Pairing-based Cryptography and Its Applications

Rong-Jaye Chen

Department of Computer Science, National Chiao Tung University, Taiwan

Outline

[1] Elliptic Curve Cryptograph (ECC)

1. Elliptic Curve
2. Elliptic Curve DLP
[2] Pairing-based Cryptography (PBC)
3. Pairings
4. Cryptography from Pairings
[3] Applications of PBC
5. ID-based Encryption
6. Searchable Encryption
7. Broadcast Encryption

Elliptic Curve Cryptography (ECC)

1. Elliptic Curves

- Over Fields of Characteristic p>3
- Curve form
$E: Y^{2}=X^{3}+a X+b$
where $a, b \in F_{q}, q=p^{n}$

$$
4 a^{3}+27 b^{2} \neq 0
$$

- Group operation given $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ compute $P_{3}\left(x_{3}, y_{3}\right)=P_{1}+P_{2}$

Example of EC over GF(p)

- Example: $p=23, a=1, b=0$

Example of EC over GF(p)

- Addition $\left(\mathrm{P}_{1} \neq \mathrm{P}_{2}\right)$

$$
\begin{aligned}
& \text { Computational Cost } \\
& \text { I + } 3 \mathrm{M}
\end{aligned}
$$

- Doubling $\left(P_{1}=P_{2}\right)$

Computational Cost $\mathrm{I}+4 \mathrm{M}$

$$
\begin{aligned}
& \lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& x_{3}=\lambda^{2}-x_{1}-x_{2} \\
& y_{3}=\left(x_{1}-x_{3}\right) \lambda-x_{3}-y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}} \\
& x_{3}=\lambda^{2}-2 x_{1} \\
& y_{3}=\left(x_{1}-x_{3}\right) \lambda-x_{3}-y_{1}
\end{aligned}
$$

1. Elliptic Curves

- Over Fields of Characteristic 2
- Curve form
$E: Y^{2}+X Y=X^{3}+a X^{2}+b$ where $a, b \in F_{q}, b \neq 0, q=2^{n}$
- Group operation given $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ compute $P_{3}\left(x_{3}, y_{3}\right)=P_{1}+P_{2}$

Example of EC over GF($\mathbf{2}^{\mathrm{m}}$)

$$
\begin{aligned}
& G F\left(2^{m}\right)=Z_{2}[x] / p(x), p(x)=x^{4}+x+1 \\
& E: y^{2}+x y=x^{3}+g^{4} x^{2}+1 \\
& y \\
& 1 \quad g \quad g^{2} g^{3} g^{4} g^{5} g^{6} g^{7} g^{8} g^{9} g^{10} g^{11} g^{12} g^{13} g^{14} \quad 0 \quad x \\
& y^{2}+x y=x^{3}+g^{4} x^{2}+1 \text { over } F_{2^{4}}
\end{aligned}
$$

Example of EC over GF(2 $\left.\mathbf{2}^{\mathbf{m}}\right)$

a Addition $\left(\mathrm{P}_{1} \neq \mathrm{P}_{2}\right)$

$$
\begin{aligned}
& \text { Computational Cost } \\
& \qquad I+2 \mathrm{M}+\mathrm{S}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\frac{y_{2}+y_{1}}{x_{2}+x_{1}} \\
& x_{3}=\lambda^{2}+\lambda+x_{1}+x_{2}+a \\
& y_{3}=\left(x_{1}+x_{3}\right) \lambda+x_{3}+y_{1}
\end{aligned}
$$

(tanding $\left(P_{1}=P_{2}\right)$

$$
\begin{aligned}
& \text { Computational Cost } \\
& \qquad I+2 M+S
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\frac{y_{1}}{x_{1}}+x_{1} \\
& x_{3}=\lambda^{2}+\lambda+a \\
& y_{3}=\left(x_{1}+x_{3}\right) \lambda+x_{3}+y_{1}
\end{aligned}
$$

2. Elliptic Curve DLP

- Basic computation of ECC
- $\mathrm{Q}=\mathrm{kP}=\underbrace{\mathrm{P}+\mathrm{P}+\ldots+\mathrm{P}}_{k \text { times }}$
where P is a curve point, k is an integer
- Strength of ECC
- Given curve, the point P, and kP

It is hard to recover k

- Elliptic Curve Discrete Logarithm Problem (ECDLP)

Elliptic Curve Security

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)	Years
80	1024	160	~ 2010
112	2048	224	~ 2030
128	3072	256	
192	7680	384	
256	15360	521	

NIST Recommended Key Sizes

Pairing-based Cryptography (PBC)

1. Pairings

- Divisors
- Definition
- Principal Divisors
- Pairings
- Tate Pairings
- Weil Pairings
- More on Pairings

Definition of Divisors

$\boxtimes E / K, P \in E(\bar{K}),[P]:$ a formal symbol of P
(1) Definition

A divisor D on E is a finite linear combination of the formal symbols with integer coefficients:

$$
D=\sum_{j} a_{j}\left[P_{j}\right], \quad a_{j} \in \mathbb{Z}
$$

(2) Definition
$\operatorname{Div}(E)$: group of divisors in (1)
(3) Define degree and sum of a divisor

$$
\begin{aligned}
& \operatorname{deg}\left(\sum_{j} a_{j}\left[P_{j}\right]\right)=\sum_{j} a_{j} \in \mathbb{Z} \\
& \operatorname{sum}\left(\sum_{j} a_{j}\left[P_{j}\right]\right)=\sum_{j} a_{j} P_{j} \in E(\bar{K})
\end{aligned}
$$

Functions on E

$\boxtimes E / K: y^{2}=x^{3}+A x+B$
(1) Definition

A function on E is a rational function

$$
f(x, y) \in \bar{K}(x, y)
$$

that is defined for at least one point in $E(\bar{K})$. (e.g. rational function $1 /\left(y^{2}-x^{3}-A x-B\right)$ is not allowed.)
(2) Examples
$E: y^{2}=x^{3}-x$
$f(x, y)=x / y$ is defined at $(0,0)$ on $E!$

$$
\because \frac{x}{y}=\frac{y}{x^{2}-1}=0 \quad \text { at }(0,0)
$$

(3) Definition

A function f has a zero at P if $f(P)=0$
A function f has a pole at P if $f(P)=\infty$

Order of f at P

(1) Definition

For each P, \exists a function u_{P} (a uniformizer at P) with $u_{P}(P)=0$ and such that every function $f(x, y)$ can be written in

$$
\begin{gathered}
f=u_{P}^{r} g, \quad \text { with } \quad r \in \mathbb{Z} \text { and } g(P) \neq 0, \infty \\
r \triangleq \operatorname{ord}_{P}(f): \text { order of } f \text { at } P
\end{gathered}
$$

(2) Example
$y^{2}=x^{3}-x, \quad u_{(0,0)}(x, y)=y$ a uniformizer at $(0,0)$ $\operatorname{ord}_{(0,0)}(x)=$?

$$
\because x=y^{2} \frac{1}{x^{2}-1} \quad \therefore \operatorname{ord}_{(0,0)}(x)=2
$$

and $\operatorname{ord}_{(0,0)}(x / y)=1$

Principal Divisors (1/3)

(1) Definition
f is a function on $E, f \neq 0$
the divisor of f

$$
\operatorname{div}(f) \triangleq \sum_{P \in E(\bar{K})} \operatorname{ord}_{P}(f)[P] \in \operatorname{Div}(E)
$$

(2) Proposition
$f \neq 0$ is a function on E. Then

1. f has only finitely many zeros and poles
2. $\operatorname{deg}(\operatorname{div}(f))=0$
3. If f has no zero or pole (so $\operatorname{div}(f)=0$), then f is a constant.
(3) Definition

A divisor D is a principal divisor if it is the divisor of a function. i.e. $D=\operatorname{div}(f)$, for some f

Principal Divisors (2/3)

(4) Suppose P_{1}, P_{2}, P_{3} are 3 points on E that lie on the line $a x+b y+c=0$
Then $f(x, y)=a x+b y+c$ has zeros at P_{1}, P_{2}, P_{3}. If $b \neq 0$ then f has a triple pole at ∞.
Therefore

$$
\operatorname{div}(a x+b y+c)=\left[P_{1}\right]+\left[P_{2}\right]+\left[P_{3}\right]-3[\infty]
$$

The line through $P_{3}=\left(x_{3}, y_{3}\right)$ and $-P_{3}$ is $x-x_{3}=0$.

$$
\operatorname{div}\left(x-x_{3}\right)=\left[P_{3}\right]+\left[-P_{3}\right]-2[\infty]
$$

Principal Divisors (3/3)

(4) Therefore,

$$
\begin{aligned}
\operatorname{div}\left(\frac{a x+b y+c}{x-x_{3}}\right) & =\operatorname{div}(a x+b y+c)-\operatorname{div}\left(x-x_{3}\right) \\
& =\left[P_{1}\right]+\left[P_{2}\right]-\left[-P_{3}\right]-[\infty]
\end{aligned}
$$

Since $P_{1}+P_{2}=-P_{3}$ on E. So

$$
\left[P_{1}\right]+\left[P_{2}\right]=\left[P_{1}+P_{2}\right]+[\infty]+\operatorname{div}\left(\frac{a x+b y+c}{x-x_{3}}\right)
$$

Theorem

D : divisor on E with $\operatorname{deg}(D)=0$
$\rightarrow \exists f$ on E with $\operatorname{div}(f)=D$ if and only if $\operatorname{sum}(D)=\infty$

Group Relation

$\mathcal{P}(E)$: principal divisors on E

Example (1/2)

$\boxtimes E / F_{11}: y^{2}=x^{3}+4 x$,
$D=[(0,0)]+[(2,4)]+[(4,5)]+[(6,3)]-4[\infty]$
$\because \operatorname{deg}(D)=0, \quad \operatorname{sum}(D)=\infty$
By theorem, D is a divisor of a function.
Let's find the function.
(1) The line through $(0,0),(2,4)$ is $y-2 x=0$. It is tangent to E at $(2,4)$, so $\operatorname{div}(y-2 x)=[(0,0)]+2[(2,4)]-3[\infty]$
(2) The vertical line through $(2,4)$ is $x-2=0$, $\operatorname{div}(x-2)=[(2,4)]+[(2,-4)]-2[\infty]$

$$
\therefore D=[(2,-4)]+\operatorname{div}\left(\frac{y-2 x}{x-2}\right)+[(4,5)]+[(6,3)]-3[\infty]
$$

Example (2/2)

\triangle (Continue):
(3) Similarly,

$$
\begin{aligned}
& {[(4,5)]+[(6,3)]=[(2,4)]+[\infty]+\operatorname{div}\left(\frac{y+x+2}{x-2}\right) } \\
\rightarrow & D= \\
\rightarrow & {[(2,-4)]+\operatorname{div}\left(\frac{y-2 x}{x-2}\right)+[(2,4)]+\operatorname{div}\left(\frac{y+x+2}{x-2}\right)-2[\infty] } \\
= & \operatorname{div}\left(\frac{(y-2 x)(y+x+2)}{x-2}\right)
\end{aligned}
$$

(4) $(y-2 x)(y+x+2)=y^{2}-x y-2 x^{2}+2 y-4 x$

$$
\begin{aligned}
& =x^{3}-x y-2 x^{2}+2 y \quad\left(\text { Since } y^{2}=x^{3}+4 x\right) \\
& =(x-2)\left(x^{2}-y\right)
\end{aligned}
$$

$\therefore D=\operatorname{div}\left(x^{2}-y\right)$

Pairings

\boxtimes In the following slides, we use

[n] P for $n P$

$n(P)$ for $n[P]$
(f) for $\operatorname{div}(f)$

Preliminaries (1/2)

$\boxtimes E$ is an elliptic curve defined over \mathbb{F}_{q}, whose characteristic is p.
$\boxtimes r$ is a large prime which divides $\# E\left(\mathbb{F}_{q}\right)$, where $\operatorname{gcd}(r, p)=1$.
$\boxtimes \mu_{r}=\left\{u \in \overline{\mathbb{F}}_{q} \mid u^{r}=1\right\}$.
\boxtimes The embedding degree k is the smallest positive integer such that $r \mid q^{k}-1$.
\boxtimes Then, $\mathbb{F}_{q^{k}}=\mathbb{F}_{q}\left(\mu_{r}\right)$.

Preliminaries (2/2)

$\boxtimes\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}=\left\{u^{r} \mid u \in \mathbb{F}_{q^{k}}^{*}\right\}$.

- $\left(\mathbb{F}_{q^{*}}^{*}\right)^{r}$ is a subgroup of $\mathbb{F}_{q^{*}}^{*}$.
- The group $\mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{*}}^{*}\right)^{r}$ is isomorphic to μ_{r}.
$\boxtimes E\left(\mathbb{F}_{q^{k}}\right)[r]=\left\{P \in E\left(\mathbb{F}_{q^{k}}\right) \mid[r] P=\infty\right\}$.
$\boxtimes r E\left(\mathbb{F}_{q^{k}}\right)=\left\{[r] P \mid p \in E\left(\mathbb{F}_{q^{k}}\right)\right\}$.
- $r E\left(\mathbb{F}_{q^{k}}\right)$ is a subgroup of $E\left(\mathbb{F}_{q^{k}}\right)$.
- $\left|E\left(\mathbb{F}_{q^{k}}\right)[r]\right|=\left|E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)\right|$
- In many cases of relevance for cryptography, one can represent $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$ using the points of $E\left(\mathbb{F}_{q^{k}}\right)[r]$.

Tate Pairing (1/2)

\boxtimes Let f be a function and $D=\Sigma_{P} n_{P}(P)$ be a divisor, then

$$
f(D)=\Pi_{P} f(P)^{n_{P}}
$$

\boxtimes Let $P \in E\left(\mathbb{F}_{q^{k}}\right)[r]$.

- Since $[r] P=\infty$, there is a function f such that $(f)=r(P)-r(\infty)$.
\boxtimes Let $Q \in E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$.
- Construct a divisor $D=(Q+S)-(S)$ by choosing an arbitrary point $S \in E\left(\mathbb{F}_{q^{k}}\right)$ such that the supports of (f) and D are disjoint.

Tate Pairing (2/2)

\boxtimes The Tate pairing

$$
\langle\cdot, \cdot\rangle_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}
$$

is defined by

$$
\langle P, Q\rangle_{r}=f(D) .
$$

\triangle For practical purposes, the reduced Tate pairing unifies the result of the Tate pairing by

$$
e(P, Q)=\langle P, Q\rangle_{r}^{\left(q^{k}-1\right) / r}
$$

which maps into the group $\mu_{r} \subset \mathbb{F}_{q^{k}}^{*}$.
\boxtimes If $k>1$ or $P \in r E\left(\mathbb{F}_{q}\right)$, then

$$
e(P, P)=1
$$

Properties of Tate Pairing

\boxtimes Bilinearity: For all $P, P_{1}, P_{2} \in E\left(\mathbb{F}_{q^{k}}\right)[r]$ and
$Q, Q_{1}, Q_{2} \in E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$,

$$
\left\langle P_{1}+P_{2}, Q\right\rangle_{r}=\left\langle P_{1}, Q\right\rangle_{r}\left\langle P_{2}, Q\right\rangle_{r}
$$

and

$$
\left\langle P, Q_{1}+Q_{2}\right\rangle_{r}=\left\langle P, Q_{1}\right\rangle_{r}\left\langle P, Q_{2}\right\rangle_{r}
$$

\triangle Non-degeneracy:

- For all $P \in E\left(\mathbb{F}_{q^{k}}\right)[r] \backslash\{\infty\}$, there is some $Q \in E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$ such that $\langle P, Q\rangle_{r} \neq 1$.
- Similarly, for all $Q \in E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$ with $Q \notin r E\left(\mathbb{F}_{q^{k}}\right)$, there is some $P \in E\left(\mathbb{F}_{q^{k}}\right)[r]$ such that $\langle P, Q\rangle_{r} \neq 1$.

The Idea of Miller's Algorithm

\boxtimes To compute the Tate pairing, we need to construct a function f such that $(f)=r(P)-r(\infty)$.
\boxtimes Write f_{i} for a function such that

$$
\left(f_{i}\right)=i(P)-([i] P)-(i-1)(\infty) .
$$

Note that $f_{1}=1$
\boxtimes Let l be the straight line across $[i] P$ and $[j] P$, and v be the verticle line across $[i+j] P$, then

$$
(l / v)=([i] P)+([j] P)-([i+j] P)-(\infty) .
$$

\boxtimes So,

$$
f_{i+j}=f_{i} f_{j} \frac{l}{v}
$$

Weil Pairing

$\boxtimes E$ is an elliptic curve defined over \mathbb{F}_{q}, whose characteristic is p.
$\boxtimes r$ is a large prime which divides $\# E\left(\mathbb{F}_{q}\right)$, where $\operatorname{gcd}(r, p)=1$.
$\boxtimes k^{\prime}$ is the smallest positive integer such that $E[r] \subset E\left(\mathbb{F}_{q^{k^{\prime}}}\right)$.
\boxtimes Let $P, Q \in E[r]$ and construct degree zero divisors $D=(P+S)-(S)$, $D^{\prime}=(Q+T)-(T)$ such that the supports of D and D^{\prime} are disjoint.
\boxtimes Let $(f)=r D$, and $(g)=r D^{\prime}$.
\boxtimes The Weil pairing is a map

$$
e_{r}: E[r] \times E[r] \rightarrow \mu_{r} \subseteq \mathbb{F}_{q^{k^{\prime}}}
$$

defined by

$$
e_{r}(P, Q)=f\left(D^{\prime}\right) / g(D)
$$

Properties of Weil Pairing

\boxtimes Bilinearity: For all $P, P^{\prime}, Q, Q^{\prime} \in E[r]$,

$$
e_{r}\left(P+P^{\prime}, Q\right)=e_{r}(P, Q) e_{r}\left(P^{\prime}, Q\right)
$$

and

$$
e_{r}\left(P, Q+Q^{\prime}\right)=e_{r}(P, Q) e_{r}\left(P, Q^{\prime}\right)
$$

\boxtimes Non-degeneracy: If $e_{r}(P, Q)=1$ for all $Q \in E[r]$, then $P=\infty$.
\otimes Alternating: $e_{r}(P, P)=1$ and so $e_{r}(P, Q)=e_{r}(Q, P)^{-1}$.

Tate Pairing vs. Weil Pairing

\boxtimes If $\mu_{r} \nsubseteq\left(\mathbb{F}_{q^{k^{\prime}}}^{*}\right)^{r}$, then

$$
e_{r}(P, Q)=\frac{e(P, Q)}{e(Q, P)}
$$

\triangle The Tate pairing requires working over $\mathbb{F}_{q^{k}}$ while the Weil pairing requires the potentially much larger field $\mathbb{F}_{q^{k^{\prime}}}$.

- If $r \nmid(q-1)$ and $\operatorname{gcd}(r, q)=1$, then $k=k^{\prime}$.

More on Pairings

Distortion Maps:

- Let $P \in E\left(\mathbb{F}_{q}\right)$ have prime order r, and suppose $k>1$.
- Suppose $E\left(\mathbb{F}_{q^{k}}\right)$ has no points of order r^{2}.
- Let ϕ be an endomorphism of E such that $\phi(P) \notin E\left(\mathbb{F}_{q}\right)$.
(1) $e(P, \phi(P)) \neq 1$.
(2) The endomorphism ϕ is called a distortion map.
\boxtimes If an elliptic curve E has a distortion map, then E is supersingular.
\boxtimes Use distortion maps, and restrict the pairing to a single cyclic subgroup.
(1) In this case, $Q=[m] P$.
(2) Symmetry:

$$
e(Q, \phi(P))=e([m] P, \phi(P))=e(P,[m] \phi(P))=e(P, \phi(Q))
$$

Distortion Maps

Modified Pairings

$\boxtimes E\left(\mathbb{F}_{q}\right)$ is supersingular with $r \mid \# E\left(\mathbb{F}_{q}\right)$ for some prime r.
$\triangle \phi$ is the distortion map of E.
\boxtimes The embedding degree $k>1$ and assume $E\left(\mathbb{F}_{q^{k}}\right)$ has no points of order r^{2}.
\boxtimes Put $G_{1}=\langle P\rangle$, where $P \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\}$, and $G_{3}=\mu_{r}$.
\boxtimes Modified Pairings:
(1) $Q, R \in G_{1}$.
(2) The modified pairing

$$
\hat{e}: G_{1} \times G_{1} \rightarrow G_{3}
$$

is defined by

$$
\hat{e}(Q, R)=e(Q, \phi(R))
$$

(3) It has bilinearity, symmetry, and non-degeneracy.

2. Cryptography from Pairings

- Key Distribution Schemes
- Identity-based Non-interactive Key Distribution
- Three-party Key Distribution
- Signature Schemes
- Identity-based Signature
- Short Signature

ID-based Non-interactive Key Distribution

\triangle Sakai, Ohgishi, and Kasahara (SCIS 2000)
\triangle Setup \& Extract: The same as Identity-Based Encryption

- The system parameters: $\left\langle G_{1}, G_{3}, \hat{e}, H,\right\rangle$.
- User A: public key $Q_{A}=H\left(I D_{A}\right)$, and private key $S_{A}=[s] Q_{A}$.
- User B: public key $Q_{B}=H\left(I D_{B}\right)$, and private key $S_{B}=[s] Q_{B}$.
\boxtimes Key Agreement:
- User A computes $\hat{e}\left(S_{A}, Q_{B}\right)=\hat{e}\left(Q_{A}, Q_{B}\right)^{s}$.
- User B computes $\hat{e}\left(Q_{A}, S_{B}\right)=\hat{e}\left(Q_{A}, Q_{B}\right)^{s}$.

Three-party Key Distribution

\boxtimes Joux (ANTS 2000)
\triangle Setup:

- The system parameters: $\left\langle G_{1}, G_{3}, \hat{e}, P\right\rangle$.
\boxtimes Key Agreement:
- User A select a number a, and broadcast $[a] P$.
- User B select a number b, and broadcast $[b] P$.
- User C select a number c, and broadcast $[c] P$.
- User A computes $\hat{e}([b] P,[c] P)^{a}=\hat{e}(P, P)^{a b c}$.
- User B computes $\hat{e}([a] P,[c] P)^{a}=\hat{e}(P, P)^{a b c}$.
- User C computes $\hat{e}([a] P,[b] P)^{a}=\hat{e}(P, P)^{a b c}$.

ID-based Signature

\triangle Cha and Cheon (PKC 2003)
\otimes Setup \& Extract: The same as Identity-Based Encryption

- The system parameters: $\left\langle G_{1}, G_{3}, \hat{e}, P, Q_{0}, H, H_{2}\right\rangle$. where $H_{2}:\{0,1\}^{*} \times G_{1} \rightarrow \mathbb{Z}_{r}$.
\triangle Sign: A want to sign the message M
(1) Choose a random $t \in \mathbb{Z}_{r}^{*}$.
(2) Compute $U=[t] Q_{A}, h=H_{2}(M, U)$, and $V=[t+h] S_{A}$.
(3) The signature $\sigma=\langle U, V\rangle$
\triangle Verify: Someone verify the signed message ($M,\langle U, V\rangle$).
(. Compute $h=H_{2}(M, U)$, and $Q_{A}=H\left(I D_{A}\right)$.
(2) Check if $\hat{e}\left(Q_{0}, U+[h] Q_{A}\right)=\hat{e}(P, V)$.

Short Signature

\boxtimes Boneh, Lynn, and Shacham (ASIACRYPT 2001)
\triangle Setup:

- The system parameters: $\left\langle G_{1}, G_{3}, \hat{e}, P\right\rangle$.
\boxtimes Extract: The user A chooses his own private key.
- Choose $x \in \mathbb{Z}_{r}^{*}$ as the private key, and compute the public key $Q_{A}=[x] P$
\boxtimes Sign: A want to sign the message M
(1) The signature $\sigma=[x] H(M)$.
\boxtimes Verify:
(1) Get the public key Q_{A} of A .
(2) Check if $\hat{e}(\sigma, P)=\hat{e}\left(H(M), Q_{A}\right)$.

Applications of PBC

1. ID-based Encryption

- History
- Certificate-based Cryptography
- Identity-based Cryptography

History

- Shamir (CRYPTO 1984) raised the open problem.
- Two solutions:
- Pairing-based approach:

Boneh and Franklin (CRYPTO 2001)

- Based on the Quadratic Residuosity problem:

Cocks (Crypto and Coding 2001)

Certificate-based Cryptography

```
KU
```


Encrypt or

Verify

Identity-based Cryptography

$I D_{B o b}$ is arbitrary and meaningful ex: Bob@hotmail.com or 0912345678

Protocol (1/2)

\boxtimes Setup:

- Common parameters: G_{1}, G_{3}, \hat{e}, and P.
- PKG select a master key s, and keep in secret. The public parameter $Q_{0}=P_{p u b}=[s] P$.
- Two hash functions:
$H:\{0,1\}^{*} \rightarrow G_{1}$ (Map to Point), and $H_{1}: G_{3} \rightarrow\{0,1\}^{n}$ for some chosen n.
- The system parameters: $\left\langle G_{1}, G_{3}, \hat{e}, P, Q_{0}, n, H, H_{1}\right\rangle$.
\boxtimes Extract:
- Given the ID of A $I D_{A} \in\{0,1\}^{*}$, the public key of A is $Q_{A}=H\left(I D_{A}\right)$.
- The private key of A is $S_{A}=[s] Q_{A}$.

Protocol (2/2)

\boxtimes Encrypt: Someone would like to encrypt message M for A.
(1) Get the public key of A by $Q_{A}=H\left(I D_{A}\right)$.
(2) Choose a random $t \in \mathbb{Z}_{r}^{*}$.
(3) The cipher $C=\left\langle t P, M \oplus H_{1}\left(\hat{e}\left(Q_{A}, Q_{0}\right)^{t}\right)\right.$.
\boxtimes Decrypt: A receives the encrypted message $C=\langle U, V\rangle$
(1) Check if $r U=\infty$.
(2) The message $M=V \oplus H_{1}\left(\hat{e}\left(S_{A}, U\right)\right)$.

2. Searchable Encryption [BCOP 2003]

- Pairing Cryptography

Goal

\boxtimes Goal: searching on encrypted data.
\triangle Example:

- Bob sends email to Alice encrypted under Alice's public key.
- Both contents and keywords are encrypted.
- The email is stored on a mail server.
- Alice want to specify a few keywords to read email.
- The mail server should be able to search, but learn nothing else about the email.

BCOP Scheme

\boxtimes Bob encrypts his email using a standard public key system.
\boxtimes He appends to the resulting ciphertext a Public-key Encryption with Keyowrd Search (PEKS) of each keyword.
\boxtimes To send a message M with keywords W_{1}, \ldots, W_{m}, Bob sends

$$
E_{A_{p u b}}(M)\left\|\operatorname{PEKS}\left(A_{p u b}, W_{1}\right) \quad\right\| \quad \ldots \quad \| \quad \operatorname{PEKS}\left(A_{p u b}, W_{m}\right)
$$

\boxtimes There is a certain trapdoor T_{W} for a specific keyword W.
\boxtimes The mail server can test whether $W=W^{\prime}$ by use of $\operatorname{PEKS}\left(A_{p u b}, W^{\prime}\right)$ and T_{W}.
$凶$ If $W \neq W^{\prime}$, the mail server learns nothing more about W^{\prime}.
\triangle A public key encryption with keyword search scheme consists the following polynomial time randomized algorithms:

- KeyGen (s) : takes a security parameter, s, and generates a public/private key pair $A_{p u b}, A_{\text {priv }}$.
- PEKS $\left(A_{p u b}, W\right)$: for a public key $A_{p u b}$ and a work W, produces a searchable encryption of W.
- Trapdoor $\left(A_{\text {priv }}, W\right)$: given Alice's private key $A_{\text {priv }}$ and a word W, produces a trapdoor T_{W}.
- Test $\left(A_{p u b}, S, T_{W}\right)$: given Alice's public key $A_{p u b}$, a searchable encryption $S=\operatorname{PEKS}\left(A_{p u b}, W^{\prime}\right)$, and a trapdoor $T_{W}=\operatorname{Trapdoor}\left(A_{p r i v}, W\right)$, outputs 'yes' if $W=W^{\prime}$ and 'no' otherwise.

Construction of PEKS

\boxtimes Using the Neil pairing $e: G_{1} \times G_{1} \rightarrow G_{3}$, where $\left|G_{1}\right|=\left|G_{3}\right|=p$.
\boxtimes The hash functions: $H_{1}:\{0,1\}^{*} \rightarrow G_{1}$ and $H_{2}: G_{3} \rightarrow\{0,1\}^{\log p}$.
$凶$ The PEKS works as follows:

- KeyGen (s) : The input security parameter determines the size, p, of the groups G_{1} and G_{3}. The algorithm picks a random $\alpha \in \mathbb{Z}_{p}^{*}$ and a generator P of G_{1}. It outputs $A_{\text {pub }}=\{P, Q=[\alpha] P\}$ and $A_{\text {priv }}=\alpha$.
- $\operatorname{PEKS}\left(A_{p u b}, W\right)$: First compute $t=e\left(H_{1}(W),[r] Q\right) \in G_{3}$ for a random $r \in \mathbb{Z}_{p}^{*}$. Output PEKS $\left(A_{p u b}, W\right)=\left\{[r] P, H_{2}(t)\right\}$.
- Trapdoor $\left(A_{p r i v}, W\right)$: output $T_{W}=[\alpha] H_{1}(W) \in G_{1}$.
- $\operatorname{Test}\left(A_{p u b}, S, T_{W}\right)$: let $S=\{A, B\}$. Test if $H_{2}\left(e\left(T_{W}, A\right)\right)=B$.
$\boxtimes e\left(T_{W}, A\right)=e\left([\alpha] H_{1}(W),[r] P\right)=e\left(H_{1}(W), P\right)^{r \alpha}=e\left(H_{1}(W),[r]([\alpha] P)\right)=$ $e\left(H_{1}(W),[r] Q\right)$

BGW Scheme - Setup

- Setup(n)
. in: \# of intended users
- out: n private keys ($d_{1}, . . d_{n}$), one public key $P K$

Public Key: $\quad P K=\left(P, P_{1}, \ldots, P_{n}, P_{n+2}, \ldots, P_{2 n}, v\right)$
Private Key: $\quad d_{i}=\alpha^{i} v=\alpha^{i} \gamma P=\gamma P_{i}, i=i \ldots \ldots n$
Where $P_{i}=\alpha^{i} P, v=\gamma P$

BGW Scheme - Encrypt

- Encrypt(S, PK)
- in: $S \subseteq\{1, \ldots, n\}$, public key PK
- out: a pair (Hdr, K)
- Hdr is called the header. (aka broadcast ciphertext)
- $K \in K$ is a message encryption key chosen from a finite key set K.
$H d r=\left(t P, t\left(v+\sum_{j \in S} P_{n+1-j}\right)\right)$
$K=e\left(P_{n+1}, P\right)^{t}$

BGW Scheme - Decrypt

- Decrypt(S, i, di, Hdr, PK)
- If $i \in S$, then the algorithm outputs a message encryption key $K \in K$.

$$
H d r=\left(t P, t\left(v+\sum_{j \in S} P_{n+1-j}\right)\right)=\left(C_{0}, C_{1}\right)
$$

$$
K=\frac{e\left(P_{i}, C_{1}\right)}{e\left(d_{i}+\sum_{j \in S, j \neq i} P_{n+1-j+i}, C_{0}\right)} \quad \begin{aligned}
\text { Note: } d_{i}=\alpha^{i} v=\alpha^{i} \gamma P= \\
P_{i}=\alpha^{i} P, v=\gamma P
\end{aligned}
$$

BGW Scheme - Setup (Generalized)

- IDEA: run A parallel instances of special case where each instance can broadcast to at most B<n users
 - in: \# of intended users
- out: n private keys $\left(d_{1}, . . d_{n}\right)$, one public key PK Public Key: $\quad P K=\left(P, P_{1}, \ldots, P_{B}, P_{B+2}, \ldots, P_{2 B}, v_{1}, \ldots, v_{A}\right)$ Private Key: $\quad d_{i}=\alpha^{b} v_{a}=\alpha^{b} \gamma_{a} P=\gamma_{a} P_{b}, i=i \ldots . . n$

Where $P_{i}=\alpha^{i} P, v_{a}=\gamma_{a} P$

Write i as $i=(a-1) B+b$
i.e. $a=\left\lceil\frac{i}{B}\right\rceil, b=i \bmod B$

