudoio? 
EpmduxFUl>~EPS.....O,O.<FU3>, and EPWOMFU» 
E SeMd0i017(FU3) into the inequality to determine that Whether 
tliue grouped predicted-poWer-gating instructions shoWn in 
FIG. 4 save more energy than the predicted-poWer-gating 
instructions shoWn in FIG. 3. 
The invention further discloses poWer-gating control 

mechanisms realiZing the above mentioned poWer-gating 
control methods. FIG. 5 shoWs one embodiment of the sys 
tem, comprising a component 502, a compiler (not shoWn), a 
poWer-gating controller 504, a poWer-gating control register 
506, a sWitch 508 and a predicted register 510. The compo 
nent 502 is controlled by a poWer sWitch 512 and is sWitched 
betWeen an active mode and an inactive mode. When the 
poWer-gating control mechanism is applied to computer sys 
tems, the component 502 may be an operation component, 
such as an integer multiplier, a ?oating point adder, a ?oating 
point multiplier, or a ?oating point divider, etc., or a periph 
eral device of a processor. The sWitch 508 is coupled betWeen 
the poWer-gating controller 504 and the poWer-gating control 
register 506, and is activated When the predicted register 510 
is in a poWer-gating controllable state. The initial state of the 
predicted register 510 is poWer-gating controllable state. 
When compiling a multi-thread program, the compiler 

obtains the may-happen-in-parallel regions of the program. 
The compiler obtains information on the utiliZation of the 
component 502 in a plurality of threads of a may-happen-in 
parallel region, arranges a predicted-poWer-on instruction in 
each thread prior to the utiliZation of the component 502, and 
arranges a predicted-poWer-off instruction in each thread 
after the utiliZation of the component 502. When executing 
the predicted-poWer-on instruction, the poWer-gating con 
troller 504 determines the state of the predicted register 510. 
When the predicted register 510 is in the poWer-gating con 
trollable state, the sWitch 508 is activated and the poWer 
gating controller 504 sets the poWer-gating control register 
506 to a poWer-on state (conducting the poWer sWitch 512) 
and then sets the predicted register 506 to a poWer-gating 
non-controllable state indicating that the poWer-sWitch 512 
has been activated. When executing the predicted-poWer-off 
instruction, the poWer-gating controller 504 determines 
Whether the component 502 is required later in the may 
happen-in-parallel region. When the component 502 is not 
required later, the poWer-gating controller 504 sets the pre 
dicted register 510 to the poWer-gating controllable state to 
activate the sWitch 508 and then sets the poWer-gating control 
register 506 to a poWer-off state to deactivate the poWer 
sWitch 512. 

FIG. 6 shoWs another embodiment of the poWer-gating 
control mechanism of the invention. Compared With FIG. 5, 
FIG. 6 further comprises a citing counter 606 having an initial 
value of Zero. The value of the citing counter 606 indicates 
that the amount of executing threads requiring the component 



US 7,904,736 B2 
13 

602 later in the may-happen-in-parallel region. Compared to 
the poWer-gating controller 504, When executing the pre 
dicted-poWer-on instruction, the poWer-gating controller 604 
further adds one to the citing counter 606 to indicate that one 
more executing thread requires the component 602 later. 
Compared to the poWer-gating controller 504, When execut 
ing the predicted-poWer-off instruction, the poWer-gating 
controller 606 further subtracts one from the citing counter 
606 (to indicate that the executing thread does not require the 
component 602 later) and determines the value of the citing 
counter 606. When the citing counter 606 is Zero, it means that 
the executing threads all ?nished the use of the component 
602 and the component 602 can be set to a sleep mode. 

FIG. 7 shoWs yet another embodiment of the poWer- gating 
control mechanism of the invention. Compared to FIG. 5, 
FIG. 7 further comprises a citing counter 706 and a thread 
counter 708. The initial value of the citing counter is Zero and 
the thread counter has an initial value equal to the total 
amount of the threads of the may-happen-in-parallel region. 
The value of the citing counter 706 indicates the amount of 
executing threads that still require the component 702 later in 
the may-happen-in-parallel region. The value of the thread 
counter 708 indicates the amount of thread that has not begun 
to be executed. Compared to the poWer-gating controller 504, 
When executing the predicted-poWer-on instruction, the 
poWer-gating controller 704 further adds one to the citing 
counter 706 and subtracts one from the thread counter 708. 
Compared to the poWer-gating controller 504, When execut 
ing the predicted-poWer-off instruction, the poWer-gating 
controller 704 further subtracts one from the citing counter 
706 and then determines the values of the citing counter 706 
and the thread counter 708. When the values of the citing 
counter 706 and the thread counter 708 are both Zero, it means 
that the utiliZation of the component 702 is ?nished in the 
may-happen-in-parallel region and the component 702 can be 
set to the sleep mode. 

In some embodiments, the poWer-gating control mecha 
nism of the invention comprises a plurality of components. 
FIG. 8 shoWs an embodiment of the poWer-gating control 
mechanism comprising a plurality of poWer-gating control 
lable components FUI~FUN. The components FUl~FUN 
each corresponds to a poWer sWitch controlling the poWer 
state of the corresponding component. Referring to FIG. 8, 
the poWer-gating control mechanism comprises the compo 
nents FUI~FUN, a plurality of poWer-gating control registers 
prgl~prgN, a plurality of sWitches SW 1~SWN, and a plurality 
of predicted registers crl~crN. Similar to the poWer-gating 
controller 504 shoWn in FIG. 5, the poWer-gating controller 
802 controls the value of the predicted registers crl~crN 
according to the predicted-poWer-on/poWer-off instructions, 
Wherein the predicted registers crl~crN control the states of 
the sWitches SWl~SWN. 

The amount of the poWer-gating control registers, sWitches 
and predicted registers increase With the increasing number 
of poWer-gating controllable components, thus occupying 
larger areas and may Waste more energy. FIG. 9 shoWs 
another embodiment of the poWer- gating control mechanism 
of the invention. Referring to FIG. 9, the poWer-gating control 
registers prgl~prgN, the sWitches SWl~SWN and the pre 
dicted registers crl~crN shoWn in FIG. 8 are replaced by a 
single poWer-gating control register 902, a single sWitch 904 
and a single predicted register 906, respectively. The poWer 
sWitches of all components FUl~FUN are uniformly con 
trolled by the poWer-gating control register 902. The sWitch 
904 is coupled betWeen the poWer-gating controller 908 and 
the poWer-gating control register 902, and activated or deac 
tivated according to the state of the predicted register 906. The 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
initial state of the predicted register 906 is a poWer-gating 
controllable state, Which activates the sWitch 904. 
The poWer-gating control mechanism further comprises a 

compiler (not shoWn in FIG. 9), Which obtains information on 
the utiliZation of the components FU1~FUN in a plurality of 
threads of a may-happen-in-parallel region, arranges a pre 
dicted-poWer-on instruction for each component in each 
thread, and arranges a predicted-poWer-off instruction for 
each component in each thread. In each thread, each pre 
dicted-poWer-on instruction is arranged prior to the utiliZa 
tion of the corresponding component, and each predicted 
poWer-off instruction is arranged after the utiliZation of the 
corresponding component. After arranging the predicted 
poWer-gating instructions, the compiler determines Whether 
the predicted-poWer-gating instructions in one thread are 
mergeable. When the poWer-gating control instructions are 
mergeable, the compiler provides a grouped predicted 
poWer-on instruction into the thread to replace the predicted 
poWer-on instructions in the thread, and provides a grouped 
predicted-poWer-off instruction in the thread to replace the 
predicted-poWer-off instructions in the thread. 
When executing the grouped predicted-poWer-on instruc 

tion, the poWer-gating controller 908 determines the state of 
the predicted register 906. When the predicted register 906 is 
in the poWer-gating controllable state Which means that the 
components FUl~FUN have not been poWered on yet, the 
sWitch 904 is activated and the poWer-gating controller 908 
sets the poWer-gating control register 902 to a poWer-on state 
to poWer on all components FUl~FUN at the same time. After 
poWering on the components FUl~FUN, the poWer-gating 
controller 908 sets the predicted register 906 to a poWer 
gating non-controllable state to indicate that all components 
FUl~FUN have already been poWered on. 
When executing the grouped predicted-poWer-off instruc 

tion, the poWer-gating controller 908 determines Whether the 
components FUl~FUN are required later in the may-happen 
in-parallel region. When the utiliZation of the components 
FUl~FUN are ?nished in the may-happen-in-parallel region, 
the components FUl~FUN can be set to a sleep mode. The 
poWer-gating controller 908 sets the predicted register 906 to 
the poWer-gating controllable state to activate the sWitch 904 
and then sets the poWer-gating control register 902 to a poWer 
off state to deactivate the poWer sWitches of all components 

FUl~FUN. 
FIG. 10 shoWs yet another embodiment of the poWer-gat 

ing control mechanism comprising a plurality of poWer-gat 
ing controllable components. Compared to FIG. 9, FIG. 10 
further comprises a citing counter 1002 having an initial value 
of Zero. Compared to the poWer-gating controller 908 shoWn 
in FIG. 9, the poWer-gating controller 1004 further adds one 
to the citing counter 1002 When executing the grouped pre 
dicted-poWer-on instruction, to indicate the amount of 
executing threads that still require any of the components 
FUl~FUN later. Compared to poWer-gating controller 908, 
When executing the grouped predicted-poWer-off instruction, 
the poWer-gating controller 1004 further subtracts one from 
the citing counter 1002 and then determines the value of the 
citing counter 1002. When the citing counter 1002 is Zero, it 
means that the executing threads all ?nished the use of the 
components FUl~FUN and all the components FUl~FUNcan 
be set to the sleep mode. 

While the invention has been described by Way of example 
and in terms of embodiments, it is to be understood that the 
invention is not limited thereto. To the contrary, it is intended 
to cover various modi?cations and similar arrangements (as 
Would be apparent to those skilled in the Art). Therefore, the 
scope of the appended claims should be accorded to the 



US 7,904,736 B2 
15 

broadest interpretation so as to encompass all such modi?ca 
tions and similar arrangements. 

What is claimed is: 
1. A poWer-gating control method, comprising: 
obtaining information on a utilization of a component in a 

plurality of threads of a may-happen-in-parallel region; 
arranging a predicted-poWer-on instruction in each thread 

prior to the utiliZation of the component; and 
arranging a predicted-poWer-off instruction in each thread 

after the utiliZation of the component; 
Wherein the predicted-poWer-on instructions each deter 
mine Whether the component has already been poWered 
on, and poWer on the component When the component 
has not been poWered on yet; 

Wherein the predicted-poWer-off instructions each deter 
mine Whether the component is required later in the 
may-happen-in-parallel region, and poWers off the com 
ponent When the component is not required later in the 
may-happen-in-parallel region. 

2. The poWer-gating control method as claimed in claim 1, 
further comprising: 

providing a predicted register, having an initial state of a 
poWer-gating controllable state; and 

providing a citing counter, having an initial value of Zero. 
3. The poWer-gating control method as claimed in claim 2, 

Wherein the behavior of the predicted-poWer-on instruction 
comprises: 

determining the state of the predicted register and, When 
the predicted register is in the poWer-gating controllable 
state, poWering on the component and setting the pre 
dicted register to a power-gating non-controllable state; 
and 

adding one to the citing counter. 
4. The poWer-gating control method as claimed in claim 3, 

Wherein the behavior of the predicted-poWer-off instruction 
comprises: 

subtracting one from the citing counter; 
determining the value of the citing counter and, When the 

citing counter is Zero, setting the predicted register to the 
poWer-gating controllable state; and 

determining the state of the predicted register and, When 
the predicted register is in the poWer-gating controllable 
state, poWering off the component. 

5. The poWer-gating control method as claimed in claim 2, 
further comprising providing a thread counter having an ini 
tial value equal to the total amount of the threads. 

6. The poWer-gating control method as claimed in claim 5, 
Wherein the behavior of the predicted-poWer-on instruction 
comprises: 

determining the predicted register and, When the predicted 
register is in the poWer-gating controllable state, poWer 
ing on the component and setting the predicted register 
to a poWer-gating non-controllable state; 

adding one to the citing counter; and 
subtracting one from the thread counter. 
7. The poWer-gating control method as claimed in claim 6, 

Wherein the behavior of the predicted-poWer-off instruction 
comprises: 

subtracting one from the citing counter; 
determining the value of the citing counter and the thread 

counter and, When both the values of the citing counter 
and the thread counter are Zero, setting the predicted 
register to the poWer-gating controllable state; and 

determining the state of the predicted register and, When 
the predicted register is in the poWer-gating controllable 
state, poWering off the component. 

10 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
8. The poWer-gating control method as claimed in claim 1, 

further comprising determining Whether the poWer- gating 
control method is more poWer-saving than a common poWer 
gating control method that arranges a poWer-on instruction at 
the start of the may-happen-in-parallel region and a poWer-off 
instruction at the end of the may-happen-in-parallel region 
and, When the poWer-gating control method is more poWer 
saving than the common poWer- gating control method, adopt 
ing the poWer-gating control method. 

9. The poWer-gating control method as claimed in claim 8, 
further comprising a decision regarding the poWer-gating 
control method as being more poWer- saving than the common 
poWer-gating control method When an inequality is satis?ed, 
Wherein the inequality is 

Where 
C represents the component, 
M(C):minvi5(i,C), in Which i represents the thread num 

ber, and 5(i,C) indicates a time difference betWeen the 
start of the ith thread and the time point the ith thread 
starts using the component C, 

M(C):minvi6(i,C), in Which 6(i,C) represents the time 
—differencebetWeen the time point the ith thread ?nishes 

using the component C and the end of the ith thread, 
PZeak(C) represents the poWer consumption due to current 

leakage When the component C is active, 
P?eak(C) represents the poWer consumption due to current 

leakage When the component C is inactive, 
K represents the total amount of the threads, 
EpseudoioxC) represents energy dissipation While execut 

ing the predicted-poWer-on instruction Without poWer 
ing on the component C, and 

EpseudoioAC) represents energy dissipation While execut 
ing the predicted-poWer-off instruction Without poWer 
ing off the component C. 

10. A poWer-gating control method, comprising: 
obtaining information on a utiliZation of a plurality of 

components in a plurality of threads of a may-happen 
in-parallel region; 

arranging a predicted-poWer-on instruction for each com 
ponent in each thread prior to the utiliZation of the cor 
responding component; 

arranging a predicted-poWer-off instruction for each com 
ponent in each thread after the utiliZation of the corre 
sponding component; and 

determining Whether the predicted-poWer-on instructions 
in one thread are mergeable and Whether the predicted 
poWer-off instructions in the thread are mergeable and, 
When the predicted-poWer-on instructions in the thread 
are mergeable and the predicted-poWer-off instructions 
in the thread are mergeable, providing a grouped pre 
dicted-poWer-on instruction to replace the predicted 
poWer-on instructions in the thread and a grouped pre 
dicted-poWer-off instruction to replace the predicted 
poWer-off instructions in the thread; 

Wherein the grouped predicted-poWer-on instruction deter 
mines Whether the components have been poWered on 
and, When the components have not been poWered on 
yet, poWers on all the components together; 

Wherein the grouped predicted-poWer-off instruction 
determines Whether the components are required later in 
the may-happen-in-parallel region and, When the com 
ponents are not required later in the may-happen-in 
parallel region, poWers off all the components together. 



US 7,904,736 B2 
17 

11. The poWer-gating control method as claimed in claim 
10, further comprising: 

providing a predicted register, having an initial state of a 
poWer-gating controllable state; and 

providing a citing counter, having an initial value of zero. 
12. The poWer-gating control method as claimed in claim 

11, Wherein the behavior of the grouped predicted-poWer-on 
instruction comprises: 

determining the state of the predicted register and, When 
the predicted register is in the poWer-gating controllable 
state, poWering on all the components together and set 
ting the predicted register to a poWer-gating non-con 
trollable state; and 

adding one to the citing counter. 
13. The poWer-gating control method as claimed in claim 

12, Wherein the behavior of the grouped predicted-poWer-off 
instruction comprises: 

subtracting one from the citing counter; 
determining the value of the citing counter and, When the 

citing counter is zero, setting the predicted register to the 
poWer-gating controllable state; and 

determining the state of the predicted register and, When 
the predicted register is in the poWer-gating controllable 
state, poWering off all the components together. 

14. The poWer-gating method as claimed in claim 10, fur 
ther comprising a decision regarding the predicted-poWer-on 
instructions in one thread as mergeable and the predicted 
poWer-off instructions in the thread as mergeable When an 
inequality is satis?ed, Wherein the inequality is 

2 [(VW) — M + MW) — M) X (PM (C) — Prleak (CD1 < 
VC 

Where 
C represents one of the components, 
M(C):minvi5(i,C), in Which i represents the thread num 

ber, 5(i,C) indicates the time difference betWeen the start 
of the ith thread and the time point the ith thread starts 
using the component C; 

M(C):minvi6(i,C), in Which 6(i,C) represents the time 
—difference_betWeen the time point the ith thread ?nishes 

using the component C and the end of the ith thread, 
M:minvCM(C), 
M:minvCM(C), 
P—Zeak(C) re?'esents the poWer consumption due to current 

leakage When the component C is active, 
P,Zeak(C) represents the poWer consumption due to current 

leakage When the component C is inactive, 
K represents the total amount of the threads, 
Epseudoion represents energy dissipation While executing 

the grouped predicted-poWer-on instruction Without 
poWering on the components, 

Epseudoiof represents energy dissipation While executing 
the grouped predicted-poWer-off instruction Without 
poWering off the components, 

KC represents the total amount of the threads relating to the 
component C, 
SeMdLOAC) represents energy dissipation While execut 
ing the predicted-poWer-on instruction Without poWer 
ing on the component C, and 
seudoioAC) indicates energy dissipation While executing 
the predicted-poWer-off instruction Without poWering 
off the component C. 

E 

E 

20 

25 

30 

35 

40 

50 

55 

60 

18 
15. A poWer-gating control mechanism, comprising: 
a component, comprising a poWer sWitch controlling the 
poWer of the component; 

a compiler, obtaining information on a utilization of the 
component in a plurality of threads of a may-happen-in 
parallel region, arranging a predicted-poWer-on instruc 
tion in each thread prior to the utilization of the compo 
nent, and arranging a predicted-poWer-off instruction in 
each thread after the utilization of the component; 

a poWer-gating controller; 
a poWer-gating control register, controlled by the poWer 

gating controller to determine the state of the poWer 

sWitch; 
a sWitch, coupled betWeen the poWer-gating controller and 

the poWer-gating control register; and 
a predicted register, controlling the sWitch, and having an 

initial state of a poWer-gating controllable state that acti 
vates the sWitch; 

Wherein the poWer- gating controller determines the state of 
the predicted register When the predicted-poWer-on 
instruction is executed and, When the predicted register 
is in the poWer-gating controllable state, sets the poWer 
gating control register to a poWer-on state and sets the 
predicted register to a poWer-gating non-controllable 
state; 

Wherein the poWer-gating controller determines Whether 
the component is required later in the may-happen-in 
parallel region When the predicted-poWer-off instruction 
is executed and, When the component is not required 
later, sets the predicted register to a poWer-gating con 
trollable state and sets the power-gating controllable 
register to a poWer-off state. 

16. The poWer-gating control mechanism as claimed in 
claim 15, further comprising a citing counter having an initial 
value of zero. 

17. The poWer-gating control mechanism as claimed in 
claim 1 6, Wherein the poWer- gating controller adds one to the 
citing counter When the predicted-poWer-on instruction is 
executed. 

18. The poWer-gating control mechanism as claimed in 
claim 17, Wherein the poWer-gating controller further 
executes the folloWing steps When the predicted-poWer-off 
instruction is executed, and the steps comprises: 

subtracting one from the citing counter; and 
determining the value of the citing counter and, When the 

citing counter is zero, recognizing the component as not 
to be required later in the thread. 

19. The poWer-gating control mechanism as claimed in 
claim 1 6, further comprising a thread counter having an initial 
value equal to the total amount of the threads. 

20. The poWer-gating control mechanism as claimed in 
claim 19, Wherein the poWer-gating controller further adds 
one to the citing counter and subtracts one from the thread 
counter When the predicted-poWer-on instruction is executed. 

21. The poWer-gating control mechanism as claimed in 
claim 20, Wherein the poWer-gating controller further 
executes the folloWing steps When the conditional-poWer-off 
instruction is executed, and the steps comprises: 

subtracting one from the citing counter; and 
determining the value of the citing counter and the thread 

counter and, When both the citing counter and the thread 
counter are zero, recognizing the component as not to be 
required later in the thread. 

22. A poWer-gating control mechanism, comprising: 
a plurality of components, each comprising a poWer 

sWitch; 




