
(12) United States Patent
You et a].

US007539884B2

US 7,539,884 B2
May 26, 2009

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(30)
Dec. 29, 2005

(51)

(52)

(58)

POWER-GATING INSTRUCTION
SCHEDULING FOR POWER LEAKAGE
REDUCTION

Inventors: Yi-Ping You, Taichung County (TW);
Chung Wen Huang, Chiayi County
(TW); Jeng Kuen Lee, Tainan (TW);
Chi-Lung Wang, Hsinchu (TW); Kuo
Yu Chuang, Yilan County (TW)

Assignee: Industrial Technology Research
Institute, Hsinchu (TW)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 518 days.

Appl. No.: 11/493,765

Filed: Jul. 27, 2006

Prior Publication Data

US 2007/0157044 A1 Jul. 5, 2007

Foreign Application Priority Data

(TW) 94147221 A

Int. Cl.

G06F 1/00 (2006.01)
G06F 9/45 (2006.01)
US. Cl. 713/320; 713/300; 713/323;

713/324; 717/155; 717/161
Field of Classi?cation Search 713/320,

713/323, 324; 717/155, 161
See application ?le for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6,185,677 B1 2/2001
6,219,796 B1 * 4/2001

2002/0166075 A1 11/2002
2003/0014742 A1 * l/2003
2003/0167460 A1 * 9/2003
2005/0114850 A1 5/2005 Chhedaetal.
2006/0015855 Al* l/2006 Kumamoto 717/136

FOREIGN PATENT DOCUMENTS

TW 519599 A 6/2001
TW 576980 B 2/2004
TW 514828 B 12/2008

Nijhawan et a1.
Bartley 713/320

Agarwal et 31.
Seth et a1. 717/158

Desai et a1. 717/151

* cited by examiner

Primary ExamineriMark Connolly
Assistant ExamineriStefan Stoynov
(74) Attorney, Agent, or FirmiBirch, Stewart, Kolasch &
Birch, LLP

(57) ABSTRACT

A method of poWer-gating instruction scheduling for leakage
poWer reduction comprises receiving a program, generating a
control-?ow graph dividing the program into a plurality of
blocks, analyzing utilization of power-gated components of a
processor executing the program, generating the ?rst poWer
gating instruction placement comprising power-off instruc
tions and poWer-on instructions to shut doWn the inactive
power-gated components, generating the second poWer-gat
ing instruction placement by merging the power-off instruc
tions as one compound power-off instruction and merging the
poWer-on instructions as one compound poWer-on instruc
tion, and inserting poWer-gating instructions into the program
in accordance With the second poWer-gating instruction
placement.

12 Claims, 10 Drawing Sheets

generating the first power-gating
instruction placement for leakage
power reduction

N304

1
generating the second power-gating
instruction placement by merging the
power-off instructions and the
power-on instructions of the first
power-gating instruction placement
into one compound power-off
instruction and one compound
power-on instruction, respectively

1
placement

inserting the power-gating instructions
into the program according to the
second power-gating instruction

US. Patent May 26, 2009 Sheet 2 0f 10 US 7,539,884 B2

(Start)

converting the high-level language
to high-level intermediate language N 201

converting the high-level intermediate
language to low-level intermediate N 202
language for a processor

generating a program by performing
instruction scheduling and register ’__’ 203
allocation on the low-level
intermediate language

inserting power-gating instructions into
the appropriate position of the program
based on reducing power-gating N 204
instruction

converting the power-gated program
to assembly code for the processor N 205

End

FIG. 2

US. Patent May 26, 2009 Sheet 3 0f 10 US 7,539,884 B2

receiving the program from step 203 /-\/ 301

constructing a control-?ow graph f\-/ 302

analyzing utilization of the power
gated components in the processor N 303

generating the ?rst power-gating
instruction placement for leakage w 304
power reduction

generating the second power-gating
instruction placement by merging the
power-off instructions and the
power-on instructions of the ?rst
power-gating instruction placement
into one compound power-off
instruction and one compound
power-on instruction, respectively

inserting the power-gating instructions
into the program according to the
second power-gating instruction
placement

FIG. 3

US. Patent May 26, 2009 Sheet 4 or 10 US 7,539,884 B2

receiving the control-?ow graph,
the utilization of the power-gated
components, and the ?rst
power-gating instruction placement
generated by step 304

“#401

performing a sinkable analysis
module and a hoistable analysis
module to determine executable
blocks for each power-off and
power-on instruction

N 402

dividing the blocks of the
control-?ow graph into groups by
performing power-off and
power-on instruction classi?cation
modules

by 403

generating all combinations of the
power-gating instructions in each
group and determining the best
combination for power reduction to
generate the second power-gating
instruction placement

N 404

FIG. 4

US. Patent May 26, 2009 Sheet 5 0f 10 US 7,539,884 B2

determining SINKABLE 10c (b) and Av 501
initializing sINK_sLKf

v

determining SINKABLE M (b) , AV 502
SINKABLE in (b), and
SINKABLE out (b) from the beginning
block to the end

503

determining Whether the
SINKABLE out (b) of every block

is stabilized

N0

FIG. 5

US. Patent May 26, 2009 Sheet 6 0f 10 US 7,539,884 B2

determining HOISTABLE ,Oc (b) and
initializing HOISTABLE?

i
determining HOISTABLE OUT (b), »——_, 602

blk , and

HOISTABLE in (b) from the E
beginning block to the end

603

determining Whether the
HOISTABLE in (b) of every block

b is stabilized

N0

FIG. 6

US. Patent May 26, 2009 Sheet 7 0f 10 US 7,539,884 B2

determining GROUP-OFF 10c 701
(b) of each block b a’

determining GROUP-OFF,-n (b) , q.’ 702
blk , and

GROUP-OFF out (b)from the
beginning block to the end

703

determining whether the
GROUP-OFFOu, (b) of every block

b is stabilized

N0

FIG. 7

US. Patent May 26, 2009 Sheet 8 0f 10 US 7,539,884 B2

determining GROUP-ON 106 by 801
(b) of each block b

i
determining GROUP-ON in (b), r—_, 802

blk , and

GROUP-ON out (b) from the
beginning block to the end

803

determining whether the
GROUP-ON out (b) of every block

is stabilized

N0

FIG. 8

US. Patent May 26, 2009 Sheet 10 0f 10

Power Off A, B

Bm+l

B m+2

B m+4

B m+5

B m+6

- - - ¢ I n - I | - I n 1 - - - n - - I - n n . n - n - n ¢ I n I n I - - . ¢ I n I I - I I I .

- l - - - - - - - - - - - - - - - - - l - - - - - - - - - - I - - - ~ - - - - I - I - - - - - on

- . - - - . - - - - - - - l - . - - I - - - - . - | - . - - - I - . - - - - - - - - - - - - I .

- - . - - - - . . - - . . - . - - . . - - .

. , . - - - I - - . . . - . - - - . - - - - .

. I l - . - I - I I u u - I I I - I I I u u .

n n I I I I I I I I n I n I I I u ¢ - I I I I I I l I - - n I I I - I I - - u I - - .

- I n I - I - | I I - I I I I I I I n I I I - v I I - I I I I . I ' I I 0 v I I u - ‘

> v v - v a u - - v v - - ~ v u - n - . - . . - . - . - - . . - - . - . - - - . . - . .

- . ~ - - I - - - - . . - - - - - - - - . - . . - - - - - . - - . . I . - - .

» . . - - - - - - - - - . . - - - . - I - - - - - - - l - . . - - - . - - . - . - - - -'

US 7,539,884 B2

Power Off A, B

FIG. 9B

US 7,539,884 B2
1

POWER-GATING INSTRUCTION
SCHEDULING FOR POWER LEAKAGE

REDUCTION

BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention relates to a method of reducing power leak

age in processors or ICs, and in particular to a method of
power-gating instruction scheduling for power leakage
reduction.

2. Description of the Related Art
Overall power dissipation in semiconductor application

comprises static power dissipation and dynamic power dissi
pation, generated by current leakage and switching transient
current in complementary metal oxides semiconductor
(CMOS) circuits, respectively. As semiconductor technology
continues to scale down to deep-submicron levels, power
leakage gains more signi?cance in the total power dissipa
tion.

In recent years, many power- gating mechanisms have been
developed and employed to reduce the static power loss gen
erated by the current leakage in CMOS circuits. The power
gating mechanisms insert power-gating instructions into a
program to reduce power leakage of power-gated compo
nents in the processor. The power-gating instructions com
prise power-off and power-on instructions to shut down inac
tive power-gated components.
ROC. Pat. Pub. No. 00519599 discloses architecture and

complier solutions to employ a power-gating mechanism to
reduce the current leakage in power-gated components of a
processor executing a program. The power-gating mecha
nism analyZes utiliZation of the power-gated components by
data-?ow analysis on the basis of the program and then inserts
power-off and power-on instructions into the program to shut
down the inactive power-gated components.

However, the power-off and power-on instructions
increase execution time of the program and increase code
siZe. With the development of semiconductor manufacturing
technologies, the increasing number of power-gated compo
nents in a processor aggravates the above drawbacks. More
over, fetching and decoding of power-gating instructions, and
shut-down and wake-up procedures all results in power loss.
Power loss from wake-up is derived from peak-voltage
requirements. Therefore, it is advantageous necessary to
reduce power-gating instructions.

BRIEF SUMMARY OF THE INVENTION

The invention provides a method of reducing power-gating
instructions without increasing power loss. By postponing the
power-off instruction to other blocks and advancing the
power-on instructions to other blocks, the combined power
gating instructions are merged as one compound power-gat
ing instruction, enabling power reduction and reducing code
siZe. The invention provides a method of power-gating
instruction scheduling for power leakage reduction compris
ing receiving a program, generating a control-?ow graph
which divides the program into a plurality of blocks, analyZ
ing utiliZation of power-gated components of a processor
executing the program, generating the ?rst power-gating
instruction placement comprising power-off instructions and
power-on instructions to shut down the inactive power-gated
components, generating the second power-gating instruction
placement by merging the power-off instructions into one
compound power-off instruction and merging the power-on
instructions into one compound power-on instruction and

20

25

30

35

40

45

50

55

60

65

2
inserting power-gating instructions into the program in accor
dance with the second power-gating instruction placement.
The invention also provides a system of power-gating

instruction scheduling for reducing power leakage, receiving
a program, generating a power-gated program comprising
power-gating instructions, and comprising a control-?ow
graph construction module, generating a control-?ow graph
by dividing the program into a plurality of blocks and linking
the blocks according to the program, wherein the control-?ow
graph contains control commands, a utiliZation analysis mod
ule, analyZing utiliZation of power-gated components of a
processor executing the program, a ?rst power- gating instruc
tion placement generator, generating ?rst power-gating
instruction placement based on the control-?ow graph and the
utiliZation of the power-gated components, the ?rst power
gating instruction placement comprising a plurality of power
off instructions and a plurality of power-on instructions to
shut down inactive power-gated components, a second
power-gating instruction placement generator, generating
second power-gating instruction placement by modifying the
?rst power- gating instruction placement, wherein the second
power-gating instruction placement comprises compound
power-off instructions and compound power-on instructions
generated by combining the power-off instructions and the
power-on instructions respectively, and a power-gating
instruction insertion module, inserting the power-gating
instructions into the program according to the second power
gating instruction placement to generate the power-gated pro
gram.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be more fully understood by reading the
subsequent detailed description and examples with refer
ences made to the accompanying drawings, wherein:

FIG. 1 shows architecture of a processor;
FIG. 2 shows a method of generating assembly code for

power leakage reduction;
FIG. 3 shows step 204 in detail;
FIG. 4 shows step 305 in detail;
FIG. 5 is a ?owchart of a sinkable analysis module;
FIG. 6 is a ?owchart of a hoistable analysis module;
FIG. 7 is a ?owchart of a power-off instruction classi?ca

tion module;
FIG. 8 is a ?owchart of a power-on instruction classi?ca

tion module;
FIG. 9A is a control-?ow graph of a program, utiliZation of

power-gated components, and a ?rst power- gating instruction
placement; and

FIG. 9B shows a second power-gating instruction place
ment generated from FIG.

DETAILED DESCRIPTION OF THE INVENTION

The following description is of the best-contemplated
mode of carrying out the invention. This description is made
for the purpose of illustrating the general principles of the
invention and should not be taken in a limiting sense. The
scope of the invention is best determined by reference to the
appended claims.

FIG. 1 shows architecture of a processor comprising a
program counter 101, a instruction decoder 102, integer reg
isters 103, ?oating point registers 104, power-gating control
registers 105, an integer ALU 106, an integer multiplier 107,
a ?oating point adder 108, a ?oating point multiplier 109, and
a ?oating point divider 110. The power-gated components of
the processor, comprising the integer multiplier 107, the

US 7,539,884 B2
3

?oating point adder 108, the ?oating point multiplier 109, and
the ?oating point divider 110, are equipped individually With
a poWer-gating control unit 111 controlled by the value stored
in the poWer-gating control registers 105. According to
poWer-off and poWer-on instructions in a poWer-gated pro
gram, the processor generates the value stored in the poWer
gating control registers 105.

FIG. 2 shoWs a method of generating assembly code for
poWer leakage reduction, based on a compiler solution and
comprising receiving high-level language, and converting the
high-level language to high-level intermediate language (step
201), converting the high-level intermediate language to loW
level intermediate language for a processor (step 202), gen
erating a program by performing instruction scheduling and
register allocation on the loW-level intermediate language
(step 203); converting the program to a poWer-gated program
by analyZing utiliZation of the poWer- gated components in the
processor in accordance With the program and inserting
poWer-gating instructions into the appropriate position of the
program to reduce poWer-gating instructions (step 204); con
verting the poWer-gated program to assembly code for the
processor (step 205).

FIG. 3 shoWs step 204 in detail, comprising receiving the
program from step 203 (step 301), generating a control-?oW
graph by dividing the program into blocks and linking the
blocks, the control-?oW graph comprising control commands
(step 302), analyZing utiliZation of the poWer-gated compo
nents in the processor (step 303), generating the ?rst poWer
gating instruction placement for leakage poWer reduction
according to the utiliZation of the poWer-gated components,
the ?rst poWer-gating instruction comprising poWer-off and
poWer-on instructions to shut doWn the inactive poWer-gated
components (step 304), generating the second poWer-gating
instruction placement by merging the poWer-off instructions
and the poWer-on instructions of the ?rst poWer-gating
instruction placement into one compound poWer-off instruc
tion and one compound poWer-on instruction, respectively
(step 305), and inserting the poWer-gating instructions,
including the poWer-off, poWer-on, compound poWer-off, and
compound poWer-on instructions, into the program according
to the second poWer-gating instruction placement (step 306).

Step 302 to 304 can be implemented by the processes
disclosed in ROC. Pat. Pub. No. 00519599 or other technolo
gies such as pro?ling mechanisms Which can also be applied
to generate the ?rst poWer-gating instruction placement.
Other suitable technologies generating the ?rst poWer-gating
instruction placement by software or hardWare solution are
also applicable.

FIG. 4 shoWs step 305 in detail comprising receiving the
control-?oW graph of the program, the utiliZation of the
poWer-gated components in each block of the control-?oW
graph, and the ?rst poWer-gating instruction placement gen
erated by step 304 (step 401), determining Whether the poWer
off instructions of the ?rst poWer-gating instruction place
ment can be postponed to other blocks to determine
executable blocks for each poWer-off instruction, and deter
mining Whether the poWer-on instructions of the ?rst poWer
gating instruction placement can be advanced to other blocks
to determine executable blocks for each poWer-on instruc
tion: (step 402), dividing the blocks of the control-?oW graph
into groups to class the executable blocks of the combinable
poWer-off instructions into one group, and to class the execut
able blocks of the combinable poWer-on instructions into one
group (step 403), generating all combinations of the poWer
gating instructions in each group in accordance to the execut
able blocks of the poWer-off or poWer-on instructions occur

20

25

30

35

40

45

50

55

60

65

4
ring in each group and determining the best combination for
poWer reduction to generate the second poWer- gating instruc
tion placement.

In an exemplary embodiment of the invention, MAX
SlNK-SLKC represents the maximum number of blocks to
Which the poWer-off instruction of component C can be post
poned. SlNK-SLKC represents the number of blocks to Which
the poWer-off instruction of component C can be postponed
from the present block. SlNK-SLKC is calculated by the
formula

E 01710)“; rleak(c)' SINKiSLKC>EferdemoA C)/N+Eexe'
0,7(C)+P,mk(C)-SINKiSLKC, (1).

Where Efep dec_017(C) represents energy consumption of fetch
ing and decoding the poWer-off instruction of component C,
Eexe_ol7(C) represents energy consumption of executing the
poWer-off instruction of component C, N represents the
amount of poWer-gated components in the processor, P M k(C)
represents leakage energy consumption of component C dur
ing a block cycle, P,Zeak(C) represents reduced leakage energy
consumption of component C during a block cycle When the
component C is shut doWn, E017(C) represents energy con
sumption of issuing the poWer-off instruction of component
C, and the value of E017(C) equals the sum of Eexe_017(C) and
E?t_dec_017(C). MAX-SlNK-SLKC is calculated according to
formula (1), Wherein

(2)
MAX - SINK - SLKC =

Similarly, MAX-HOlST-SLKC represents the maximum
number of blocks to Which the poWer-on instruction of com
ponent C can be advanced. HOI ST-SLKC represents the num
ber of blocks to Which the poWer-on instruction of component
C can be advanced from the present block. HOlST-SLKC is
calculated by the formula

Eon (C)+Prleak(c)‘ HOISTiSLKC>Efekde0on (C)/I\’+
Emmy.(C)+Plmk(C)'HO1$TiSLKc, (3)

Where E?t_dec_0n(C) represents energy consumption of fetch
ing and decoding a poWer-on instruction of component C,
Eexe_0n(C) represents energy consumption of executing the
poWer-off instruction of component C, N represents the num
ber of poWer-gated components in the processor, E0n(C) rep
resents energy consumption of issuing the poWer-on instruc
tion of component C, and the value of E0n(C) equals the sum
of Eexe_0n(C) and E?t_dec_on(C). MAX-HOlST-SLKC is calcu
lated according to formula (3), wherein

W — U-EfaidECiOAC)

N - (Pleak(C) — Prim/((0)

. (4)
MAX — Hoist — SLKC :

SINKABLEZOC(b), SlNKABLEbZk(b), SlNKABLEl-n(b),
and SlNKABLE0m(b) of each block b are determined to
perform a data-?oW analysis to determine the executable
poWer-off instructions in each block. SINK-SLKCZ’ repre
sents the number of blocks to Which the poWer-off instruction
of component C can be postponed from block b. FIG. 5 is a
?oWchart of the sinkable analysis module. Based on the ?rst
poWer-gating instruction placement, SINKABLEZOC(b) repre
sents a set of poWer-off instructions occurring in block b. In
step 501, SINKABLEZOC(b) of each block b is determined and

US 7,539,884 B2
5

SINK-SLKCZ’ of the power-off instructions occurring in each
block b are initialized as the corresponding MAX-SINK

SLKC.
In step 502 and step 503, SINKABLEbZk(b), SINKABLEl-n

(b), and SINKABLE0m(b) of each block b are determined
from the beginning block to the end and repeatedly until
SINKABLE0m(b) of eachblock b is stabiliZed. The method of
determining SINKABLEbZk(b), SINKABLEl-n(b), and SINK
ABLE0m(b) in one block b comprises determining SINK
ABLEin(b) by the formula

SINKABLE-n(b)= m SINKABLEou,(p),
pePred(b)

where Pred(b) represents the former blocks of the block b.
SINK-SLKCZ’ of component C, the power-off instruction of
which exists in SINKABLEl-n(b) and not in SINKABLEZOC
(b), is determined by the formula SINK-SLKCb:
MINPEP, ed(b)(SINK-SLKCP)—l. The components in SINK
ABLEbZk(b) are power-off instructions having Zero SINK
SLKCZ’. Finally, SINKABLE (b) is determined by the for
mula

out

SINKABLEOWQI)ISINKABLEIOCQUU(SINK/ABLE,"
(b)—SINKABLEb,k(b)).

If the components in SINKABLE0m(b) of each block b are
invariable (step 503), SINKABLE0m(b) of every block b is
regarded as stable and the power-off instructions in SINK
ABLE0m(b) are the executable power-off instructions of each
block b.

Similarly, HOISTABLEZOC(b), HOISTABLEl-n(b),
HOISTABLEbZk(b), and HOISTABLE0m(b) of each block b
are determined to perform a data-?ow analysis to determine
the executable power-on instructions in each block. HOIST
SLKCZ’ represents the number of blocks to which the power
on instruction of component C can be advanced from block b.
FIG. 6 is a ?owchart of the hoistable analysis module. Based
on the ?rst power-gating instruction placement,
HOISTABLEZOC(b) represents a set of power-on instructions
occurring in block b. In step 601, HOISTABLEZOC(b) of each
block b is determined and HOIST-SLKCZ’ of the power-on
instructions occurring in each block b are initialiZed as the
corresponding MAX-HOIST-SLKC.

In step 602 and step 603, HOISTABLEl-n(b),
HOISTABLEbZk(b), and HOISTABLE0m(b) of each block b
are determined from the beginning block to the end and
repeatedly until HOISTABLEl-n(b) of each block b is stable.
Determining HOISTABLEl-n(b), HOISTABLEbZk(b), and
HOISTABLE0m(b) in one block b comprising determining
HOISTABLE (b) by the formula out

HOISTABLEou,(b)= m HOISTABLE-"(5),
seSucdb)

where Succ(b) represents the subsequent blocks of the block
b. HOIST-SLKCZ7 of component C, the power-on instruction
of which exists in HOISTABLE0Mt(b) and not in
HOISTABLEZOC(b), is determined by the formula HOIST
SLKCZ’IMINSESMCCU,)(HOIST-SLKCS)— l. The components in
HOISTABLEbZk(b) are the power-on instructions having Zero
HOIST-SLKCZ’. HOISTABLEl-n(b) is determined by the for
mula

20

25

30

45

50

55

60

65

6
HOISTABLEi,,(b):HOISTABLE,oC(b)U

(HOISTABLEOWQI)—HOISTABLEb,k(b)).

If the components in HOISTABLEin(b) of each block b are
invariable (step 603), HOISTABLEl-n(b) of every block b is
regarded as stable and the power-on instructions in
HOISTABLEl-n(b) are the executable power-on instructions
of each block b.

GROUP-OFF 106(b), GROUP-OFFl-n(b), GROUP-OFFbZk
(b), and GROUP-OFF0m(b) of each block b are determined to
perform a data-?ow analysis to class the executable blocks of
the combinable power-off instructions into one group. FIG. 7
is a ?owchart of the power-off instruction classi?cation mod
ule.

In step 701, if

SINKABLEou,(b) # ¢ and U SINKABLEMW) = ¢,
(pePred b)

GROUP-OFFZOC(b) of block b is assigned an integer number
not occurring before to generate a new group. The integer
number is generated by a counter. Once a new group is deter
mined, the output of the counter is increased by one.

In step 702 and step 703, GROUP-OFFl-n(b), GROUP
OFFbZk(b), and GROUP-OFF0Mt(b) of each block b are deter
mined from the beginning block to the end and repeatedly
until GROUP-OFF0m(b) of every block b is stable. Determin
ing GROUP-OFFin(b), GROUP-OFFbZk(b), and GROUP
OFF0m(b) in one block b comprising determining GROUP
OFFl-n(b) by the formula

GROUP- 0mm) =

if MlNpePred(b)

MINp€Pred(b)
otherwise

@(GROUP- OFFOMPD),

where (I) returns in?nity if its parameter, GROUP-OFF0m(p),
is an empty set, otherwise, (I) returns the value of GROUP
OFF0m(p). GROUP-OFFbZk(b), either a universal set named
Q or an empty set, is determined, wherein GROUP-OFFbZk(b)
is a universal set Q only when

SINKABLEMM) = 0 and U SINKABLEMW) # ¢.
pePred(b)

GROUP-OFF0ut(b) is determined by the formula

GROUP-OFFou,(b)IGROUP-OFFIOCQI)LJ(GROUP
OPE-"(b)—GROUP-OFFb,k(b)).

If the components in GROUP-OFF0m(b) of each block b
are invariable (step 703), GROUP-OFFOMt(b) of every block b
is regarded as stable, with the component in GROUP-OFFOM
(b) representing the group number to which block b belongs.

GROUP-ONZOC(b), GROUP-ONl-n(b), GROUP-ONbZk(b),
and GROUP-ON0m(b) of each block b are determined to
perform a data-?ow analysis to class the executable blocks of
the combinable power-on instructions into one group. FIG. 8
is a ?owchart of the power-on instruction classi?cation mod
ule.

US 7,539,884 B2

In step 801, if

HOISTABLE,,(b) # 0 and U HOISTABLEMp) = Q,
pePred(b)

GROUP-ONZOC(b) of block b is assigned an integer number
not occurring before to generate a neW group. The integer
number is generated by a counter. Once a neW group is deter
mined, the output of the counter is increased by one.

In step 802 and step 803, GROUP-ONl-n(b), GROUP
ONbZk(b), and GROUP-ON0m(b) of each block b are deter
mined from the beginning block to the end and repeatedly
until GROUP-ON0m(b) of every block b is stable. Determin
ing GROUP-ONl-n(b), GROUP-ONbZk(b), and GROUP
ON0Mt(b) in one block b comprising determining GROUP
ONin(b) by the formula

(<1>(GROUP- ONOMPD),

(<I>(GROUP- ONOMPD) = °°

otherWis e

GROUP-ONbZk(b), either a universal set named Q or an
empty set, is determined. GROUP-ONbZk(b) is a universal set,
Q only When

HOISTABLE,-,,(B) = 0 and U H0ISTABLE;,,(p) # ¢.
pePred(b)

GROUP-ON0m(b) is determined by the formula

If the components in GROUP-ON0m(b) of each block b are
invariable (step 803), GROUP-ON0m(b) of every ‘block b is ’
regarded as stable, With the component in GROUP-ON0m(b)
representing the group number to Which block b belongs.

In an exemplary embodiment of the invention, there are
tWo poWer-gated components in a processor. FIG. 9A shoWs
a control-?ow graph of a program, utiliZation of the poWer
gated components, and a ?rst poWer-gating instruction place
ment. The left side of each block represents utiliZation of
component A, and the right side of each component repre
sents utiliZation of component B. The dotted region indicates
that the component is active in the block. As shoWn in FIG.
9A, the poWer-off instruction of component A is arranged in
blocks Bm+2 and B”+2 and the poWer-off instruction of com
ponent B is arranged in blocks Bm+5 and B”+5 according to the
?rst poWer-gating instruction placement. Based on the inven
tion, MAX-SINK-SLKA is 4 and MAX-SINK-SLKB is 2. The
component in SINKABLEZOC(BM+Z) is A4, Which indicates
that there is a poWer-off instruction of component A occurs in
block Bm+2 according to the ?rst poWer-gating instruction
placement. The superscript of A4 indicates SINK-SLKABM
Which is initialiZed as MAX-SINK-SLKA. After carrying out
the steps of sinkable analysis module described in FIG. 5,
SINKABLEZOC(b), SINKABLEbZk(b), SINKABLEin(b), and
SINKABLEOMt(b) of each block b are shoWn in Table 1. An
empty set is indicated as a blank. And the components of
SINKABLEOMt(b) represents the executable poWer-off
instructions in block b.

25

30

35

40

45

50

55

60

65

PoWer-off instruction classi?cation module described in

FIG. 7 is carried out. The resultant GROUP-ONZOC(b),

GROUP-ONl-n(b), GROUP-ONbZk(b), and GROUP-ON0ut(b)
of each block b are shoWn in Table 2. The components in

GROUP-ON0m(b) is the group number of block b.

TABLE 2

GROUP — GROUP — GROUP — GROUP —

blockb orrhmw) oFFb,k(b) oFFmw) orromw)

Bmn
m2 {1} {1}
M3 {1} {1}

Bm+4 {1} {1}
BM {1} {1}
BM {1} {1}
BM 9 {1}

B};
BM {2} {2}
BN3 {2} {2}
BM {2} {2}
BM {2} {2}
BM {2} {2}
BM 9 {2}

The blocks are divided into tWo groups (group 1 and group
2). On the basis of the executable poWer-off instructions of
each block, all combinations of poWer-off instructions in each
group are generated. To determine the best combination of
each groups for poWer reduction, the second poWer-gating
instruction placement is generated, shoWn in FIG. 9B. In
group 1, the best combination of poWer-off instructions is a
compound poWer-off instruction of components A and B,
Which is placed in block Bm+5. In group 2, the best combina
tion of poWer-off instructions is a compound poWer-off
instruction of components A and B, Which is placed in block

BN6.
While the invention has been described by Way of example

and in terms of preferred embodiment, it is to be understood
that the invention is not limited thereto. To the contrary, it is
intended to cover various modi?cations and similar arrange
ments (as Would be apparent to those skilled in the art).
Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
such modi?cations and similar arrangements.
What is claimed is:
1. A method of poWer-gating instruction scheduling for

poWer leakage reduction, comprising:

US 7,539,884 B2
9

receiving a program;
generating a control-?ow graph by dividing the program

into a plurality of blocks and linking the blocks accord
ing to the program, Wherein the control-?ow graph con
tains control commands;

analyZing utilization of poWer-gated components of a pro
cessor executing the program;

generating ?rst poWer-gating instruction placement based
on the control-?ow graph and the utiliZation of the
poWer-gated components, the ?rst poWer-gating instruc
tion placement comprising a plurality of poWer-off
instructions and a plurality of poWer-on instructions to
shut doWn inactive components;

generating second poWer-gating instruction placement by
modifying the ?rst poWer-gating instruction placement,
Wherein the second poWer-gating instruction placement
comprises compound poWer-off instructions and com
pound poWer-on instructions generated by combining
the combinable poWer-off instructions and combining
the combinable poWer-on instructions respectively;

inserting poWer-gating instructions into the program
according to the second poWer-gating instruction place
ment; and

executing the program by the processor.
2. The method as claimed in claim 1, generation of the

second poWer-gating instruction placement further compris
ing:

determining Whether the poWer-off instructions of the ?rst
poWer-gating instruction placement can be postponed to
other blocks, and determining executable blocks of each
poWer-off instruction;

determining Whether the poWer-on instructions of the ?rst
poWer-gating instruction placement can be advanced to
other blocks, and determining executable blocks of each
poWer-on instruction;

dividing the executable blocks of the combinable poWer
off instructions as one group and the executable blocks
of the combinable poWer-on instructions as one group;

evaluating all combinations of the poWer-off instructions in
each group according to the executable blocks of the
poWer-off instructions in each group;

evaluating all combinations of the poWer-on instructions in
each group according the executable blocks of the
poWer-on instructions in each group; and

determining the best combination in each group for poWer
reduction, Wherein the second poWer- gating instruction
placement is generated based on the best combination in
each group.

3. The method as claimed in claim 2, determination of
executable blocks of each poWer-off instruction in the ?rst
poWer-gating instruction placement further comprising deter
mining executable poWer-off instructions for each block by
data-?oW analysis; and determination of executable blocks of
each poWer-on instruction in the ?rst poWer-gating instruc
tion placement further comprising determining executable
poWer-on instructions for each block by data-?oW analysis.

4. The method as claimed in claim 3, division of the blocks
in the control-?ow graph into groups further comprising:

clas sing the executable blocks of the combinable poWer-off
instructions of the ?rst poWer-gating instruction place
ment as one group by data-?oW analysis based on the
executable poWer-off instructions of every block; and

classing the executable blocks of the combinable poWer-on
instructions of the ?rst poWer-gating instruction place
ment as one group by data-?oW analysis based on the
executable poWer-on instructions of every block.

20

25

50

55

60

65

10
5. The method as claimed in claim 3, determination of the

executable poWer-off instructions of each block further com
prising:

evaluating MAX_SINK_SLKC for each component C to
represent the maximum amount of blocks to Which the
poWer-off instruction of component C can be postponed;

determining SINKABLEZOC(b) for each block b according
to the ?rst poWer- gating instruction placement, Wherein
SINKABLEZOC(b) is a set of poWer-off instructions
occurring Within block b, and each poWer-off instruction
in SINKABLEZOC(b) is associated With an integer num
ber SINK_SLKCZ’ Which indicates hoW many blocks to
Which the poWer-off instruction of component C can be
postponed, Wherein SINK_SLKCZ’ is initialiZed as
MAX_SINK_SLKC;

determining SlNKABLEl-n(b), SlNKABLEbZk(b), and
SlNKABLE0m(b) of every block b from the beginning
block to the end and repeatedly until SINKABLEOMt(b)
of every block b is stable, Wherein the poWer-offinstruc
tions in the stable SlNKABLE0m(b) represent the
executable poWer-off instructions in block b,

Wherein SlNKABLEl-n(b), SlNKABLEbZk(b), and SINK
ABLE0m(b) of one block b are calculated by:

determining SlNKABLEl-n(b) by the formula

SINKABLE-n(b)= m SINKABLEOu,(p),
pePred(b)

Where Pred(b) represents former blocks of block b;
calculating SINK_SLKCZ’ for component C, the poWer

off instruction of Which exists in SINKABLEM (b) and
not in SINKABLEZOC(b), by the formula

determining SlNKABLEbZk(b), a set of poWer-off
instructions having Zero SINK_SLKCZ’; and

determining SINKABLE (b) by the folloWing equa
tion:

out

SINKABLEOWQI)ISINKABLEIOCQUU (SINKABLEl-n
(b)—SINKABLEb,k(b)).

6. The method as claimed in claim 3, determination of the
executable poWer-on instructions of each block further com
prising:

evaluating MAX_HOIST_SLKC for each component C to
represent the maximum amount of blocks to Which the
poWer-on instruction of component C can be advanced;

determining HOlSTABLEZ0c(b) for eachblockb according
to the ?rst poWer- gating instruction placement, Wherein
HOlSTABLEZ0c(b) is a set of poWer-on instructions
occurring Within block b, With each poWer-on instruc
tion in HOlSTABLEZ0c(b) associated With an integer
number HOIST_SLKCZ’ Which indicates hoW many
blocks to Which the poWer-on instruction of component
C can be advanced, Wherein HOIST_SLKCZ’ is initial
iZed as MAX_HOIST_SLKC;

determining HOISTABLEOMt(b); HOlSTABLEbZk(b), and
HOlSTABLEin(b) of every block b from the beginning
block to the end and repeatedly until HOlSTABLEl-n(b)
of every block b is stable, Wherein the poWer-on instruc
tions in the stable HOlSTABLEl-n(b) represent the
executable poWer-on instructions in block b,

US 7,539,884 B2
1 1

wherein HOlSTABLE0m(b), HOlSTABLEbZk(b),
HOlSTABLEin(b) of one block b are calculated by:
determining HOISTABLEOMt(b) by the formula

and

HOISTABLEou,(b)= m HOISTABLEl-AS),
seSucdb)

Where Succ(b) represents subsequent blocks of block

calculating HOIST_SLKCZ’ for component C, the
poWer-on instruction of Which exists in
HOlSTABLE0m(b) and not in HOISTABLEZOC(b), by
the formula:

HOISTiSLKCbIMINSGSMCQ,)(HOISTiSLKCS)— 1 ;

determining HOISTABLEbZk(b), a set of poWer-on
instructions having Zero HOIST_SLKCZ’; and

determining HOlSTABLEin(b) by the formula:

HOISTABLEi,,(b):HOISTABLE,oC(b)U
(HOISTABLEOWQI)—HOISTABLEb,k(b)).

7. The method as claimed in claim 4, classi?cation of the
executable blocks of the combinable poWer-off instructions
of the ?rst poWer-gating instruction placement as one group
further comprising:

determining GROUP-OFFZOC(b) for each block b, Wherein,
if

SINKABLE0m(b) # 0 and U SINKABLEMW) = 0.
pePred(b)

the element of GROUP-OFFZOC(b) is an integer value
that never appears in other groups and is generated by a
counter, otherWise, GROUP-OFFZOC(b) is an empty set;

determining GROUP-OFFl-n(b), GROUP-OFFbZk(b), and
GROUP-OFF0ut(b) of every block b from the beginning
block to the end and repeatedly until GROUP-OFF0m(b)
of every block b is stable, Wherein the element of
GROUP-OFF0ut(b) represents the group to Which block
b belongs,

Wherein GROUP-OFFl-n(b), GROUP-OFFbZk(b), and
GROUP-OFFOM (b) of one block b are calculated by:
determining GROUP-OFFl-n(b) by the formula

GROUP- 0mm) =

otherWis e

Where (I) returns in?nity if GROUP-OFFOMt(p) is an
empty set, otherWise, (I) returns the value of GROUP
OFF0ut(p);

determining GROUP-OFFbZk(b), either a universal set
named Q or an empty set, Wherein GROUP-OFFbZk(b)
is Q only When SlNKABLE0m(b):o and mXdwSlNK

determining GROUP-OFF0m(b) by the formula:

GROUP-OFFom(b):GROUP-OFF,oC(b)U(GROUP
OFFi,,(b)—GROUP-OFFb,k(b)).

20

25

30

35

40

45

50

55

60

65

12
8. The method as claimed in claim 4, classi?cation of the

executable blocks of the combinable poWer-on instructions of
the ?rst poWer-gating instruction placement as one group
further comprising:

determining GROUP-ONZOC(b) for each block b, Wherein,
if

HOISTABLEl-Ab) # 0 and U HOISTABLE-Ap) = 0,
pePred(b)

the element of GROUP-ONZOC(b) is an integer value, not
appearing in other groups, generated by a counter, oth
erWise, GROUP-OFFZOC(b) is an empty set;

determining GROUP-ONin(b), GROUP-ONbZk(b), and
GROUP-ON0m(b) of every block b from the beginning
block to the end and repeatedly until GROUP-ON0m(b)
of every block b is stable, Wherein the element of
GROUP-ON0m(b) represents the group to Which block b
belongs,

Wherein GROUP-ONl-n(b); GROUP-ONbZk(b),
GROUP-ON0m(b) of one block b are calculated by:
determining GROUP-ONl-n(b) by the formula

and

otherwise
@(GROUP- ONOMPD),

Where (I) returns in?nity if GROUP-ON0ut(p) is an
empty set, otherWise, (I) returns the value of GROUP
ONout(p);

determining GROUP-0N1, Zk(b), either a universal set
named Q or an empty set, Wherein GROUP-ONbZk(b)
is Q only When

HOISTABLE-Ab) = 0 and U HOISTABLEMW) # ¢;
pePred(b)

and
determining GROUP-ON0m(b) by the formula

GROUP-ONomw):GROUP-ON,M(b)LJ(GROUP
ONi,,(b)—GROUP-ONb,k(b)).

9. A system of poWer-gating instruction scheduling for
poWer leakage reduction, receiving a program, generating a
poWer-gated program comprising poWer-gating instructions,
and executing the poWer-gated program by a processor, the
system comprising:

a control-?ow graph construction module, generating a
control-?ow graph by dividing the program into a plu
rality of blocks and linking the blocks according to the
program, Wherein the control-?oW graph contains con
trol commands;

a utiliZation analysis module, analyZing utiliZation of
poWer-gated components of the processor executing the
Program;

a ?rst poWer-gating instruction placement generator, gen
erating ?rst poWer-gating instruction placement based
on the control-?ow graph and the utiliZation of the
poWer-gated components, the ?rst poWer-gating instruc

US 7,539,884 B2
13

tion placement comprising a plurality of poWer-off
instructions and a plurality of poWer-on instructions to
shut doWn inactive poWer-gated components;

a second poWer-gating instruction placement generator,
generating second poWer-gating instruction placement
by modifying the ?rst poWer-gating instruction place
ment, Wherein the second poWer-gating instruction
placement comprises compound poWer-off instructions
and compound poWer-on instructions generated by com
bining the combinable poWer-off instructions and com

14
a poWer evaluation module, evaluating all combinations of

the power-off instructions in each group according to the
executable blocks of the power-off instructions in each
group; and evaluating all combinations of the poWer-on
instructions in each group according to the executable
blocks of the poWer-on instructions in each group, the
poWer evaluation module further determining the best
combination in each group for poWer reduction, Wherein
the second poWer-gating instruction placement is gen
erated based on the best combination in each group.

11. The system as claimed in claim 10, the poWer-gating
instruction analysis module further comprising a sinkable

a poWer-gating instruction insertion module, inserting the analysis module and a hoistable analysis module, the sinkable
poWer-gating instructions into the program according to analysis module determining a set of executable poWer-off
the second poWer-gating instruction placement to gen- 15 instructions for each block by data-?oW analysis, the
erate the poWer-gated program. hoistable analysis module determining a set of executable

10. The system as claimed in claim 9, Wherein the second poWer-on instructions for each block by data-?oW analysis.
poWer-gating instruction placement further comprises: 12. The system as claimed in claim 11, Wherein the classi

a poWer-gating instruction analysis module, determining ?cation module further comprises:
Whether the power-off instructions of the ?rst poWer- 20 a poWer-off instruction classi?cation module, classing the

bining the combinable poWer-on instructions respec
tively; and

gating instruction placement can be postponed to other
blocks to determine executable blocks of each poWer-off
instruction; and determining Whether the poWer-on
instructions of the ?rst poWer-gating instruction place

on instructions as one group; and

executable blocks of the combinable power-off instruc
tions of the ?rst poWer-gating instruction placement into
one group by data-?ow analysis based on the executable
power-off instructions of every block; and

ment can be advanced to other blocks to determine 25 a poWer-on instruction classi?cation module, classing the
executable blocks of each poWer-on instruction; executable blocks of the combinable poWer-on instruc

a classi?cation module, dividing the blocks in the control- tions of the ?rst poWer-gating instruction placement into
?oW graph into groups to class the executable blocks of one group by data-?ow analysis based on the executable
the combinable poWer-off instructions as one group and poWer-on instructions of every block.
to class the executable blocks of the combinable poWer- 30

* * * * *

