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Abstract—In this paper, Type-4 two-dimensional (2-D) 

separable denominator IIR filter architecture is 

studied.  This structure has a critical path of one 

multiplication and three additions. Using this Type-4 2-D 

separable denominator IIR filter architecture, three new 

2-D IIR filter structures with diagonal and four-fold 

rotational symmetries are given. These structures have a 

critical path of one multiplication and four additions. 

Further, using a different coefficient constraint, a new 

Type-3 2-D diagonal symmetry IIR filter architecture 

with a critical path of one multiplication and two 

additions is obtained. In all, four different 2-D IIR filter 

architectures with diagonal and four-fold rotational 

symmetries are presented.  

I. INTRODUCTION  

Two-dimensional (2-D) digital filters have been 

extensively studied for a variety of digital signal processing 

(DSP) applications such as frequency response analysis [1-3], 

image processing [4] and beamformer [5]. To enhance the 

speed performance, the existing application-specific 

integrated circuit (ASIC) approach [3, 4, 6, 7] has been 

applied to design 2-D conventional filter architectures. 

Taking advantage of an ASIC approach, the filter designs can 

achieve high throughput performance and low cost. Utilizing 

symmetry features presented in the magnitude function of the 

frequency response, the number of multipliers can be reduced 

in ASIC implementation. Previously, Type-1 [11, 16] and 

Type-2 [11] and Type-3 [12, 14-16] 2-D filter architectures 

have been addressed. In this paper, Type-4 2-D IIR filter 

architectures with diagonal and fourfold rotational symmetry 

are explored. Also, Type-3 2-D diagonal symmetry IIR filter 

architecture with a different coefficient constraint that is not 

studied earlier is presented. The paper is organized as follows: 

Section II presents Type-4 2-D separable denominator IIR 

filter architecture. Two Type-4 and one Type-3 2-D diagonal 

symmetry IIR filter architectures are discussed in Section III. 

Next, in Section IV, one new Type-4 2-D IIR filter 

architecture with four-fold rotational symmetry is given. In 

Section V, the concise comparison in terms of critical path, 

number of multiplies, the number of registers is addressed. 

The conclusions are given in Section VI. 

II. TYPE-4 2-D SEPARABLE DENOMINATOR FILTER 

The general transfer function of a 2-D IIR quarter-plane 

digital filter can be represented as follows [11, 16] 
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where X(z1, z2) and Y(z1, z2) denote the input and output of 

the filter, respectively, aij and bij denote the numerator and 

denominator coefficients, respectively, and b00=0, N1 ×  N2 is 

the order of the IIR filter. Considering the separable 

denominator transfer function, (1) can be recast as (2) [11, 

16]: 
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Without loss of generality, N1=N2=N is assumed for the filter 
order throughout this paper. Since M-size input zero-padding 
image signal is fed to the following filter architecture in row-

scan mode, thus the delay z2
-1=z-1 and Mzz −− =1

1 , where z-1 

and M denote a unit delay element and the width of input 
image with zero padding, respectively. Through the transfer 
function adjustment in (3), (4), and (5), the Type-4 separable 
denominator architecture in Fig. 1 can be obtained.  
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Assume X=X(z1, z2), Y4=Y4(z1, z2), and Y=Y(z1, z2) and then 
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Therefore, Y4(z1, z2) / X(z1, z2) is generally expressed as 
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It can be observed that Eq. (4) and Eq. (5) are mapped to 

Block 1 and Block 2, respectively. Using the tree method 

mentioned in [7] to arrange the adders, the critical period for 

the Type-4 2-D filter architecture is Tm+3Ta, where Tm and Ta 

denote the operation time required by one multiplier and one 

adder. 
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Fig. 1. Type-4 2-D separable denominator IIR filter 
architecture for N=3. 

III. PROPOSED TYPE-4 AND TYPE-3 2-D DIAGONAL 

SYMMETRY IIR FILTER ARCHITECTURES 
A 2-D magnitude response possesses diagonal symmetry if 

|H(z1, z2)|=|H(z2, z1)| with 1
1

j
ez =  and 2

2
j

ez = , ),( 21   

[8]. Assume the separable denominator transfer function in (2) 
is adopted, it will have diagonal symmetry if aij=aji and 
bk0=b0k for all i, j, k. Applying these constraints to the transfer 
function in (2), Eqs. (4) and (5) can be recast in (6a) and (6b), 
respectively. 
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For highlighting the architecture difference compared with 

the previously published symmetry filter architectures, N=3 

is selected in the following proposed filter architectures. 

Mapping (6a) and (6b) with N=3, the 2-D diagonal symmetry 

IIR filter architecture with separable denominator is depicted 

in Fig. 2. Using the tree method mentioned in [7] to arrange 

the adders, the critical path is analyzed as Tm+4Ta as shown 

in Fig. 2. It can be shown that another coefficient constraint 

aij=a(N-j)(N-i) and bk0=b0k for all i, j, k will also result in the 

diagonal symmetry. This constraint is being studied for the 

first time for the development of an alternate structure with 

diagonal symmetry. Applying these constraints to the transfer 

function in (2), Eq. (5) can be recast in (7).  
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The corresponding Type-4 2-D diagonal symmetry IIR filter 

architecture is shown in Fig. 3. For completeness, the Type-3 

2-D diagonal symmetry IIR filter architecture derived from 

the main equation (8) with aij=a(N-j)(N-i) is shown in Fig. 4. 
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Fig. 2. Type-4 2-D diagonal symmetry IIR filter architecture 
with aij=aji for N=3. 
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Fig. 3. Type-4 2-D diagonal symmetry IIR filter architecture 
with aij=a(N-j)(N-i) for N=3.
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Fig. 4. Type-3 2-D diagonal symmetry IIR filter architecture 

with aij=a(N-j)(N-i) for N=3. 

IV. PROPOSED TYPE-4 2-D FOUR-FOLD ROTATIONAL 

SYMMETRY IIR FILTER ARCHITECTURE 

For a 2-D magnitude response, if |H(z1, z2)|=|H(z2
-1, z1)| 

with 1
1

j
ez = and 2

2
j

ez = , ),( 21   , the filter possesses 

four-fold rotational symmetry. With the separable 

denominator transfer function in (2), the following constraints 

on the coefficients will provide the required symmetry: 

aij=aj(N-i) and bk0=b0k for all i, j, k. Applying these constraints 

to the transfer function in (2), Eqs. (4) and (5) can be recast in 

(9a) and (9b), respectively. 
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                                                                               (9b) 
where  2/Nu =  and v=(N+1) mod 2. Note that  • denotes 

the largest integer that is smaller than or equal to • . In the 
case of N=3, (9a) and (9b) can be realized as 2-D four-fold 
rotational symmetry IIR filter architecture in Fig. 5. Using the 
tree method to arrange the adders, the critical path is analyzed 
as Tm+4Ta as shown in Fig. 5. 
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Fig. 5. Type-4 2-D four-fold rotational symmetry IIR filter 
architecture for N=3.  

V. COMPARISON 

The comparison results in terms of critical path, number of 

multiplies, the number of registers are shown in Table 1. It is 

interesting to note that Type 4 separable denominator IIR 

filter architecture has Tm+3Ta, but the diagonal symmetry and 
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four-fold rotational IIR filter architectures have longer critical 

path Tm+4Ta. The proposed Type-3 2-D diagonal symmetry 

IIR filter architecture has the same good performance (i.e., 

lowest critical path) as Type-2 and Type-3 2-D IIR filter 

architectures. In terms of number of multipliers, Type-4, 

Type-1, Type-2 and Type-3 2-D IIR filter architectures 

possess fewer multipliers than conventional 2-D IIR filter 

architecture [7] due to the use of symmetry property. In terms 

of the number of registers, Type-4 2-D IIR filter architecture 

has the largest register account.  

VI. CONCLUSION 

Three new Type-4 2-D IIR filter architectures using 

diagonal and four-fold symmetries and one new Type-3 2-D 

IIR filter architecture using diagonal symmetry are proposed. 

Most importantly, Table 1 among four types 2-D IIR filter 

architectures provides a complete comparison such that the 

users can easily select a suitable filter architecture for the 

practical application. 
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Table 1: Comparison Results among Four Types 2-D IIR Filters Architectures. 

Type Critical Path # of Multipliers for N=3 # of Registers for N=3 

Van [7] Tm+3Ta 31 3M+23 

Type-1 Separable Denominator Tm+3Ta 22 3M+18 

Diagonal 16 3M+23 

Four-fold 10 3M+24 

Type-2 Separable Denominator Tm+2Ta 22 3M+17 

Diagonal 16 3M+23 

Four-fold 10 3M+24 

Type-3 Separable Denominator Tm+2Ta 22 3M+18 

Diagonal with aij=aji 16 3M+24 

Diagonal with aij=a(N-j)(N-i)  

(This work) 

16 3M+30 

Four-fold 10 3M+25 

Type-4 

(This 

work) 

Separable Denominator Tm+3Ta 22 6M+14 

Diagonal with aij=aji Tm+4Ta 16 6M+20 

Diagonal with aij=a(N-j)(N-i) 16 6M+26 

Four-fold  10 6M+21 
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