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Professor Fettweis as far back as 1977 published a paper gen-
eralizing McClellan transformation to obtain circular symmetry 
in 2-D and spherical, hyper-spherical symmetries in multidi-
mensional digital filters [1]. This survey paper presents state-
of-the-art two-dimensional (2-D) VLSI digital filter architectures 
possessing various symmetries in the filter magnitude response. 
Preceding the symmetry structures, a generalized formulation 
is given that allows the derivation of various new 2-D VLSI fil-
ter structures of any order without global broadcast. Following 

this, two types (namely, Type 1 [20] and Type 3 [21], [25], [26]) of 
cost-effective 2-D magnitude symmetry filter architectures pos-
sessing diagonal, four-fold rotational, quadrantal, and octago-
nal symmetries with reduced number of multipliers are given. 
By combining the identities of the Types-1 and 3 symmetry filter 
structures, multimode 2-D symmetry filters which enable the 
above four symmetry modes are discussed. The Type-1 and 
Type-3 multimode filters can result in a 65.3% cost reduction 
in terms of number of multipliers compared with the sum of the 
multipliers of the four individual Type-1 symmetry filter structures 
studied in this paper. Furthermore, Type-3 has shorter critical 
path than Type-1 multimode filter. The paper is concluded with 
the presentation of a 2-D filter design example and a corre-
sponding structure.
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I. Introduction

Since 1970s, the theory and design of two-dimen-
sional (2-D) digital filters [1]–[15] has attracted 
much attention in the digital signal processing 

field. Although 2-D digital filters can be implemented on a 
general-purpose processor for various DSP applications, 
the requirements of high-throughput and low-power is-
sues result in dedicated computing architectures. Several 
conventional VLSI architectures for 2-D filters have been 
studied in [11]–[13], and an existing application specific 
integrated circuit (ASIC) approach has been applied to 
the design of beam filters [14], [15], and 2-D symmetry 
filters [16]–[26]. In his paper [1], Fettweis discussed the 
need for circular symmetry in the magnitude response of 
2-D filters. Since circular symmetry cannot be achieved 
exactly by a rational 2-D transfer function, researchers 
have focused on achieving symmetries that can approxi-
mate the circular symmetry. Therefore, the quadrantal, 
diagonal, four-fold rotational and octagonal symmetries 
[8], [9] that help achieve circular symmetry were exten-
sively studied. These symmetries are also needed not 
only to approximate circular symmetry but also to de-
sign Fan, Cone and other filter specifications. The most 
notable summarization of the research on 2-D symmetry 
till mid-1980s was done by Swamy and Rajan [8]. Recently 
the authors have presented efficient 2-D digital filter ar-
chitectures incorporating these magnitude symmetries. 
From BIBO stability point of view, incorporating quadran-
tal, four-fold rotational and octagonal symmetries require 
separable denominators in the variables. This is consid-
ered in the architectures studied by the authors. The sig-
nificant feature of the filters studied in [18], [19] is that 
they exhibit the denominator separability as a filter struc-
tural property. This means that the separability of the 
denominator is maintained independent of the choice of 
multiplier values. This important property is essential for 
the design of the multimode symmetry filter discussed in 
this review paper.

It is well-known that the presence of symmetry in 
the frequency responses of 2-D filters can be used to re-
duce the number of multipliers [8]–[10]. Consequently, 
several potential 2-D filter architectures that make use 
of filter symmetries have been explored [16]–[26]. In 
this paper, six cost-effective symmetry filter architec-
tures (i.e., four Type-1 and two Type-3) are reviewed 
and discussed. They possess diagonal, four-fold rota-
tional, quadrantal, and octagonal symmetries, and re-
quire fewer multipliers compared to structures that do 
not use symmetry. Further, to integrate the support of 

multiple symmetry functions, two cost-effective Type-1 
and Type-3 multimode 2-D filter designs with four sym-
metries mentioned above is proposed. Type 2 archi-
tectures [20] are not reviewed due to space limitation. 
This paper is organized as follows: Section II describes 
the various symmetries and their constraints on the 
coefficients of the 2-D polynomial. Section III discuss-
es the general formulation of 2-D filter architectures. 
 Section IV presents different VLSI suitable filter archi-
tectures with symmetry, that require fewer number of 
multipliers. In Section V, two cost-effective multimode 
filter architectures with four symmetries are discussed. 
The error analyses of filter structures are discussed in 
Section VI. The cost in terms of number of multipliers 
and adders of the reviewed symmetry filter structures 
and the multimode filter architecture are profiled and 
evaluated in Section VII. A filter design example is given 
in Section VIII. The summary of the results are given 
in Section IX.

II. Various Symmetries and Constraints on the 
Coefficients of 2-D Polynomials

A real general 2-D z-domain IIR transfer function can be 
represented as in (1), where aij  and bij  are real coeffi-
cients and ,b N N000 1 2#=  is the order of the filter, and 
X  and Y  are respectively the input and output of the 
filter. The equation can also represent an FIR transfer 
function if we set b 0ij =  for all i  and .j
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The usefulness of symmetry relations in the de-
sign of 2-D filters have been studied extensively [1], 
[5]–[10]. The symmetry present in the frequency re-
sponse induces a relation among the filter coefficients 
and multipliers in the filter structures. This reduces 
the number of design parameters in an optimization 
scheme, as well as the number of multipliers in an im-
plementation architecture. There are many possible 
types of symmetries in the magnitude response such 
as quadrantal, diagonal, four-fold rotational, and oc-
tagonal symmetries.

The frequency response is evaluated on the distin-
guished boundary of the unit bi-disk, , , ,iz e 1 2i

j i= =i  
as shown in Fig. 1. If ,P z z1 2^ h is a 2-D z-domain real 

L. D. Van, H.C. Reddy, P. Y. Chen are with the Dept. of Computer Science, National Chiao Tung University, Hsinchu, 300, Taiwan, R.O.C. I. H. Khoo* and 
H. C. Reddy* are with Dept. of Electrical Engineering, California State University Long Beach, Long Beach, CA, U.S.A. This work was supported in part 
by the MOST 106-2221-E-009-028-MY3, MOST 106-2218-E-009-029 and MOST 107-2634-F-009-010.



FIRST quaRTeR 2019   Ieee CIRCuITS anD SYSTeMS MagazIne 35

 polynomial, its frequency response is given by , .P e ej j1 2i i^ h  
The magnitude squared function of the frequency re-
sponse is given by:

 , ,F P e ej j
1 2

21 2i i = i i^ ^h h
 , ,P e e P e ej j j j1 2 1 2$= i i i i- -^ ^h h
 , ,P z z P z z , ,z e i1 2 1

1
2

1
1 2i

j i$= - -
= =i^ ^h h  (2)

It can be seen from (2) that the Centro-Symmetric property, 
i.e., , ,F F1 2 1 2i i i i- -=^ ^h h is always satisfied. The exis-
tence of symmetry in ,F 1 2i i^ h implies that the value of the 
function at ,1 2i i^ h on the distinguished boundary is related 
to the value of the function at ,T T1 2i i^ h where ,T T1 2i i^ h 
is obtained by some operation on ,1 2i i^ h as shown in Fig-
ure 2. Also, for our discussion, we assume that the value 
of the magnitude function is unchanged, i.e., ,F 1 2i i =^ h

, . F T T1 2i i^ h  A more detailed discussion of this can be found 
in [8]–[10]. Now consider the following symmetries:

Quadrantal Symmetry
If the magnitude squared function possesses quadrantal 
symmetry, then

, , , , , ,F F F F1 2 1 2 1 2 1 2 1 26i i i i i i i i i i= - = - = - -^ ^ ^ ^ ^h h h h h
 (3)

Expressing (3) in terms of the polynomial yields:

 
, ,

, ,

P z z P z z z z

P z z P z z z z

N N

N N

1 2 1
1

2
1

1 2

1
1

2 1 2
1

1 2

1 2

1 2

$ $ $

$ $ $=

- - - -

- - - -

^
^

^
^

h
h

h
h  

(4)

Note that the multiplication by z zN N
1 2

1 2$- -  is needed 
so that both sides of the equation remain a polynomial 
in negative powers of .z  Applying the unique factoriza-
tion property of 2-variable polynomials [8] to (4), it can 
be seen that the factors of ,P z z1 2^ h should satisfy one of 
the following two conditions:

i) , ,P z z k P z z z N
1 2 1 1

1
2 1

1$ $= - -^ ^h h  where k1  is a real 
constant.

ii) , ,P z z k P z z z N
1 2 2 1 2

1
2

2$ $= - -^ ^h h  where k2  is a real 
constant.

Each of the above conditions will provide a constraint 
on the polynomial for it to possess quadrantal symme-
try in its magnitude response.

Substituting ,P z z a z zi
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1 2 0 0 1 2
1 2 $ $R R= = =

- -^ h  into con-
dition (i) above and assuming ,k 11 =  we get:
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Applying a change of variable i N i1= -l  to (5), we 
obtain:
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So, the coefficient constraint a a ,ij N i j1= -  will ensure that 
the polynomial ,P z z1 2^ h possesses quadrantal symme-
try in its magnitude response. The same steps can be 
applied to condition (ii) above to obtain another coef-
ficient constraint:

 a a ,ij i N j2= -  (7)

These coefficient constraints can be applied to the 
transfer function of an FIR filter to ensure quadrantal 
symmetry. For an IIR filter, the constraint can be applied 
to the numerator polynomial. To satisfy the coefficient 
condition a a ,ij N i j1= -  with the requirement of BIBO stabil-
ity, the denominator ( , )Q z z1 2  must be chosen as a vari-
able separable one [8], i.e., as ( , ) ( ) ( ).Q z z Q z Q zA B1 2 1 2$=  
It is easy to see that ( )Q zA 1  satisfies a a ,ij i N j2= -  and 

( )Q zB 2  satisfies ,a a ,ij N i j1= -  so their product possesses 
quadrantal symmetry. In addition, because the denomi-
nator is separable, it is easy to check the stability of the 
filter structure.

Following the above, the coefficient conditions for 
diagonal and four-fold rotational symmetries can be ob-
tained using the appropriate conditions on the magni-
tude squared function.

Im(z1)

R
e(

z 1
)

R
e(

z 2
)

Im(z2)

0 0
θ1 θ2

(z1, z2) Biplane

Figure 1. ( , )z z1 2  biplane.

The existence of symmetry in F(i1, i2) implies that the value of the function  
at (i1, i2) on the distinguished boundary is related to the value of the  

function at (i1T, i2T) where (i1T, i2T) is obtained by some operation on (i1, i2).
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Diagonal Symmetry
The constraint on the magnitude response for the diago-
nal symmetry is:

 ( , ) ( , ) ( , ) ( , )F F F F1 2 2 1 1 2 2 1i i i i i i i i= = - - = - -  (8)

The coefficient conditions resulting from the above by fol-
lowing the steps described for quadrantal symmetry are:

 N N N1 2= =

 ,a a i j N0and forij ji # #=  (9)

  ,a a i j N0or for,ij N j N i # #= - -  (10)

Similar conditions should be satisfied by the denomi-
nator ( , )Q z z1 2  in addition to satisfying the BIBO stabil-
ity conditions.

Four-Fold Rotational Symmetry 
The magnitude response condition for this symme-
try is:

 ( , ) ( , ) ( , ) ( , )F F F F1 2 2 1 1 2 2 1i i i i i i i i= - = - - = -  (11)

The coefficient conditions resulting from the above 
will be:

 N N N1 2= =

   ,a a i j N0and for,ij N j i # #= -  (12)
 ,a a i j N0or for ,ij j N i # #= -  (13)

The denominator ( , )Q z z1 2  of a BIBO stable filter with 
four-fold rotational symmetry should be of the form 

( , ) ( ) ( ).Q z z Q z Q zA A1 2 1 2$=

F (–θ1, θ2)

F (–θ2, θ1)

F (θ2, –θ1)

F (θ1, –θ2)

F (θ1, θ2)

F (θ2, θ1)

F (θ1, θ2)

F (θ1, θ2)

F (–θ1, –θ2)

F (–θ2, –θ1)

F (–θ2, –θ1) F (θ2, –θ1)

F (θ1, –θ2)

F (θ1, θ2)

F (θ2, θ1)F (–θ2, θ1)

F (–θ1, θ2)

F (–θ1, –θ2)

F (–θ1, –θ2)

F (–θ1, –θ2)

θ1 θ1

θ1θ1

θ2

θ2 θ2

θ2

(a) (b)

(c) (d)

Figure 2. (a) quadrantal Symmetry (b) Diagonal Symmetry (c) Rotational Symmetry (d) Octagonal Symmetry.
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If any two of the above three 
symmetries are satisfied, the re-
sulting symmetry will be an octag-
onal symmetry.

The above coefficient condi-
tions on 2-D filter transfer func-
tion form the basis for deriving 
various symmetry incorporated 
architectures with reduced num-
ber of multipliers.

The sample sectors for vari-
ous symmetries are illustrated in 

,1 2i i^ h-plane in Fig. 2. These fig-
ures show the shaded region where 

, , .F F T T1 2 1 2i i i i=^ ^h h

III. Generalized Formulation of 2-D Filter 
Architectures without Global Broadcast

The transfer function in (1) can also be expressed as:
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where F z a zi j
N

ij
j

2
1

0 2
2R=-
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-^ h  and G z b zi j
N

ij
j

2
1

0 2
2R=-
=

-^ h  
with b 000 =  are 1-D FIR functions in z2  variable only. 
These 1-D functions can be realized by the sub-blocks in 
Figs. 3 to 5. These sub-blocks are then used in the filter 
frameworks to realize the overall 2-D transfer function 
in (14).

In our discussion, we assume that the filter is used 
to process a zero padded image of size M M1 2#  and the 
pixel values in the image are fed to the filter in raster-
scan mode, i.e. the input sequence is ( , ), ( , ), ,x x0 0 0 1 f  

Fi(z
–1) Gi(z

–1)

{ai0, ai1, ai2, …, aiN} {bi0, bi1, bi2, …, biN}
Xi Wi

Xi Wi

Yi

Yi

Sub-Block 1

+

+

+

z –1

z –1

z –1

z –1

+

+

+

aiN

ai4 bi4

ai3 bi3

ai2 bi2

ai1 bi1

ai0 bi0

biN

z –1

z –1

Figure 3. Sub-block #1 (2-inputs-1-outputs, direct-form).

Di(z
–1) Ei(z

–1)

{bi0, bi1, bi2, …, biN} {ai0, ai1, ai2, …, aiN}

Vi Yi

Vi Yi
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Xi
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z –1 z –1
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z –1
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Figure 4. Sub-block #2 (1-input-2-outputs, direct-form).

Xi

Yi + + + + + +

. . .

. . .

YiXi

Sub-Block 3

Cpi(z
–1)

{pi0, pi1, pi2, …, piN}

pi0 pi1 pi2 pi3 pi4 piN

z –1

z –1

z –1

z –1

Figure 5. Sub-block #3 (SISO direct-form).
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( , ), ( , ), ( , ),x M x x0 1 1 0 1 12 f-  etc. We can then replace 
z2

1-  by a single delay register z 1-  (usually implemented 
by a D flip-flop). z1

1-  can be replaced by a shift regis-
ter (SR) of length ,M z M

2
2-  (using M2-size D flip-flops), 

provided .M N>2 2  Without loss of generality, we will as-
sume N N N1 2= =  in discussing the filters.

Filter Sub-blocks
The filter sub-blocks are formulated as general digital 
two-pair networks to realize 1-D FIR functions in .z2  Here, 
we assume .z z1

2
1=- -  Sub-block #1, shown in Fig. 3, has 

2 inputs and 1 output, where the coefficient inside the 
cloud symbol  denotes a multiplier. It is direct form, 
i.e. the multiplier values are the same as the polynomial 
coefficients. It realizes the following two FIR functions.
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(15)

Note that the special arrangement of the delays is to 
eliminate global broadcast of the signals, Xi  and ,Wi  and 
to control the critical period. The critical period is the 
time required for the signal through the slowest (criti-
cal) path of the structure and determines the highest 
possible clock speed of the structure. A different filter 
sub-block (sub-block#2) as shown in Fig. 4 can be ob-
tained by taking the transpose of filter sub-block#1, 
where E zi

1-^ h and D zi
1-^ h are similarly defined as (15). 

The sub-block #3 in Fig. 5 has single input and single 
output (SISO) and realizes the FIR function:

C z X
Y zi

i

i
ij

j

j

N
1

0
t= =t

- -

=

^ h /

Note that ijt  can represent either the numerator or de-
nominator coefficient aij  or .bij

Filter Frameworks
The sub-blocks are used in the filter frameworks to re-
alize the general 2-D z-domain transfer function in (1). 
Filter framework A shown in Fig. 6 uses the sub-block #1, 
where  denotes the ( )M 12- -size D flip-flops/shift regis-
ter. Notice that the shift registers are of length M 12-  due 
to the additional delays added at the input and output 
branches to eliminate the global broadcast. It can be ver-
ified using Mason’s gain formula that the structure with 
z z1

2
1=- -  and z zSR 1

1
2= -  realizes the transfer function 

in (14). By taking the transpose of Framework A, a differ-
ent filter framework can be obtained which utilizes sub-
block#2 [23].

Structure Induced Separable Denominator 
Frameworks
By mixing the sub-blocks in specific ways, filter frame-
works realizing transfer functions with separable de-
nominator of the form in (16) can be obtained. The idea 
is to form two non-touching loops in different variables.
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Separable filter framework A1 is shown in Fig. 7. It is 
based on framework A. It uses sub-block #2 at the bot-
tom while the rest are sub-block #1.
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+

1

1

1
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M2 – 1

M2 – 1

FN(z –1)

F2(z –1)

F1(z –1)

GN(z –1)

G2(z –1)

G1(z –1)

F0(z –1) G0(z –1)

{aN0, aN1, aN2, …, aNN}

{a20, a21, a22, …, a2N}

{a10, a11, a12, …, a1N}

{a00, a01, a02, …, a0N}
{0, b01, b02, …, b0N}

{b20, b21, b22, …, b2N}

{b10, b11, b12, …, b1N}

{bN0, bN1, bN2, …, bNN}

Sub-Block 1

Sub-Block 1

Sub-Block 1

Sub-Block 1

z –1

z –1

z –1z –1

z –1

z –1

Figure 6. Filter Framework a.

The critical period is the time required for the signal through the  
slowest (critical) path of the architecture and determines the  

highest possible clock speed of the architecture.
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It realizes the transfer function in (17), with G ’si  be-
ing constants.
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By taking the transpose of filter frameworks A and 
A1, another set of frameworks can be obtained. Also, a 
different set of frameworks can be obtained using the 
sub-block #3. Due to lack of space, these frameworks 
are not shown here. A detailed discussion of sub-blocks, 
general frameworks, and separable denominator frame-
works can be found in [23].

Explicit 2-D Filter Architectures
We will now use the sub-blocks in Figs. 3–5 and gener-
al frameworks to derive explicit architectures without 
global broadcast for separable denominator transfer 
functions. These are then used to incorporate symme-
try. The separability is necessary to ensure the BIBO 
stability and at the same time to achieve quadrantal, 
four-fold rotational and octagonal symmetries in the 
filter magnitude response (note that separable denom-

inator is not needed for the diagonal symmetry). In this 
section, we will focus on deriving structures for realizing 
(16). Using the sub-blocks in Figs. 3 and 4, the Type-1 
separable denominator architecture in Fig. 8 can be ob-
tained (for )N 3=  [20]. The transfer function of the 2-D 
filter can be expressed as:
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Thus, ( , )/ ( , )Y z z Y z z1 2 1 1 2  can be generally represent-
ed as:
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It can be verified that the structures of Block 1 and 
Block 2 in Fig. 8 satisfy (19) and (20) respectively.
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Figure 7. Filter Framework a1.
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The Type-3 separable denominator architecture can 
be obtained (Fig. 9) using the sub-blocks in Figs. 3 and 5. 
Its transfer function can be rewritten as:

 ( , ) ( , )
( , )

( , )
( , )

H z z Y z z
Y z z
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1 2
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1 2

1 2

3 1 2
$=  (21)

where Y Y b z Yj
j

j

N

3 0 2
1

= +
-

=

/  (22)

Therefore, ( , )/ ( , )Y z z X z z3 1 2 1 2  can be expressed as:
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Using the tree method mentioned in [13] to arrange the 
adders, the critical periods for the Type 1 and Type 3 
architectures are T T3m a+  and ,T T2m a+  respectively, 
where Tm  and Ta  denote the operation time required by 

one multiplier and one adder respectively. In the next 
section, we will focus on the Type-1 and Type-3 filter ar-
chitectures with symmetry.

IV. Cost Effective 2-D Filter Architectures 
Incorporating Different Symmetries

The presence of symmetry in the 2-D frequency response 
induces certain relationship among the filter coefficients. 
This translates into reduced number of multipliers while 
implementing a 2-D digital filter architecture. In this sec-
tion, we present six symmetry filter architectures with 
diagonal, four-fold rotational, quadrantal, and octagonal 
symmetries with separable denominators.

Diagonal Symmetry Filter Architectures
Applying the diagonal symmetry coefficient constraint 
(9) to the separable denominator transfer function in (16) 
implies that a aij ji=  and .b bk k0 0=  Similarly, constraint 
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in (10) can be used to get different structures. Thus, for 
the Type-1 filter architecture, with Y1  given in (19), the 
expression for the output Y  in (20) can be recast as:
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Implementing (24) results in the Type-1 diagonal sym-
metry filter architecture of Fig. 10 [20]. Note that for 
diagonal symmetry, the denominator need not be sep-
arable, but they are used here for ease of the imple-
mentation of the multimode filter to be discussed 
in Section V.

In a similar way, one can obtain the Type 3 diagonal 
symmetry architecture shown in Fig. 11 [21]. Using 
the tree method to arrange the adders, the critical 
paths are shown in Figs. 10 & 11 for the two architec-
tures. The critical periods are calculated as T T3m a+  
and T T2m a+  respectively. Note that Tm  and Ta  denote 
the operation time required by the multiplier and ad-
der respectively.

Four-fold Rotational Symmetry Filter Architectures
When the 2-D magnitude response of a filter possesses 
four-fold rotational symmetry, as per (13), the filter coef-
ficients in (16) will satisfy the constraints: a a ( )ij j N i= -  
and b bk k0 0=  for all i, j, k. So, for the Type-1 filter, the out-
put Y in (20) for this symmetry can be expressed as:
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where / ,u N 2=6 @  ( )v N 1= +  mod 2, and :6 @ denotes the 
largest integer that is smaller than or equal to : . Figure 12 
shows the Type-1 four-fold rotational symmetry filter 
architecture [20]. Following the above, the Type-3 four-
fold rotational symmetry separable denominator filter 
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architecture can be obtained [21]. This structure is not 
shown here. Performing the critical path analysis on 
Fig. 12 yields the delay of .T T3m a+  For Type 3 structure, 
it will be .T T2m a+

Quadrantal Symmetry Filter Architectures
When the 2-D magnitude response of a filter possesses qua-
drantal symmetry, as per (7) the filter coefficients in (16) 
will satisfy the constraints: a a( )ij N i j= -  and b bk k0 0=  for all 
, , .i j k  So, the output Y  in (20) for the Type-1 filter becomes:

 

Y b z Y v a z z Y

a z z z z Y( )

j
j

j

N

uj
u j

j

N

ij
i j N i j

j

N

i

u v

0 2
1

1 2 1
0

1 2 1 2
00

1

$= +

+ +

-

=

- -

=

- - - - -

==

-

^

^ h

h

/ /

//
 

(26)

The Type-1 quadrantal symmetry filter architecture 
is given in Fig. 13 [20]. The Type 3 structure is shown 
in Fig. 14 [26].

Performing the critical path analysis using the tree 
method on Figs. 13 & 14 yield the delays of T T3m a+  and 
T T2m a+  respectively. The critical paths are indicated in 
the figures.

Octagonal Symmetry Filter Architectures
Octagonal symmetry is a combination of diagonal, four-
fold rotational and quadrantal symmetries. Presence 
of any two of the three symmetries will guarantee the 
presence of octagonal symmetry in the 2-D magni-
tude response of the filter [8]–[10]. This results in the 
coefficient constraints, a a a( )ij ji N i j= = -  and b bk k0 0=  
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for all , , .i j k  So, for octagonal symmetry, with eqn. (19) 
 unchanged, the output Y in (20) can be expressed as:
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Implementing the above, one can get the Type-1 oc-
tagonal symmetry filter architecture shown in Fig. 15. 
The Type-3 octagonal symmetry filter architecture 
is not shown here and can be found in [26]. The criti-
cal path analysis yields the delays of T T3m a+  and 
T T2m a+  respectively.

Due to symmetry, all six cost-effective filter architec-
tures require fewer multipliers. The savings come from 
realizing the numerator of (16). The direct form imple-
mentation of the numerator with no symmetry (for )N 3=  
requires 16 multipliers. In the case of diagonal, quadran-
tal, four-fold rotational, octagonal symmetries, the num-
ber of multipliers needed are 10, 8, 4 and 3, respectively. 
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The 2-D octagonal symmetry structure in Fig. 15 has the 
lowest number of multipliers.

V. Cost-Effective Multimode 2-D Filter Architecture 
Incorporating Four Symmetries

To reduce the cost of filter area and to increase hard-
ware flexibility, two multimode filter architectures are 
developed that each supports four different symmetry 
modes: diagonal symmetry mode (DSM), four-fold rota-

tional symmetry mode (FRSM), quadrantal symmetry 
mode (QSM), and octagonal symmetry mode (OSM). 
These two cost-effective multimode 2-D IIR filter archi-
tectures are shown in Fig. 16 and Fig. 17 for .N 3=

The cost-effective multimode 2-D symmetry filter ar-
chitecture in Fig. 16 [20] can be derived based on three 
observations. First, the signal paths are added before the 
aij  independent coefficient multiplier for the Type-1 sym-
metry filters in Figs. 10, 12, 13, and 15. Second, it can be 
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seen from (18) that the Type-1 symmetry  filter consists of 
two transfer functions: /Y X1  and / ,Y Y1  with the /Y X1  trans-
fer function being the same for the four individual sym-
metry filters as shown in (19). The block diagram of /Y X1  
is depicted as Block 1 on the left-hand side of Fig. 16(a). 
Block 1 requires 3 multipliers and 3 adders. Next, we 
consider the /Y Y1  transfer function which is different for 
each of the four individual symmetry filters. To construct 
Block 2 of the multimode filter, we need 3 multipliers for 
the denominator { , , },b b b01 02 03  and 11 multipliers for the 
numerator { , , , , , , , , , , }.a a a a a a a a a a a00 01 02 03 10 11 12 13 22 23 33  
Therefore, 11 3 14+ =  coefficient multipliers are re-
quired in Block 2 of Fig. 16(a) to achieve the operations 
for four different transfer functions of / .Y Y1  In terms of 
the number of adders from the architecture viewpoint, 
for /Y Y1  of the multimode 2-D symmetry filter, 13 adders 

and 11 adders are needed on the left-hand side and right-
hand side of Block 2 in Fig. 16(a), respectively.

In summary, the Type-1 multimode 2-D symmetry filter 
requires altogether 17 coefficient multipliers and 27 ad-
ders. Also, in Figs. 10, 12, 13, and 15, the interconnection 
control is only needed for the four /Y Y1  transfer functions. 
The multiplication connections and internal connections are 
controlled by interconnection boxes (IBs) to accomplish the 
four-mode operations, where IB performs either connection 
or disconnection task for each signal path. According to 
the connections of the four individual symmetry filter archi-
tectures, 12 IBs are needed for the internal connections in 
Block 2. Therefore, based on the three observations men-
tioned above, the Type-1 multimode 2-D IIR filter with four 
symmetry modes can be obtained in Fig. 16(a). The intercon-
nections difference among the four configurations of the 
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multimode filter architecture is highlighted in Fig. 16(b). The 
multimode filter architecture has a critical path of T T3m a+  
as shown in Fig. 16(a) by using the tree method.

Similarly, to support multiple symmetry functions, the 
Type-3 multimode 2-D IIR filter architecture giving (DSM, 
FRSM, QSM and OSM) modes of operation has been obtained 
and is given in Fig. 17 [25]. The details of this multimode 
structure can be found in [25]. Type 3  multimode filter archi-
tecture shown in Fig. 17(a) has a critical path of .T T2m a+

The multimode architecture presented can support 
four different symmetry modes with just a slight area over-
head. It achieves a multiplier reduction of 65.3% for N 3=  
compared with the sum of the multipliers of the four indi-
vidual symmetry filter structures thus making the multi-
mode hardware architectures quite cost effective.

VI. Error Analysis for 2-D Symmetry  
Filter Architectures

The product quantization errors propagating through the 
filter architecture in fixed-point implementation have 
been studied in [3], [27]. Using the same approach here, the 
round-off noise errors for the Type-1 and Type-3 filter archi-
tectures are analyzed in [25] [26]. In the analysis, the round-
off noise sources are assumed to be uncorrelated, wide-sense 
stationary and uniformly distributed, which allows linear 
decomposition to be applied. Furthermore, the noise source 
and the noise source with delay are regarded as independent.

For the Type-1 diagonal symmetry filter architecture 
in Fig. 10, the linear error signals e1  and e2  are given by:
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Since e1  error/noise source passes through the whole 
filter architecture and e2  passes through b j0  at the right-
hand side in Fig. 10, total variance of quantization error 
of the Type-1 diagonal symmetry filter architecture can 
be derived as:
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where / ,2 12B
e
2 2v = -  B  is the fractional bit width after 

quantization, and  and [ , ]h m nb12  are defined as:
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Figure 16. (b) Interconnections of (i) DSM, (ii) FRSM, (iii) qSM, (iv) OSM for N 3=  [20].
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For comparison, the error analyses of Type-1 four-fold, 
quadrantal symmetry and octagonal symmetry filter ar-
chitectures are listed below.
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Similarly, the total variance of quantization error of Type-3 
symmetry filter architectures is derived as
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where [ ]h nb2  and [ , ]h m nb12  are defined in (31) and 
(32) respectively.

VII. Implementation and Comparison  
of Results

As proof of concept, the chip layout of Type-1 multi-
mode 2-D IIR filter architecture in Fig. 16 is shown in 
Fig. 18. The circuit has a size of . .718 95 711 05m m# nn  
and an average power consumption of 29.34 mW. As 
indicated in [20], compared with the sum of the areas 
of the four individual symmetry filters, the area sav-
ing could be up to 63.25%. The details of the architec-
ture comparison in terms of the number of multipli-
ers, number of adders, and critical path are shown 
in Table 1.

The Type-3 symmetry filter architectures also pos-
sess shorter critical path delay than the Type-1 sym-
metry filter architecture. In terms of adders, it is known 
that the area of an adder is much less than that of a 
multiplier. To achieve fair comparison, the n-bit adder 
can be equivalently evaluated as /n1  n n# -bit multiplier 
using array multiplier approach [28]. According to the 
hardware implementation in [20], 16 16# -bit multipli-
er and 16-bit full-adder with two inputs are reasonable 
assumptions to realize this design. The Type-3 multi-
mode 2-D filter architecture not only has less critical 
path delay but also has lower number of adders than 
the Type-1 multimode 2-D filter architecture.
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Figure 17. (b) Interconnections of (i) DSM, (ii) FRSM, (iii) qSM, (iv) OSM for N 3=  [25].
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VIII. Filter Design Example
Consider a design example for a narrowband Fan filter with 
diagonal symmetry. The filter magnitude specification is 
shown in Fig. 19. The filter passband has an angle 151z =  
deg and the transition band has an angle 102z =  deg. (Note 
that the specs only show 022i  for the vertical axis). A 2-D 
Fan filter can be used in the design of 3-D cone filters which 
see applications in high-selectivity beam formers [15].

Optimization is used to obtain the transfer function that 
satisfies the Fan filter specification. The form of the trans-
fer function (with unknown coefficients) chosen satisfies 
the diagonal symmetry as the given Fan filter specs exhibit 
diagonal symmetry. The objective is to minimize sum of 
the squared errors between the filter magnitude response 
and the given filter specifications evaluated on a uniform 
raster in the 2-D frequency plane. The objective or error 
function is shown in (37). It is based on the difference be-
tween the magnitude response of the transfer function and 
the desired magnitude response, at selected frequency 
points in both the passband and stopband.

 , ,F FError k l d k l
lk

1 2 1 2
2

i i i i= -^ ^h h6 @//  (37)

where F is the transfer function magnitude squared re-
sponse, Fd  is the desired response, and ,k l1 2i i  are the 
sample frequency points where the desired response 
is specified.

The design is done using a (variable) separable de-
nominator transfer function as described in Section III. The 
optimization results, for different filter orders, are shown 
in Table 2. The 3-D surface plot for order 5 5#  is shown 
in Fig. 20. The contour plots for orders ( )5 5#  and ( )3 3#  
are given in Fig. 21. As expected, with higher filter order, 

Figure 18. Chip layout of the Type-1 multimode 2-D symmetry 
filter for N 3=  [20].

Table 1.  
Comparison of different 2-D IIR filter architectures with the order N.

Works # of Multipliers

# of Multipliers  
for N = 3

# of Adds with two  
inputs for N = 3

Critical 
Path# % #

Equivalent # of 
16#16-bit mul.

Van [13] ( )N2 1 12+ - 31 for Gen 100% 30 1.875 T T3m a+

Separable 
Denominator 

Type-1 ( )N N1 22+ + 22 70.97% 21 1.3125 T T3m a+

Type-3 T T2m a+

Diagonal Type-1
( )N N2

1 1 2
5

2
12+ + +

16 51.61% 21 1.3125 T T3m a+

Type-3 T T2m a+

Four-Fold 
Rotational

Type-1
( )N v N4

1 1 4
3 22+ + +

10 32.26% 21 1.3125 T T3m a+

Type-3 T T2m a+

Quadrantal Type-1
( ) ( )N v N N2

1 1 2 1 22+ + + +
14 45.16% 21 1.3125 T T3m a+

Type-3 T T2m a+

Octagonal Type-1
( ) ( )N v N v N8

1 1 4
1 1 22+ + + + + +

9 29.03% 21 1.3125 T T3m a+

Type-3 T T2m a+

Type-1 Multimode
( ) ( ) ( )

( )

N N N v

N v N

2
1 1 2

1 1 8
1 1

4
1 1 2

2 2+ + + + + +

- + + +

17 54.84% 29 1.8125 T T3m a+

Type-3 Multimode 21 1.3125 T T2m a+
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the design error is reduced. But the tradeoff is the greater 
number of multipliers required in the final filter structure.

As previously mentioned, for the diagonal symmetry, 
the denominator of the 2-D filter transfer function need 
not be separable. For the sake of the completeness of 
the structures, order 2 2#  non-separable denominator 
filter structure possessing diagonal symmetry is shown 
in Fig. 22. The critical path analysis yields the delay of 

.T T2m a+  The number of multipliers saved compared to 
non-symmetric implementation [13] by direct form is six. 
This order 2 2#  structure can be extended for a filter of 

any order. In general, the number of  multipliers required 
in a non-separable denominator filter structure with 
 diagonal symmetry is .N N3 12+ +  Without any symme-
try, the number of multipliers required is .N N2 4 12+ +

IX. SUMMARY
This review article written as a dedication to the mem-
ory of Professor Alfred Fettweis gives the most recent 
update of the research results connected with 2-D digital 
filter structures possessing symmetry. The symmetries 
incorporated in these VLSI implementable architectures 
are: quadrantal, diagonal, four-fold rotational and octag-
onal. Cost effective multimode symmetry architectures 
combining the above symmetry modes of operation are 
presented. The error analysis of the structures and the 
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Table 2.  
Separable denominator design.

Filter order Design error # of multipliers

5 # 5 22.5 31

4 # 4 29.1 23

3 # 3 44.6 16
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implementation aspects are also discussed. A Fan filter 
design with diagonal symmetry is presented in the end 
along with a filter structure for a 2-D transfer function 
with diagonal symmetry. By utilizing the generalized de-
sign procedure and using sub-networks and frameworks, 
the individual symmetry and multimode filter architec-
ture for any order could be obtained.
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