(12)

US007650598B2

United States Patent

Lee et al.

(10) Patent No.:
(45) Date of Patent:

US 7,650,598 B2
Jan. 19, 2010

(54)

(735)

(73)

")

@

(22)

(65)

(1)
(52)

(58)

(56)

METHOD FOR ALLOCATING REGISTERS
FOR A PROCESSOR

Inventors: Jenq Kuen Lee, Tainan (TW); Yung
Chia Lin, Taipei (TW); Yi Ping Yu, Wu
Rih Township, Taichung County (TW)
Assignee: National Tsing Hua University,
Hsinchu (TW)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 752 days.
Appl. No.: 11/463,538
Filed: Aug. 9, 2006
Prior Publication Data
US 2008/0052694 A1l Feb. 28, 2008
Int. CL.
GO6F 12/00 (2006.01)
US.CL ... 717/144; 717/151; 717/156;
717/157
Field of Classification Search 717/144,

717/151, 156, 157; 711/109
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,571,678 A 2/1986 Chaitin
5367696 A * 1171994 ADE weovverrveereeesreennns 717/153
5,890,000 A * 3/1999 Aizikowitzetal. 717/154
5901317 A * 51999 Goebel ..orvvverveerreeen, 717/156
1$2A
{ [Tirst Tocal | |
14~ register file
40

5,946,491 A * 8/1999 Aizikowitzetal. 717/158
6,009,272 A * 12/1999 Goebel 717152
6,090,156 A * 7/2000 MacLeod 717157
6,139,200 A * 10/2000 Goebel 717/159
6,523,173 B1* 2/2003 Bergner etal. . .. 717/152
7,069,548 B2* 6/2006 Kushlis 717/156
7,086,045 B2* 82006 Park 717/151
7,305,665 B2* 12/2007 Kosekietal. 717/140
7,386,843 B2* 6/2008 Tarditiooovnviriinnnns 717/151
7,469,404 B2* 12/2008 Zhangetal. 717/156
OTHER PUBLICATIONS

G. J. Chaitin, “Register Allocation & Spilling Via Graph Coloring”,
IBM Research, ACM 0-89791-074-5/82/006/0098, 1982, pp.
98-105, IBM Research, Yorktown Heights, NY.

* cited by examiner

Primary Examiner—Thomas K Pham

(74) Attorney, Agent, or Firm—Egbert Law Offices PLL.C
57 ABSTRACT

A method of allocating registers for a PAC processor. The
PAC processor has a first cluster and a second cluster. Each
cluster includes a first functional unit, a second functional
unit, a first local register file connected to the first functional
unit, a second local register file connected to the second
register file, and a global register file having a ping-pong
structure formed by a first register bank and a second register
bank. After building a Component/Register Type Associated
Data Dependency Graph (CRTA-DDG), a functional unit
assignment, register file assignment, ping-pong register bank
assignment, and cluster assignment of the invention are per-
formed to take full advantage of the properties of a PAC
processor.

14 Claims, 15 Drawing Sheets

I?B 10
’ first local ,;‘;\/14
register file

e

register fi

third local

le

)

18

second local
register file

second local
register file

US 7,650,598 B2

Sheet 1 of 15

Jan. 19, 2010

U.S. Patent

0T

91

[
o

o
[~

o
o

~H
o

- ——— - - -

-

P i

9]1] Jo]S18aI
[800] puodss

911J I93S1301
18201 3sd1§

o e = = = = = = - hm = = e e i e am

81

)

911] I93S1391
JE20] pITy}

0¥

- —— s i - = ———— -

- —————— -,

911] I9}Sidaa
JBO0] pu0das

’
’
-"

9]1] JI9)S1301
[B20] 3811}

1
i
1
1
1
1
]
~
L}
1
1
1
]
1
A

-
[N]
—

| s
A Y
~
-

91

0¢

66

02

-~
yp—

U.S. Patent Jan. 19, 2010 Sheet 2 of 15 US 7,650,598 B2

Build a CRTA-DDG — 201

Y

Function unit assignment —~— 202

| |
Register file assignment —— 203

Ping-pong register bank assignment [~ 204

Cluster assignment —— 205

Y

Communication code insertion {— 206

FIG. 2

US 7,650,598 B2

Sheet 3 of 15

Jan. 19, 2010

U.S. Patent

€ IId

6NL ¢ INL < ENL Ppe - § UOTIonI}Sul

g « gNL TAOD : 7 UOTJONI}SUI

G « IN] TAOW : [UOT}ONI}SUI

ag0e—~(9 Ol

U.S. Patent Jan. 19, 2010 Sheet 4 of 15 US 7,650,598 B2

41<

U.S. Patent Jan. 19, 2010 Sheet 5 of 15 US 7,650,598 B2

411

iy, Wﬁ

‘*o
413 —
O\n O/\O M/1H421)

414 I M/1 422

mﬁEmMAM%
-
B

> 42

FIG. 4(b)

U.S. Patent Jan. 19, 2010 Sheet 6 of 15 US 7,650,598 B2

U.S. Patent Jan. 19, 2010 Sheet 7 of 15 US 7,650,598 B2

U.S. Patent Jan. 19, 2010 Sheet 8 of 15 US 7,650,598 B2

U.S. Patent Jan. 19,2010 Sheet 9 of 15

461

US 7,650,598 B2

452

M| o
I

I

B

FIG. 4(f)

L

U.S. Patent Jan. 19, 2010 Sheet 10 of 15 US 7,650,598 B2

US 7,650,598 B2

Sheet 11 of 15

Jan. 19, 2010

U.S. Patent

FIG. 4(h)

U.S. Patent Jan. 19, 2010 Sheet 12 of 15 US 7,650,598 B2

48

/

182

@ 484

group A . group B

FIG. 4(i)

U.S. Patent Jan. 19, 2010 Sheet 13 of 15 US 7,650,598 B2

(D : first register bank
@ : second register bank
® : local register file

FIG. 4(j)

U.S. Patent Jan. 19, 2010 Sheet 14 of 15 US 7,650,598 B2

Ma : first cluster
Ia : first cluster
Mb : second cluster
Ib : second cluster

FIG. 4(k)

U.S. Patent Jan. 19, 2010 Sheet 15 of 15 US 7,650,598 B2

490a 490b

FIG. 4(1)

US 7,650,598 B2

1

METHOD FOR ALLOCATING REGISTERS
FOR A PROCESSOR

RELATED U.S. APPLICATIONS

Not applicable.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

REFERENCE TO MICROFICHE APPENDIX

Not applicable.

FIELD OF THE INVENTION

The present invention relates to a method for allocating
registers for a processor, and more particularly, to a method
for allocating registers for a Parallel Architecture Core (PAC)
processor.

BACKGROUND OF THE INVENTION

Most computers contain a form of high-performance data-
storage elements called registers, which need to be used effec-
tively to achieve high performance at runtime. The process of
choosing language elements to allocate instructions to regis-
ters and the data movement required to use them is called
“register allocation.” Register allocation has a major impact
on the ultimate quality and performance of codes. A poor
allocation can degrade both code size and runtime perfor-
mance. However, finding a truly optimal solution has been
proven to be computationally intractable. Several general
approaches for register allocation have been proposed. For
example, register allocation by graph coloring was described
by Chaitin, et al. in Computer Languages, Vol. 6, pp 47-57,
and in U.S. Pat. No. 4,571,678, titled “Register Allocation
and Spilling via Graph Coloring.”

While there are register allocation algorithms for finding
good solutions in the prior art, they cannot directly apply to
the machine that utilizes multiple register files and complex
access constraints because the code insertion/replacement is
required in the register allocation to validate the code with the
allocated registers. This impacts the complexity of register
allocation problems in the machine.

BRIEF SUMMARY OF THE INVENTION

The objective of the present invention is to provide a
method for allocating registers for a PAC processor with
multiple register files and access constraints.

The PAC processor comprises a first cluster and a second
cluster. Each cluster comprises a first functional unit, a sec-
ond functional unit, a first local register file connected to the
first functional unit, a second local register file connected to
the second functional unit, and a global register file having a
ping-pong structure formed by a first register bank and a
second register bank. The global register file comprises a
single set of access ports shared by the first and second func-
tional units.

The method for allocating registers comprises steps (a)-(e).
In step (a), a Component/Register Type Associated Data
Dependency Graph (CRTA-DDG) comprising nodes, circles,
and edges is built, wherein each node represents an operator,
each circle represents an operand, the operand is a constant or
avirtual register required to be allocated to a physical register
in the machine level, and each edge represents a data depen-

20

25

35

40

45

50

55

60

65

2

dency between two operands. In step (b), a functional unit
assignment is performed for unassigned nodes on the CRTA-
DDG to determine which function units are assigned to
execute the unassigned nodes. In step (c), a register file
assignment is performed for unallocated circles on the CRTA-
DDG to determine which register files are allocated to the
unallocated circles. In step (d), a ping-pong register bank
assignment is performed for the circles assigned to global
register files in step (c). In step (e), a communication code is
inserted to make the operation work in the PAC DSP struc-
ture.

In addition, the method could further comprise a step of
performing a cluster assignment to partition the nodes on the
CRTA-DDG into two groups, assigning one group to the first
cluster and the other group to the second cluster.

The advantage of using the CRTA-DDG is that it clarifies
the allocation and schedule restrictions for each node with the
consideration of complex constraints in the PAC architecture.

The functional unit assignment, the register file assign-
ment, the ping-pong register bank assignment, and the cluster
assignment of the invention are performed to take full advan-
tage of the properties of a PAC processor, so as to obtain a
good performance of allocating registers.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The objectives and advantages of the present invention will
become apparent upon reading the following description and
upon reference to the accompanying drawings.

FIG. 1 is a schematic view illustrating the architecture of a
PAC processor.

FIG. 2 is a schematic view of a flow chart illustrating the
method for allocating registers according to one embodiment
of the present invention.

FIG. 3 shows a schematic view of an illustration of a
CRTA-DDG built from an input program fragment.

FIGS. 4(a) through 4(/) are schematic views illustrating the
process of allocating registers according to one embodiment
of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates the architecture of a Parallel Architecture
Core (PAC) processor 10. The PAC processor 10 comprises a
first cluster 12A and a second cluster 12B, wherein each
cluster 12A or 12B comprises a first functional unit 20, a
second functional unit 30, a first local register file 14 con-
nected to the first functional unit 20, a second local register
file 16 connected to the second functional unit 30, and a
global register file 22 having a ping-pong structure formed by
a first register bank B1 and a second register bank B2. Each
register file includes a plurality of registers.

Also, the PAC processor 10 comprises a third functional
unit 40, which is placed independently and outside the first
cluster 12A and the second cluster 12B. A third local register
file 18 is connected to the third functional unit 40.

The first functional unit 20 is a load/store unit (M-Unit), the
second functional unit 30 is an arithmetic unit (I-Unit), and
the third functional unit 40 is a scalar unit (B-unit). The third
functional unit 40 is in charge of branch operations and also
capable of performing simple load/store and address arith-
metic.

The global register files 22 are used to communicate across
clusters 12A and 12B; only the third functional unit 40, being
able to access all global register files 22, is capable of execut-
ing such copy operations across clusters 12A and 12B.

The first local register file 14, the second local register file
16, and the third local register file 18 are only accessible by
the M-Unit 20, I-Unit 30, and B-Unit 40, respectively.

US 7,650,598 B2

3

Each global register file 22 has only a single set of access
ports, shared by the M-Unit 20 and I-Unit 30. Each register
bank B1 or B2 of the global register file 22 can only be
accessed by either the first functional unit 20 or the second
functional unit 30 in an operation cycle, so these two func-
tional units 20, 30 can only access different banks B1 or B2 in
each operation cycle. This is an access constraint of the ping-
pong structure.

FIG. 2 illustrates a flow chart of a method for allocating
registers for the PAC processor 10 according to one embodi-
ment of the present invention.

Referring to FIG. 2, the method for allocating registers
requires building a Component/Register Type Associated
Data Dependency Graph (CRTA-DDG) (step 201) first,
which preserves the information of the execution and storage
relationship for processor constraint analysis. The advantage
of' using the CRTA-DDG is that it clarifies the allocation and
schedule restrictions for each node with the consideration of
complex constraints in the PAC architecture.

FIG. 3 shows a CRTA-DDG 30 built from an input program
fragment. The CRTA-DDG 30 comprises nodes, circles, and
edges. Each rectangular node is labeled with its component-
type association and represents an operator, whereas each
circle is labeled with its register-type association and repre-
sents an operand. Each edge represents a data dependency
between two operands.

The component-type association indicates which func-
tional unit is scheduled for this node. The M-Unit is sched-
uled for a node 301 and the I-Unit is scheduled for nodes 302
and 303. The nodes 301, 302 and 303 represent operators of
instruction 1 (movi), 2 (movi) and 3 (add), respectively.

The register-type association annotates the appreciated
physical register file/bank to where the operands will be allo-
cated. A Temporary Name (TN) represents a virtual register
required to be allocated to a physical register in the machine-
level intermediate representation used by Open Research
Compiler (ORC). The operand is a constant or a virtual reg-
ister. A circle 301 a represents a constant 5 in the instruction
1. A circle 302a represents a constant 6 in the instruction 2. A
circle 3015 represents a virtual register TN1 in the instruction
1. A circle 3025 represents a virtual register TN2 in the
instruction 2. Circles 303a, 3035, and 303¢ represent virtual
registers TN1, TN2, and TN3 in the instruction 3, respec-
tively. Edge 305 linking the circles 3015, 303a and edge 306
linking the circles 3025, 3035 represent data dependency that
serializes the execution order to be followed in the scheduled
code sequence.

FIGS. 4(a) through 4(/) illustrate the process for allocating
registers according to one embodiment of the present inven-
tion.

FIG. 4(a) shows a CRTA-DDG built from an input program
fragment. Nodes marked with M, I, B in the CRTA-DDG
represent operators assigned to the M-Units, [-Units and
B-Units, respectively. Nodes marked with M/I indicate that
they are not assigned to the M-Units or I-Units yet. Black
circles indicate virtual registers have been allocated to dedi-
cated registers or constants, whereas white circles indicate
virtual registers not allocated to register files yet.

Referring to FIG. 2, after building a CRTA-DDG (step
201), a functional unit assignment is performed for unas-
signed nodes on the CRTA-DDG (step 202) to determine
which function units are assigned to execute the unassigned
nodes.

FIGS. 4(b) through 4(g) illustrate the process of the step
202 performed on the CRTA-DDG. The main concept of the
step 202 is performing a functional unit assignment that
attempts to utilize as many local register files as possible, to
distribute operations to the M-unit and I-unit, roughly in
equal amounts, and to increase instruction level parallelism.

20

25

30

35

40

45

50

55

60

65

4

Preferably, all nodes on a critical path, i.e., the path with the
maximum number of nodes, in the graph operate on the same
functional unit so that their operands can be stored on local
register files. Therefore, the step 202 repeats the following
process until all nodes in the CRTA-DDG are assigned with
their own functional unit.

First, a longest data-flow path 41 comprising nodes 411,
412, 413, 414 and 415 is found in FIG. 4(a). The nodes 411,
413 and 414 operate either on the M-Unit or I-Unit, and
function units are not assigned to nodes 413 and 414 yet. The
nodes 413 and 414 are determined to be operated on the
M-Unit, as shown in FIG. 4(b).

Then, except for the data-flow path 41, another longest
data-flow path 42 is found in FI1G. 4(5). The data-flow path 42
comprises nodes 421, 422, and 423, wherein the nodes 421,
422 and 423 can be operated either on the M-Unit or I-Unit,
and its functional units are not assigned to the nodes 421, 422
and 423 yet. The nodes 421, 422 and 423 are determined to be
operated on the I-Unit, as shown in FIG. 4(c).

Except for the data-flow paths 41 and 42, another longest
data-flow path 43 is found in FIG. 4(¢). The data-flow path 43
comprises nodes 431 and 432, wherein the node 431 can be
operated either on the M-Unit or [-Unit, and its functional unit
is notassigned yet. The node 431 is determined to be operated
on the M-Unit, as shown in FIG. 4(d).

Likewise, another data-flow path 44 is found in FIG. 4(d).
The data-flow path 44 comprises nodes 441 and 442, wherein
the nodes 441 and 442 can be operated either on the M-Unit
or [-Unit, and the functional units are not assigned to them
yet. The nodes 441 and 442 are determined to be operated on
the I-Unit, as shown in FIG. 4(e).

Moreover, another longest data-flow path 45 is found in
FIG. 4(e). The data-flow path 45 comprises nodes 451 and
452, wherein the node 451 can be operated either on the
M-Unit or I-Unit, and its functional unit is not assigned yet.
The node 451 is determined to be operated on the M-Unit, as
shown in FIG. 4(f).

Finally, a node 461 whose functional unit is not assigned
yet is found in FIG. 4(f), and the node 461 is determined to be
operated on the I-Unit, as shown in FIG. 4(g).

Given the above, the functional unit assignment alternates
between the M-unit and I-unit in each iteration so as to bal-
ance the amount of nodes of the M-unit and I-Unit.

After determining the functional unit type of all unassigned
nodes (the step 202), aregister file assignment for unallocated
circles in the CRTA-DDG (step 203) is performed to deter-
mine which register files are allocated to the unallocated
circles.

First, the global register file 22 is allocated to the virtual
registers with data dependency across the M-Unit and I-Unit.
This avoids unnecessary communication codes caused by
data sharing between different functional units. FIG. 4(%)
shows an example of a global register file assignment base in
FIG. 4(g). The global register file 22 is allocated to the virtual
registers on M-I pairs 481, 482, 483 and 484, and an M-I pair
indicates that an M node links an I node through an edge and
circles at the ends of the edge.

Then, the first local register file 14, the second local register
16, and the third local register file 18 are assigned to the other
unassigned virtual registers with data dependency across the
M-Unit and M-Unit, I-Unit and I-Unit, and B-Unit and
B-Unit, respectively.

After performing register file assignment for the unallo-
cated circles (the step 203), a ping-pong register bank assign-
ment (step 204) is performed.

First, an inverse graph is built based on the M-I pairs with
their related virtual registers that are allocated to global reg-
ister files in the step 202. Referring to FIG. 4(i), an inverse

US 7,650,598 B2

5

graph 48 is built based on FIG. 4(%) by converting vertices
(nodes on the M-I pairs) to edges, and converting edges on the
M-I pairs to vertices.

Then, vertices on the graph 48 are partitioned into two
balanced groups with minimal cuts. In this case, the vertices
are partitioned into group A and group B with one cut (dotted
line).

Finally, virtual registers on group A and group B are allo-
cated to the first register bank B1 and the second register bank
B2, respectively.

FIG. 4(j) shows the results of the register file and ping-pong
register bank assignments. Virtual registers (circles) marked
with 1, 2, and 3 are allocated to the first register bank B1, the
second register bank, and the corresponding local register
files of the functional units, respectively.

After step 204 of ping-pong register bank assignment, an
optional step 205 for cluster assignment is performed to take
advantages of the two-cluster property of PAC DSP. The step
205 is to partition all nodes of the M-Unit and I-Unit into two
groups based on the whole graph without nodes assigned to
the B-Unit.

FIG. 4(k) shows the result of the cluster assignment based
on FIG. 4(). Nodes marked with Ma and Ia are assigned to the
cluster 12A, whereas nodes marked with Mb and Ib are
assigned to the cluster 12B.

The last step before real register allocation is communica-
tion code insertion (step 206). FIG. 4(/) shows the result of the
communication code insertion based on FIG. 4(k). In the PAC
scheme, communication code insertion is performed in the
following situations to make the operation work.

When a B node is linked to an M node or an I node, another
B node (490a) and another I node (4905) are inserted for the
communication because B node can only use its own third
local register file 18.

When a possible communication is generated by the cluster
assignment step 205, a communication link is generated
between the first cluster 12A and the second cluster 12B. M
nodes (4924 and 4925) are inserted for the inter-cluster com-
munication.

Another case may occur in the ping-pong bank assignment
(the step 204) while cutting on an edge of the inverse graph,
which means a node simultaneously accesses two banks of
the global register file. Therefore, an additional node is
needed to be inserted to copy data from one register bank of
the global register file to the local register file so as to make
the operation work.

The functional unit assignment, the register file assign-
ment, the ping-pong register bank assignment, and the cluster
assignment of the invention are performed to take full advan-
tage of the properties of a PAC processor, so as to obtain a
good performance of allocating registers.

The above-described embodiments of the present inven-
tion are intended to be illustrative only. Numerous alternative
embodiments may be devised by those skilled in the art with-
out departing from the scope of the following claims.

We claim:

1. A method for allocating registers for a processor, said
processor comprising a first cluster and a second cluster, each
cluster comprising a first functional unit, a second functional
unit, a first local register file connected to said first functional
unit, a second local register file connected to said second
functional unit, and a global register file having a ping-pong
structure formed by a first register bank and a second register
bank, said global register file being connected to the first and
second functional units, said method comprising steps of:

(a) building a graph comprising nodes, circles and first

edges, wherein each node is labeled with at least one of
said first functional unit and said second functional unit,
each circle indicating whether the register is allocated,

—_
<

—_
w

20

30

35

40

45

55

60

65

6

each first edge being connected between two of the
circles indicating data dependency therebetween;

(b) allocating one of the first and second functional units to
the nodes labeled with the first and second functional
units concurrently in said graph;

(c) allocating the first, second and global register files to
unallocated circles based on the corresponding nodes of
the unallocated circles allocated by the first functional
unit or the second functional unit;

(d) allocating said first register bank and said second reg-
ister bank to the circles allocated to the global register
file based on whether the circles allocated to the global
register file are linked through only one node in the
graph; and

(e) adding at least one node to communicate between the
first cluster and the second cluster or between the global
register file and the first and second local register files.

2. The method for allocating registers of claim 1, further
comprising a step of:

partitioning the nodes of the first functional unit and the
second functional unit into a first group assigned to the
first cluster and a second group assigned to the second
cluster.

3. The method for allocating registers of claim 1, wherein

the step (b) comprises steps of:

(b1) finding a first data-flow path having a largest number
of nodes and determining the nodes on the first data path
to be of the first functional unit; and

(b2) finding a second data-flow path whose number of
nodes is equal to or less than the number of the nodes on
the first data-flow path, and determining the nodes on the
second data-flow path to be of the second functional
unit;

wherein the steps (b1) and (b2) are repeated for the unde-
termined nodes.

4. The method for allocating registers of claim 1, wherein

the step (c) comprises steps of:

(cl) allocating the global register file to the unallocated
circles with the first edges linking the nodes of the first
functional unit and the nodes of the second functional
unit;

(c2) allocating the first local register file to the unallocated
circles with the first edges linking the nodes of the first
functional unit; and

(c3) allocating the second local register file to the unallo-
cated circles with the first edges linking the nodes of the
second functional unit.

5. The method for allocating registers of claim 4, wherein
said processor further comprises a third functional unit con-
nected between the first cluster and the second cluster, and a
third local register file connected to the third functional unit,
the step (c) further comprising a step of:

allocating the third local register file to the unallocated
circles with the first edges linking the nodes of the third
functional unit.

6. The method for allocating registers of claim 4, wherein

the step (d) comprises steps of:

(d1) building an inverse graph comprising vertices and
second edges connecting the vertices for the circles allo-
cated to the global register file in the step (cl), each
vertex being converted from a combination of two of the
circles and the first edge connected therebetween, the
nodes corresponding to the two circles being of difterent
functional units, and each second edge being converted
from the node between two of the combinations;

(d2) partitioning the inverse graph into a first group and a
second group with a minimal number of cuts; and

US 7,650,598 B2

7

(d3) respectively allocating the first and second register
banks to the circles corresponding to the first and second
groups.

7. The method for allocating registers of claim 1, wherein

the step (e) is comprised of:

further inserting one node on the graph to copy data from
the first or second register bank to the first or second
local register file.

8. The method for allocating registers of claim 1, wherein
the step (e) is comprised of:

further inserting a pair of nodes on the graph for commu-
nication between the first cluster and the second cluster.

9. The method for allocating registers of claim 1, wherein
said processor further comprises a third functional unit con-
nected between the first cluster and second cluster, and a first
node allocated to the third functional unit links to a second
node allocated to the first or the second functional unit, the
step (e) being comprised of:

5

10

15

8

further inserting a third node of the third functional unit and
a fourth node of the same functional unit as the second
node on the graph for communication.

10. The method for allocating registers of claim 1, wherein
the first functional unit is a load/store unit.

11. The method for allocating registers of claim 1, wherein
the second functional unit is an arithmetic unit.

12. The method for allocating registers of claim 5, wherein
the third functional unit is a scalar unit.

13. The method for allocating registers of claim 1, wherein
the global register file comprises one single set of access ports
shared by the first and second functional units that can only
access different register banks in each operation cycle.

14. The method for allocating registers of claim 1, wherein
each node represents an operator, each circle represents an
operand, the operand is a constant or a virtual register
required to be allocated to a physical register in the machine
level, and each edge represents a data dependency between
two of the operands.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,650,598 B2 Page 1 of 1
APPLICATION NO. : 11/463538

DATED : January 19, 2010

INVENTOR(S) - Leeetal.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 833 days.

Signed and Sealed this
Twenty-third Day of November, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

