
 1

動態霍夫曼編碼之計算時間與空間關係之探討
On the time v.s. space complexity of Adaptive Huffman coding

計畫編號：NSC 882815C260002E
執行期限：八十七年十一月一日至八十八年六月三十日

游逸平

Yi-Ping You

國立暨南國際大學資訊工程學系

Department of Computer Science and
Information Engineering

National Chi-Nan University
E-mail: u5321009 @ncnu.edu.tw

蔡錫鈞

Shi-Chun Tsai

國立暨南國際大學資訊工程學系

Department of Computer Science and
Information Engineering

National Chi-Nan University
E-mail: tsai@csie.ncnu.edu.tw

摘要

 霍夫曼編碼法是一種有效且廣受使用
的資料壓縮技術。在本文中，我們將重點
著眼在其編碼時所需計算時間與空間的關
係，並且提出緩衝式動態霍夫曼編碼改良
傳統的編碼方式，其運作方式是在編碼與
解碼的同時動態的改變霍夫曼樹的結構，
不同於傳統的動態霍夫曼編碼方式，我們
並不是每讀取一個字元就更新樹狀結構，
只有在更新點時才做修正的動作，這可使
得即時編碼更快速、有用。另外，我們也
提出動態多元樹霍夫曼碼法。

關鍵詞：霍夫曼編碼，緩衝式動態編碼法
動態多元樹編碼法

Abstract

 Huffman codes are a widely used and
very effective technique for compressing
data. In this paper, we focus on the
relationship between the computing time and
space that is needed when compressing data
with Huffman codes. We propose a further
improvement to the Huffman method, called

buffered adaptive Huffman coding. This
approach dynamically changes the structure
of Huffman code trees when encoding and
decoding. Unlike original adaptive Huffman
coding, the time when to update the tree is
adjusted to not change the tree every time we
read a symbol. It is changed only when the
updating point is reached and it will save the
number of updating the adaptive Huffman
tree. The scheme is fast and useful to on-line
encoding. We also propose a method of
nonbinary Huffman coding based on adaptive
encoding, called m-ary adaptive Huffman
coding.

Keywords: Huffman codes, buffered

adaptive Huffman coding, updating point,
m-ary adaptive Huffman coding

1. Introduction

As the amount of information that is
needed, desired, and available increases, the
need for more efficient ways of representing
formation increases as well. The goal of data
compression is to provide the most efficient
way to represent information. Huffman
coding [4] is one of the lossless compression
techniques. Since David Huffman invented

 2

the scheme in 1952, Huffman code has been
widely used in a variety of forms, such as
text, images, speech, video, and so on.

The basic idea of Huffman coding is to
produce a binary tree and encode a symbol,
which is a leaf of the tree, to a binary string
with the sequence of edge labels on the path
from the root to the symbol. One
disadvantage of Huffman’s algorithm is that
it makes a two-pass procedure over the data:
the frequency counts are collected in the first
pass, and the data is encoded in the second
pass. Moreover, the method cannot encode
data on-line to cater the network
communication with massive data of
multimedia today.

In order to convert this algorithm into a
one-pass procedure, Faller [2] and Gallagher
[3] independently developed algorithms for
adaptively developing the Huffman code
based on the statistics of the symbols already
encountered, latter improved by Knuth [5]
and Vitter [8]. In the present paper we
propose a new approach on adaptive
Huffman coding by adding a buffer. By using
the buffer, the time of encoding and decoding
is faster than the scheme proposed by Vitter.
It is described in the following section. In
section 3, we propose a method of nonbinary
and adaptive Huffman coding. The algorithm
is similar to that of adaptive Huffman coding.

2. Buffered adaptive Huffman coding

Adaptive Huffman coding [6][7] is a
technique for on-line compressing data that
requires only one-pass over the data. That is,
adaptive Huffman codes encode the next
character with the current tree and then
rebuild the tree to be optimal for all
characters seen thus far. The scheme follows
the original Huffman‘s algorithm and
modifies the structure of binary tree
adaptively to maintain the property of
Huffman tree.

To describe how the adaptive Huffman
code works, we add two other parameters to
the binary tree: the weight of each node and
a node number. The weight of each external
node is simply the number of times the

symbol has been encountered. And that of
each internal node is the sum of the weights
of its children. The node number is a unique
number assigned as the order, 2n –1, 2n –2,
2n – 3,… , where n is the size of alphabet. At
the start of transmission, the tree at both the
transmitter and the receiver consists of a
single node that corresponds to all symbols
not yet transmitted (NYT) which has a
weight of zero. Before the beginning of
transmission, a short fixed code for each
symbol is agreed upon between transmitter
and receiver. Once a symbol is encountered
for the first time, the code for the NYT node
is transmitted followed by the fixed code for
the symbol, and then taken out of the NYT
list. Suppose that the source has an alphabet
(a1, a2,… ,am) of size m. We pick e and r such
that m = 2e + r and 0 ≦ r < 2e. Then a letter
ak is encoded to ak.enc as follows:

If 1 ≦ k ≦ 2r, then
ak.enc = (e + 1)-bit binary representation of
k – 1

Else
ak.enc = e-bit binary representation of k – r –
1.

The original adaptive Huffman coding

says that we should update the Huffman tree
once a symbol is read. It is very inefficient
since calling a procedure is expensive and the
result of update may be the same before
changing. To make the adaptive Huffman
coding more useful and effective, we propose
the buffered adaptive Huffman coding by
adding a new parameter, called buffer. The
buffer is added to record the frequency of
each symbol that has been encountered.
Every time a symbol is read, the frequency of
the symbol is increased by 1. We update the
tree only when the number of frequency of a
symbol reaches the number B, which is
defined as updating point. In this way, the
times of calling procedure of update are
reduced. Moreover, the period of encoding
and decoding are both shortened. This
approach speedups the coding time within
only a small buffer, i.e. we trade some space
for time. The algorithm of buffered adaptive

 3

Huffman coding is as follows:

Encoding()
Set the frequency of each symbol to zero.
While the symbol read is not the last one do

Increase the frequency of the symbol by 1.
If the frequency of the symbol is 1 then

Send code for NYT node followed by
index in the NYT list.

Else
Code is the path from the root node to the
corresponding node.
If the frequency of the symbol mod B is not zero
then

Continue the loop.
Call update procedure.

End do

Decoding()
Set the frequency of each symbol to zero.
While the bit read is not the last one do

Go to root of the tree.
While the node is not an external node do

Read bit and go to corresponding node.
End do
If the node is the NYT node then

Read e bits.
If the e-bit number p less than r then

Read one more bit.
Else

Add one to p.
Decode the (p + 1) element in NYT list.
Increase the frequency of the symbol that
is decoded by 1.

Else
Decode element corresponding to node.
Increase the frequency of the symbol that
is decoded by 1.
If the frequency of the symbol mod B is not zero
then

Continue the loop.
Call update procedure.

End do

Update()
If symbol appear at first time then

NYT gives birth to a new NYT and an
external node.
Increment weight of external node and old
NYT node.
Go to old NYT node.
While the node is not the root node do

Go to parent node.
If the node number is not the maximum in
block then

Switch node with highest numbered
node in block.

Increment node weight.
End do

Else
Go to symbol external node.
While true do

If the node number is not the maximum in
block then

Switch node with highest numbered
node in block.

Increment node weight.
If the node is not the root node then

Go to parent node.
Else

Break the loop.
End do

* The set of nodes with the same weight

makes up a block.

3. M-ary adaptive Huffman coding

The binary adaptive Huffman coding
can easily be extended to the nonbinary case
where the code elements come from an m-ary
alphabet, and m is not equal to two. The
approach of the scheme is almost in the same
way. The major difference is in the encoding
and decoding procedures. In both procedures,
we check if the number of symbol first
appeared reach the value of m – 1 before
calling the update procedure. The check
ensures the growth of tree rise m nodes every
time. The algorithms of encoding and
decoding procedures are as follows:

Encoding()
Set N to zero.
While the symbol read is not the last one do

While N is not equal to m – 1 do
If this is the first appearance of the symbol
then

Send code for NYT node followed by
index in the NYT list.
Increase N.
Continue the loop.

Else

 4

Code is the path from the root node to
the corresponding node.
Break the loop.

End do
Call update procedure.
If N is equal to m – 1 then

Set N to zero.
End do

Decoding()
While the bit read is not the last one do

Go to root of the tree.
While the node is not an external node do

Read bit and go to corresponding node.
End do
Set N to zero.
While N is not equal to m – 1 do

If the node is the NYT node then
Read e bits.
If the e-bit number p less than r then

Read one more bit.
Else

Add one to p.
Decode the (p + 1) element in NYT list.
Increase N.
Continue the loop.

Else
Decode element corresponding to node.
Break the loop.

End do
Call update procedure.
If N is equal to m – 1 then

Set N to zero.
End do

In this way, the depth of m-ary adaptive
Huffman tree will be reduced, since the
growth of tree rise on width of it partly. This
means that codewords of symbols are
reduced. Hence, the period of tracing path is
shorter than binary scheme when decoding.

4. Conclusion

The efficiency of the new method of
buffered adaptive Huffman coding depends
on the judicious choice of the size of buffer.
Too large or too small size would cause
needless waste on transmission. Experiments

are needed to decide the size for different
environment. In the m-ary adaptive Huffman
coding, the efficiency depends on the value
of m. The more the value is, the faster it will
be when decoding.

Reference:

[1] K.L. Chung. Efficient Huffman

decoding, Information Processing
Letters 61 (1997) 97-99

[2] N. Faller. An Adaptive System for Data
Compression. In Record of the 7th
Asilomar Conference on Circuits,
Systems, and Computers, pages 593-597.
Piscataway, NJ: IEEE Press, 1973.

[3] R.G. Gallagher. Variations on a Theme
by Huffman. IEEE Transactions on
Information Theory, IT-24(6):668-674,
November 1978.

[4] D.A. Huffman. A method for the
construction of minimum redundancy
codes. In Proc. IRE 40 (1951),
1098-1101.

[5] D.E. Knuth. Dynamic Huffman Coding.
Journal of Algorithms, 6:163-180, 1985.

[6] X. Lin. Dynamic Huffman Code for
Image Compression. MS thesis,
University of Nebraska, 1991.

[7] K. Sayood. Introduction to data
compression, pages 43-50.

[8] J.S. Vitter. Design and Analysis of
Dynamic Huffman Codes. Jounal of
ACM, 34(4):835-845, October 1987.

