Attribute－Based Encryption

陳榮傑
交通大學資工系
Cryptanalysis Lab
6／25／2012

Public Key Encryption

Doctor encrypts EMR under Bob's public key
Doctor

Bob

Bob decrypts EMR under his private key

Limitations

\square Bob is the single and known recipient of data

- Unknown recipient?
- Many recipients?
- More may join system later?

Attribute-Based Encryption [swos]

Flexible data sharing:

Idea

Ciphertexts: associated with access formulae

Private Keys: associated with attributes

Decryption:

Example 1: Job Posting

Encrypt a job posting

Example 2: Police Department

An informant encrypts a message for anyone in the internal affairs office or anyone who is undercover and in the central office.

Example 3: Technology Company

hire date < 2002

Example 4: Johns Hopkins Hospital

Example 5: EMR (Electronic medical record)

Example 5: EMR (Electronic medical record)

Example 5: EMR

Example 5: EMR

Example 5: EMR

Avoid Collusion Attacks

Keys must be personalized

Key Personalization

"Vs"
Choose random r for each user's all attributes

[BSW07,LW11] CIPHER-POLICY ABE

Cipher-policy ABE

- Secret keys are labeled with a set of attributes
- Ciphertext is associated with access structure that control which user is able to decrypt the ciphertext.

Setup

- Bilinear map: e
$-\mathrm{e}: \mathrm{G}_{1} \times \mathrm{G}_{1}->\mathrm{G}_{2}$
$-G_{1}$ has prime order p
-g is a generator of G_{1}

Setup

- $\mathrm{U}=\left\{\mathrm{a}_{1}=\right.$ child, $\left.\mathrm{a}_{2}=<120 \mathrm{~cm}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$
- U is the set of all attributes
- $H: U->G_{1}$

Setup

- MK(master key): used to produce user's secret key
- Choose $\alpha, \beta \in Z_{p}$
$-M K=\left(\beta, g^{\alpha}\right)$
- PK(public key): used to produce ciphertext
- PK=(g, $\left.g^{\beta}, e(g, g)^{\alpha}\right)$

Encryption

- Encrypt(M(plaintext), T(access tree), PK) Choose a polynomial q_{x} for each node: $q_{1}, q_{2}, q_{3}, \ldots, q_{8}$.

$$
\begin{aligned}
\text { degree }\left(q_{x}\right) & =K(x)-1 \\
\text { degree }\left(q_{1}\right) & =0 \\
\text { degree }\left(q_{2}\right) & =1 \\
\text { degree }\left(q_{3}\right) & =1 \\
\text { degree }\left(q_{4}\right) & =0
\end{aligned}
$$

- Encrypt(M(plaintext), T(access tree), PK)

Choose a polynomial q_{x} for each node: $q_{1}, q_{2}, q_{3}, \ldots, q_{8}$.

```
degree(qx) = K(x) - 1
    degree(q}\mp@subsup{q}{1}{})=
    degree(q}\mp@subsup{q}{2}{})=
    degree(qu})=
    degree(qu) = 0
    degree (q8) =0
```


Encryption

Encryption

- Output
$-\mathrm{T}, \mathrm{Me}(\mathrm{g}, \mathrm{g})^{\alpha \mathrm{s}}, \mathrm{C}=\mathrm{g} \beta \mathrm{s}$
$-\mathrm{C} 4=\mathrm{g}^{\mathrm{q}_{4}(0)}$
C8
$-\mathrm{C4}{ }^{\prime}=\mathrm{H}(\text { child })^{q_{4}(0)}$ C8,

Key Generation

KeyGen($\gamma=$ \{ "child", "student", "<20" \}, MK)

- Choose $r \in Z_{p}$
- Choose $r_{\text {child }}, r_{\text {student }}, r_{<20} \in Z_{p}$
- Output
- $\mathrm{D}=\mathrm{g}^{(\alpha+r) / \beta}$
- Dchild $=\mathrm{g}^{r} \times H$ (child) ${ }^{r}$ child

Dstudent
D<20

- D^{\prime} child $=\mathrm{g}^{r_{\text {child }}}$

D'student
D'<20

Decryption

- Cipher text C
$-\mathrm{T}, \mathrm{Me}(\mathrm{g}, \mathrm{g})^{\alpha \mathrm{s}}, \mathrm{C}=\mathrm{g}^{\beta \mathrm{s}}$
$-\mathrm{C} 4=\mathrm{g}_{4}(0)$

- $\mathrm{C4}^{\prime}=\mathrm{H}(\text { child })^{q_{4}(0)}$

C8'

- Private Key
- $\mathrm{D}=\mathrm{g}^{(\alpha+r) / \beta}$
- Dchild $=\mathrm{g}^{r} \times H(\text { child })^{r_{c h i l d}}$ Dstudent
D<20
- D^{\prime} child $=\mathrm{g}^{r_{\text {child }}}$

D'student
$D^{\prime}<20$

- $\frac{\mathrm{e}\left({\left.\text { Dstudent }, C_{6}\right)}_{\mathrm{e}\left(\mathrm{D}_{\text {student }}{ }^{\prime} \mathrm{C}^{\prime} 6\right)}\right.}{}=\mathrm{e}(\mathrm{g}, \mathrm{g})^{\mathrm{rq}_{6}(0)}$

$$
\begin{aligned}
& =\frac{e\left(D_{i}, C_{x}\right)}{e\left(D_{i}^{\prime}, C_{x}^{\prime}\right)} \\
& =\frac{e\left(g^{r} \cdot H(i)^{r_{i}}, h^{q_{x}(0)}\right)}{e\left(g^{r_{i}}, H(i)^{q_{x}(0)}\right)} \\
& =e(g, g)^{r q_{x}(0)} .
\end{aligned}
$$

- $e(g, g)^{r q_{1}(0)}=e(g, g)^{r s}$

$$
\begin{aligned}
& \operatorname{Me}(g, g)^{\alpha s} / e(C, D) \\
& \left.=\operatorname{Me}(g, g)^{\alpha s} / e^{\beta s}, g^{(\alpha+r) / \beta}\right) \\
& =\operatorname{Me}(g, g)^{-r s}
\end{aligned}
$$

$\mathrm{Me}(\mathrm{g}, \mathrm{g})^{-\mathrm{rs}} \cdot \mathrm{e}(\mathrm{g}, \mathrm{g})^{\mathrm{rs}}=\mathrm{M}$

Our implementation (Linear Secret Sharing Scheme)

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 2 \\
1 & 0 & 3
\end{array}\right) \cdot\left(\begin{array}{l}
s \\
r_{1} \\
r_{2}
\end{array}\right)= \\
& \left(\begin{array}{c}
s+r_{1} \\
-r_{1} \\
s+r_{2} \\
s+2 r_{2} \\
s+3 r_{2}
\end{array}\right) \begin{array}{l}
(\text { for } 4) \\
\left(\begin{array}{l}
\text { (for 5) }
\end{array}\right. \\
(\text { for } 6) \\
\text { (for } 7) \\
\text { (for } 8)
\end{array}
\end{aligned}
$$

病歷首頁單

Continuity of Care Document：
XML－based standard

Access Formula
"_:Pathology" OR ("_:VS" AND "_:Surgery")

encrypt!

Ciphers

Ciphers

$$
\begin{array}{|l|l|}
\hline 25 . a e s 128 & \text { policy? } \\
\hline
\end{array}
$$

病歷首頁單

- 重大傷病：（文字敘述）
- 過敏史－藥物過敏：（文字敘述）
- 過敏史－食物過敏：（文字敘述）
- 過敏史－環境過敏：（文字敘述）
- 藥物不良反應（ADR）：（文字敘述）
- 旅遊史：（文字敘述）
- 傳染病史：（文字敘述）
- 遺傳病史：（文字敘述）
- 其他個人重要病史：（文字敘述）

- Questions?
- Thank you

