
Radar and Camera Fusion for Object Forecasting in
Driving Scenarios

Albert Budi Christian, Yu-Hsuan Wu, Chih-Yu Lin∗, Lan-Da Van, and Yu-Chee Tseng
Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan

∗Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan

Email: albert.c@nycu.edu.tw, t22170000@gmail.com, lincyu@mail.ntou.edu.tw,

ldvan@cs.nycu.edu.tw, yctseng@cs.nycu.edu.tw

Abstract—In this paper, we propose a sensor fusion architec-
ture that combines data collected by the camera and radars
and utilizes radar velocity for road users’ trajectory prediction
in real-world driving scenarios. This architecture is multi-stage,
following the detect-track-predict paradigm. In the detection
stage, camera images and radar point clouds are used to detect
objects in the vehicle’s surroundings by adopting two object
detection models. The detected objects are tracked by an online
tracking method. We also design a radar association method
to extract radar velocity for an object. In the prediction stage,
we build a recurrent neural network to process an object’s
temporal sequence of positions and velocities and predict future
trajectories. Experiments on the real-world autonomous driving
nuScenes dataset show that the radar velocity mainly affects the
center of the bounding box representing the position of an object
and thus improves the prediction performance.

Index Terms—Camera, data fusion, object forecasting, radar,
trajectory prediction, velocity

I. INTRODUCTION

Trajectory prediction or object forecasting plays a signif-

icant role in an autonomous driving system and the cor-

responding scenarios. By predicting where the road users

may move in the future, an autonomous vehicle can plan

a safe path or make the driving decision to avoid potential

dangers such as collisions with vulnerable road users [1],

[2]. For example, if pedestrians or cyclists cross the street,

passing vehicles should slow down to prevent harmful events.

Various traffic situations make it necessary to predict future

positions to ensure safety. For solving the trajectory prediction

problem, typical approaches [3]–[7] adopt the detect-track-

predict paradigm. Road users are first detected using sensor

data such as camera images and point clouds from LiDARs

or radars. The detected objects at each time-step are then

tracked to produce sequences of positions used in prediction.

By dividing this issue into separate stages, the framework’s

design is flexible as each module can focus on a single task.

On the other hand, different sensor data are often combined

to give more reliable information about the dynamic environ-

ment. Sensors such as cameras, LiDARs, and radars on a self-

driving car have distinct characteristics. The cameras provide

rich visual features, and the LiDARs give the 3D shapes

of objects based on accurate depth information. The radars

can measure objects’ distance and velocity at low resolution.

The complementary properties of these three sensors motivate

researchers to study sensor fusion for autonomous driving

tasks, especially object detection [8]. However, research on

fusion for the trajectory prediction problem is still lacking.

In this paper, we focus on the fusion between camera and

radars. The objective is to investigate whether radar velocities

could enhance the performance of trajectory prediction on

the image plane. To this end, we design a sensor fusion

architecture that combines images and point clouds to address

this problem. We employ the detect-track-predict paradigm

and use an independent module for each stage. First, we adopt

two object detectors and merge detection results from these

two models using the affirmative strategy introduced in [9] to

locate objects on images. Detection for the same object are

then associated between frames. The prediction module in the

last stage generates a sequence of locations over a while in

the future. In addition, we insert a radar association module

between the tracking module and the prediction module for

associating tracked objects with their radar velocities. This

additional information will also be used in prediction. We

evaluate our design on nuScenes [10], a dataset published for

posing various autonomous driving problems. We show that

radar velocity can improve prediction by comparing results

between models with and without using radar velocity.

The rest of this paper is organized as follows. Related

works from detection to prediction are reviewed in Section

II. The proposed fusion architecture is described in Section

III. Experiment results, including performance comparisons

and prediction examples, are presented in Section IV, and the

conclusion is given in Section V.

II. RELATED WORKS

In this section, we introduce the researches for perception

and prediction problems in autonomous driving.

A. Deep 2D Multi-modal Object Detection

In recent research, many works have focused on multi-

modal object detection for autonomous driving using deep

learning models. Most of the existing methods for 2D de-

tection discuss the fusion between LiDARs and cameras.

These approaches use either one-stage detectors or two-stage

detectors to detect road users. For example, Asvadi et al.

[11] use multiple YOLOv2 [12] models to detect vehicles

using LiDAR or camera data separately and fuse detections

105

2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)

2771-3075/22/$31.00 ©2022 IEEE
DOI 10.1109/MCSoC57363.2022.00026

20
22

 IE
EE

 1
5t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Em
be

dd
ed

 M
ul

tic
or

e/
M

an
y-

co
re

 S
ys

te
m

s-
on

-C
hi

p
(M

CS
oC

) |
 9

78
-1

-6
65

4-
64

99
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
CS

O
C5

73
63

.2
02

2.
00

02
6

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 17,2023 at 08:51:59 UTC from IEEE Xplore. Restrictions apply.

from these models. In [13], Regions of Interest (RoIs) are

extracted from RGB images and LiDAR data and then fed into

the Fast R-CNN network to detect pedestrians and cyclists.

In [14], LiDAR points are downsampled and clustered to

generate region proposals, which are input into a convolu-

tional neural network to detect pedestrians. Since camera and

radar data sensing modalities are complementary in human

sensing, recent research have shown that combining these

two sensing modalities significantly improves performance in

object detection, human identity, and localization [15], [16].

[17] applies camera and radar fusion task to detect pedestrian.

Previous work [18] utilizes two branches of neural networks to

extract and concatenate feature maps extracted from radar and

pictures. [19] proposes an object detection system based on

sensor fusion that employs a camera and mmWave radar. Radar

Region Proposal Network (RRPN) [20] adopts a two-stage

detector structure and exploits radar points without clustering

them in the region proposal stage. RRPN [20] will be utilized

in our work for the detection of road users, and additional

details will be presented.

B. Multiple Object Tracking

The target of Multiple Object Tracking (MOT) is to

associate objects of the same identity across consecutive

frames. Most MOT approaches and architectures adopt the

tracking-by-detection paradigm. Emphasizing the importance

of high detection quality, Simple Online and Realtime Track-

ing (SORT) [21] makes use of the Kalman filter [22] and

Hungarian algorithm [23] to deal with MOT. Wojke et al.

[24] extends SORT by incorporating the visual appearance of

tracked objects. In our work, we choose to use SORT [21] due

to its speed and accuracy.

C. Trajectory Prediction

The trajectory prediction task can be treated as a sequence-

to-sequence problem, often addressed by the encoder-decoder

architecture built with the recurrent neural network (RNN) or

its variants. The encoder-decoder architecture was previously

proposed for Natural Language Processing (NLP) tasks such

as machine translation [25]–[27]. The encoder encodes the

input sequence into a state vector, which is then decoded by

the decoder to produce the output sequence. This architecture

has also been used for trajectory prediction afterward [3]–[7].

Among these works, most use an RNN variant called Long

Short-Term Memory (LSTM) to process sequential data. Park

et al. [4] used an LSTM encoder-decoder and applied the

beam-search algorithm to produce the most probable future

trajectories of surrounding vehicles. In [6], a convolutional

social pooling layer is proposed to maintain spatial information

and learn vehicle interactions from the outputs of the LSTM

encoder. An LSTM decoder is then used to predict vehicle

motion. On the other hand, the predicted trajectories can be

represented in many forms, such as on the occupancy grid

map (OGM), which uses the grid index to indicate a location.

Another form is to place the predictions on the first-person

footage or on-board camera images. This representation is

Video Frames YOLOv4

Fast R-CNN

NMS

SORT

2D Proposals
Generator

Proposals

Radar Pointclouds Radar
Association

Encoder GRUDecoder GRUFC
future

bounding
boxes

Fig. 1: Proposed system model architecture.

used in Spatio-Temporal Encoder-Decoder (STED) [7]. STED

[7] computes the optical flow for motion feature extraction

using FlowNet2 [28] and utilizes these features in the encoder-

decoder for trajectory prediction. Our work follows the prob-

lem formulation presented in [7] and adopts the encoder-

decoder model architecture [7], [27] for trajectory prediction.

As a result, we will compare the performances of our system

model and STED [7] later in the experiment. In summary, our

work builds on previous research to explore the effect of radar

data on the performance of trajectory prediction.

III. SYSTEM MODEL

In this section, we present our architecture for sensor fusion

between camera and radars mounted on a moving vehicle.

Given a sequence of m video frames F = Ft−m+1, ..., Ft

and m radar point clouds R = Rt−m+1, ..., Rt in the past

one second, our goal is to detect the surrounding objects in

these frames and predict their future locations for the next

two seconds. The proposed system model architecture includes

three main phases: object detection phase, tracking phase, and

prediction phase, as shown in Fig. 1. In the following, we will

describe these three phases in details.

A. Object Detection

The first stage for future bounding box prediction is to

know what objects are in the surroundings at each timestep.

To handle a variety of scenarios, we use two object detectors:

YOLOv4 [29] and RRPN [20]. RRPN is a proposal generator

with Fast R-CNN [30]. Then we combine these detection

results by applying Non-Maximum Suppression (NMS).

1) YOLOv4: One of the object detectors we use in the

architecture is YOLOv4. YOLOv4 is a high-accuracy, one-

stage object detection network which is fast and suitable for

real-time applications such as self-driving cars. The network

architecture of YOLOv4 is composed of three parts: backbone,

neck, and head. The input is an image. The backbone is

responsible for extracting levels of features from the input

image. The additional layers between the backbone and the

head are called the neck. These layers are used to combine

the feature maps of different layers in the backbone and can

106

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 17,2023 at 08:51:59 UTC from IEEE Xplore. Restrictions apply.

be used to detect objects at different scales. The head part is

then applied to predict bounding boxes. In the training stage,

we use pre-trained weights for the convolutional layers of the

YOLOv4 network and further train the model on the nuScenes

dataset [10]. In order to obtain higher precision, the network

resolution is increased to 608 by 608.

After training, we apply the model to each frame in F . The

frame at timestep t is denoted as Ft. For each timestep t, the

model takes Ft as input and performs object detection on it

to output a set of detected objects DY
t . Each bounding box in

DY
t is denoted as (x, y, w, h, class, conf) where x and y are

the coordinates of the center, w and h are the width and the

height of the bounding box, respectively, class is the class of

the object, and conf is the confidence of the prediction. Our

customized YOLOv4 model is trained to detect objects for the

following categories: pedestrian, bicycle, car, and motorcycle.

2) Proposals Generator and Fast R-CNN: The second

object detector used in our work is RRPN [20] that emphasizes

parts of the image where radar detections exist. The main

idea of this module is to perform object detection with radar

information. RRPN [20] has two components: a proposals

generator and a detection network. The proposals generator

is an object proposal method based on radar detections. The

detection network, Fast R-CNN, is a two-stage object detection

algorithm that first uses some techniques to generate several

candidate object regions and then classifies these regions and

refines their scales and positions using a convolutional neural

network. In RRPN, the radar-based proposals generator is used

to generate these regions instead of using the computationally

expensive and time-consuming Selective Search algorithm [31]

originally adopted in Fast R-CNN. More details about these

components are described below.

Proposals Generator This component takes a radar point

cloud Rt and multiple anchor boxes as input and outputs a set

of proposals corresponding to the frame Ft for each timestep

t. A radar point cloud is a set of radar points. Each radar

point is expressed as (xraw, yraw, zraw, vraw), representing

the raw 3D coordinates and the velocity in radar coordinate

system. The anchor boxes introduced in Faster R-CNN [32]

are a set of pre-defined rectangular regions with different sizes

and aspect ratios. Following [20], we use four sizes and three

aspect ratios, resulting in a total of twelve different anchor

boxes. To locate the region proposals, first, we map each raw

radar point in Rt from the sensor coordinate system to the

image coordinate system using the translation and rotation

matrices. Each mapped radar point is in the format (x, y, d),
where (x, y) is the coordinate on the image plane and d is

the depth. Second, each mapped point serves as the center of

the twelve anchor boxes so that a set of regions is determined.

Lastly, these regions are scaled based on the depth of the radar

point to get final object proposals.

Fast R-CNN Fast R-CNN takes the frame Ft and the object

proposals for this frame as input. It first produces feature

maps for the whole image, and the pre-computed proposals

are projected onto the feature maps to get the mapped RoIs.

An RoI pooling layer is then applied to unify the dimension of

these mapped RoIs. Finally, a fully connected network is used

to generate the results, with a pair of output layers: one for

object classification and the other for bounding box regression.

For the frame Ft, we obtain a set of detections DR
t .

3) Non-Maximum Suppression: A vehicle or a pedestrian

may be detected by both YOLOv4 and RRPN, which can

result in too many unnecessary bounding boxes. Therefore,

we use the NMS algorithm to remove redundant bounding

boxes after obtaining the detections, DY
t and DR

t , from the two

detectors. NMS is a post-processing method that decides which

detections to keep based on a threshold value, iou thresh. In

this work, we set iou thresh to 0.5. NMS operates as follows:

Step 1: Make two sets: the union of two detection sets, DY
t

and DR
t , denoted as DU

t , and the final detection set

denoted as DF
t . DF

t is initialized to an empty set.

Step 2: Select the bounding box with the highest confidence

score from the set DU
t and add it to DF

t .

Step 3: Calculate the Intersection over Union (IOU) between

every other bounding box of the same class in

DU
t and this best box. If the IOU is greater than

iou thresh, the box is removed from DU
t .

Step 4: Remove the best bounding box from DU
t .

Steps 2, 3, and 4 are repeated until DU
t becomes empty.

NMS is applied to (DY
t ∪ DR

t) and outputs the set of final

detections, DF
t , in the frame Ft for each timestep t.

B. Tracking

To predict the future locations of an object, we need to

know the sequence of past positions of this object first, which

means that we need a tracker to identify which bounding box

belongs to the same object across all frames. For this purpose,

we use the SORT algorithm [21].

After detecting objects for each frame in F , we obtain a

sequence of m sets of detections DF = DF
t−m+1, ..., D

F
t . Note

that we do not specify the number of detected objects in each

DF
t at timestep t since this number may vary from frame to

frame. The sequence DF is then fed into SORT for object

tracking.

In the following, we describe how we use SORT:

Step 1: Use a tracker to keep track of an individual object.

The tracker keeps a record of the past bounding

boxes of its tracked object.

Step 2: Estimate the positions in the current frame of the

existing tracked objects based on past trajectories.

Step 3: Measure the IOU between each detection and all es-

timations of the current frame. Assign the detection

to the existing trackers by maximizing the total IOU.

Step 4: Update the tracker by adding the assigned detection

to it.

Step 5: Create a new tracker and a new identity for detection

not assigned to any existing tracker.

Step 6: Repeat steps 2 to 5 m times for all detection in DF

to get the tracking result.

Finally, we get a list of tracked objects with varying

lengths of bounding box history as there may be objects

107

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 17,2023 at 08:51:59 UTC from IEEE Xplore. Restrictions apply.

leaving the image in earlier frames or entering in later

frames. For sub-sequent predictions, we discard tracks shorter

than m. The remaining tracks are denoted as O1, O2, ..., OI

where I is the number of fully tracked objects. Oi =
Oi

t−m+1, O
i
t−m+2, ..., O

i
t is the sequence of the observations

of object i in the past m frames where Oi
t = (xi

t, y
i
t, w

i
t, h

i
t)

represents the bounding box of object i at timestep t.

C. Radar Association

Following the tracking phase, we add the radar association

module. This module aims at using instantaneous velocity data

of radar points to help prediction. To associate the radar points

with the detected objects, first, the radar points are projected

onto the image plane using the same matrices mentioned in

Section III-A2. In addition, we also transform the velocity of

each point. After obtaining the image coordinates of each radar

point, we choose the one inside the bounding box and consider

it the radar detection of the object. If there are multiple points

inside the box, we select the one with minimum depth. Having

the radar detection for an object, we then take its velocity as

the extra feature for prediction.

For each bounding box of each tracked object i at each

timestep t, we use the above procedures to find the radar

detection and concatenate the velocity to the correspond-

ing Oi
t. Therefore, for each object i, we have another se-

quence of information, which we denote by Bi, about it.

Bi = Bi
t−m+1, B

i
t−m+2, ..., B

i
t is the sequence of combina-

tions of the position and velocity. Each Bi
t has the format

(xi
t, y

i
t, w

i
t, h

i
t, v

i
t), where vit is the velocity of object i at

timestep t. Finally, each Bi is used as input to the prediction

model.

D. Prediction

In this stage, we employ an encoder-decoder architecture

[7], [27] based on Gated Recurrent Unit (GRU) [26], [27],

a variant of recurrent neural network, to predict future n
bounding boxes using the past m(boundingbox, velocity)
pairs of an object. In this work, m and n are set to 12 and 24,

respectively, corresponding to one second and two seconds.

Fig. 2 shows the internal prediction model architecture. The

encoder and the decoder are trained end-to-end using Smooth

L1 as the loss function. The major difference between the

model architectures in Fig. 2 and [7] is that the convolutional

neural network for optical flow is excluded in Fig. 2.

1) Encoder GRU: The encoder, which is constructed by

multiple GRU cells, is responsible for giving a summary of

past information about a single object in the form of a fixed-

length feature vector. For each past timestep t, the GRU cell

takes Bi
t along with previous hidden state he

t−1 as input and

uses these data to update the 256-dimensional hidden state

vector, which is passed down to the next time-step. After

processing every element in the sequence Bi, the encoder

outputs the hidden state at the last time-step he
t . This state

vector is then passed to the decoder.

Fig. 2: Internal prediction model architecture.

2) Decoder GRU and Fully Connected Layer: Having the

vector representation of the encoded position and velocity

history of an object, we use a decoder to generate the sequence

of predictions. The decoder consists of n pairs of the GRU

cell and the fully connected layer. For each future time-step

t′, the state vector he
t and the previous hidden state hd

t′−1

are fed into the GRU cell to produce the current hidden state

hd
t′ . The fully connected layer then takes this state vector as

input and outputs a 4-dimensional bounding box prediction

(�Xt′ ,�Yt′ ,�Wt′ ,�Ht′), representing the horizontal and

vertical pixel offsets of the center, and the change in width

and height of the predicted bounding box on the image plane.

Each pair outputs the prediction for a single future timestep.

Ultimately, we get n predictions for the future two seconds.

IV. EXPERIMENTAL RESULTS

A. Dataset

We use nuScenes [10], a public autonomous driving dataset,

to evaluate our system model. The nuScenes dataset provides

hundreds of driving scenes captured by various sensors such

as LiDAR, camera, and radar in cities with heavy traffic. Each

scene is twenty seconds long. The vehicle used to collect

data is equipped with six cameras and five radars. In our

experiment, data from one front camera and three front radars

[33] are fused as there is an overlap between the Field of

Views (FOVs) of each radar and the front camera. The capture

frequency of the camera is 12Hz while that of the radar is

13Hz. As the bounding box predictions are on video frames,

we select the radar sweep of each of these three radars closest

to the time each video frame was captured to synchronize data

from different sensors for a single timestep.

We split the dataset into training and test sets with an 8:2

ratio based on the number of scenes. Because we use past one-

second sensor data to make future two-second predictions, we

need to ensure that an object is visible at least for 3 seconds for

prediction performance evaluation. Thus, we further find out

the samples that meet the requirements in each scene. Finally,

we have a total of 764,825 samples in the dataset.

B. Metrics

For evaluating the performance of bounding box predic-

tions for a single object, we use four metrics: Average/Final

108

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 17,2023 at 08:51:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Mean IOU Change.

Displacement Error (ADE/FDE) and Average/Final Intersec-

tion over Union (AIOU/FIOU). DE measures the Euclidean

distance between the two centers of the predicted bounding

box and the ground truth bounding box. On the other hand,

IOU measures the overlapping degree between two bounding

boxes. Equations (1), (2), (3), (4) shows how these metrics are

calculated.

ADE =
1

n

t+n∑

t′=t+1

‖ ct′ − ĉt′ ‖2 (1)

FDE =‖ ct+n − ĉt+n ‖2 (2)

AIOU =
1

n

t+n∑

t′=t+1

Area(pt′ ∩ p̂t′)

Area(pt′ ∪ p̂t′)
(3)

FIOU =
Area(pt+n ∩ p̂t+n)

Area(pt+n ∪ p̂t+n)
(4)

whereas, ct′ is the center of the predicted bounding box

pt′ and ĉt′ is the center of the ground truth bounding box p̂t′

at time-step t′. These metrics are calculated for the objects

whose m detected bounding boxes are all true positives. We

do not take detection that is false positive or false negative

into account when calculating these metrics as there are no

ground truth data for the former and no past positions of the

latter.

C. Baseline

We take the Constant Shift-Constant Scale (CS & CS)

model as the baseline model. In trajectory prediction literature

[7], [34], [35], this model is a widely-used baseline method

that assumes that the bounding box of an object moves with

uniform box velocity on the image plane and does not change

its width and height over time. In this work, the box velocity

is computed by taking the last two detected positions of the

object. Then we can use this velocity to locate the bounding

box for each future time-step.

TABLE I: Mean performance of nuScenes test data.

Model Radar Velocity AIOU ↗ FIOU ↗ ADE ↙ FDE ↙
CS & CS - 52.0 31.3 46.6 96.3

STED [7] - 61.0 41.8 37.5 77.5

Our model � 61.4 43.5 38.0 78.4

Our model � 62.3 45.3 36.5 74.1

D. Results

To evaluate the effectiveness of our proposed system model

in Fig. 1 and the impact of radar velocities, we compare

STED [7] and our system model without using velocity data

in addition to the CS & CS model. Table I shows the mean

performance of our test data. AIOU and FIOU are given

in percentage, while ADE and FDE are given in pixels. ↗
indicates that the higher the value, the better the model’s

performance. Otherwise, ↙ indicates that the lower the value,

the better the model’s performance. Our model with velocities

yields the best performance across all metrics, showing that

the radar velocity is effective for the predictions. However, the

IOU metrics do not improve so much as the radar velocities do

not help predict the width and height changes of the bounding

boxes. We also present mean IOU and mean DE during future

two seconds. Fig. 3 and 4 show the comparisons between the

four models. Using radar velocities, our model keeps the best

IOU and DE for almost all time-steps.

Fig. 5 shows some examples of the prediction results. Each

row is a sample from the test set. The first column visualizes

the trajectory of the center of the predicted bounding box from

0 to 2 seconds in the future. The second and third columns

display the predicted bounding boxes at future 1s and 2s,

respectively. Our model with radar velocity works well at both

night and day.

V. CONCLUSION AND FUTURE WORKS

In this work, we propose a system model architecture fusing

different sensor data including radar point clouds and camera

images for object forecasting in autonomous driving. We adopt

Fig. 4: Mean Displacement Error Change.

109

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 17,2023 at 08:51:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Bounding box predictions examples. Different models

are represented using different colors: ground truth (green),

CS&CS (yellow), STED (purple), without radar velocity (red),

and with radar velocity (blue).

two object detection models and a tracking algorithm to build

the sequence of past positions of the road users. To use

radar velocity to assist in forecasting, we propose a radar

association method that finds the radar measurement for an

object. Based on the encoder-decoder architecture, we can

predict object positions for two seconds in the future. The

experiment results on the nuScenes dataset show that the

performance of trajectory prediction becomes better by adding

radar velocities. In the future, we may explore the proposed

system model’s performance and limitation on other public

datasets.

ACKNOWLEDGMENT

This work is supported by National Science and Technology

Council, R.O.C under 110-2221-E-019-040-MY3 and PAIR

LABs.

REFERENCES

[1] P. Mannion, “Vulnerable Road User Detection: State-of-the-Art and

Open Challenges,” arXiv preprint arXiv:1902.03601, 2019.

[2] A. Ranga, F. Giruzzi, J. Bhanushali, E. Wirbel, P. Pérez, T.-H. Vu, and

X. Perotton, “VRUNet: Multi-Task Learning Model for Intent Prediction

of Vulnerable Road Users,” Electronic Imaging, vol. 2020, no. 16, pp.

109–1, 2020.

[3] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker,

“DESIRE: Distant Future Prediction in Dynamic Scenes With Interacting

Agents,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 2017, pp. 336–345.

[4] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,

“Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM

Encoder-Decoder Architecture,” in Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), 2018, pp. 1672–1678.

[5] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social

GAN: Socially Acceptable Trajectories With Generative Adversarial

Networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2255–2264.

[6] N. Deo and M. M. Trivedi, “Convolutional Social Pooling for Vehicle

Trajectory Prediction,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2018, pp. 1468–

1476.

[7] O. Styles, V. Sanchez, and T. Guha, “Multiple Object Forecasting: Pre-

dicting Future Object Locations in Diverse Environments,” in Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2020, pp. 690–699.

[8] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Glaeser,

F. Timm, W. Wiesbeck, and K. Dietmayer, “Deep Multi-Modal Ob-

ject Detection and Semantic Segmentation for Autonomous Driving:

Datasets, Methods, and Challenges,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 3, pp. 1341–1360, 2020.

[9] Á. Casado-Garcı́a and J. Heras, “Ensemble Methods for Object Detec-

tion,” in ECAI 2020. IOS Press, 2020, pp. 2688–2695.

[10] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,

A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A

Multimodal Dataset for Autonomous Driving,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2020, pp. 11 621–11 631.

[11] A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, and U. J. Nunes,

“Multimodal Vehicle Detection: Fusing 3D-LIDAR and Color Camera

Data,” Pattern Recognition Letters, vol. 115, pp. 20–29, 2018.

[12] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 7263–7271.

[13] T. Kim and J. Ghosh, “Robust Detection of Non-motorized Road Users

using Deep Learning on Optical and LiDAR Data,” in Proceedings of
the IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), 2016, pp. 271–276.

[14] D. Matti, H. K. Ekenel, and J.-P. Thiran, “Combining LiDAR Space

Clustering and Convolutional Neural Networks for Pedestrian Detec-

tion,” in Proceedings of the IEEE 14th International Conference on
Advanced Video and Signal Based Surveillance (AVSS), 2017, pp. 1–

6.

[15] K. Qian, S. Zhu, X. Zhang, and L. E. Li, “Robust Multimodal Vehicle

Detection in Foggy Weather Using Complementary Lidar and Radar

Signals,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 444–453.

[16] X. Tang, Z. Zhang, and Y. Qin, “On-Road Object Detection and Track-

ing Based on Radar and Vision Fusion: A Review,” IEEE Intelligent
Transportation Systems Magazine, 2021.

[17] A. Palffy, J. F. Kooij, and D. M. Gavrila, “Occlusion Aware Sensor

Fusion for Early Crossing Pedestrian Setection,” in Proceedings of the
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 1768–1774.

[18] J. Zhang, M. Zhang, Z. Fang, Y. Wang, X. Zhao, and S. Pu, “RVDet:

Feature-level Fusion of Radar and Camera for Object Detection,” in

Proceedings of the IEEE International Intelligent Transportation Sys-
tems Conference (ITSC), 2021, pp. 2822–2828.

[19] X. Shuai, Y. Shen, Y. Tang, S. Shi, L. Ji, and G. Xing, “milliEye: A

Lightweight mmWave Radar and Camera Fusion System for Robust

Object Detection,” in Proceedings of the International Conference on
Internet-of-Things Design and Implementation, 2021, pp. 145–157.

[20] R. Nabati and H. Qi, “RRPN: Radar Region Proposal Network for

Object Detection in Autonomous Vehicles,” in Proceedings of the IEEE
International Conference on Image Processing (ICIP), 2019, pp. 3093–

3097.

[21] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple Online and

Realtime tracking,” in Proceedings of the IEEE International Conference
on Image Processing (ICIP), 2016, pp. 3464–3468.

[22] R. E. Kalman et al., “A New Approach to Linear Filtering and Prediction

110

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 17,2023 at 08:51:59 UTC from IEEE Xplore. Restrictions apply.

Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45,

1960.

[23] H. Kuhn, “The Hungarian Method for the Assignment and Transporta-

tion Problems,” Management Science,, vol. 10, no. 3, pp. 578–593, 1964.

[24] N. Wojke, A. Bewley, and D. Paulus, “Simple Online and Realtime

Tracking with a Deep Association Metric,” in Proceedings of the IEEE
International Conference on Image Processing (ICIP), 2017, pp. 3645–

3649.

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning

with Neural Networks,” Advances in Neural Information Processing
Systems, vol. 27, 2014.

[26] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the Prop-

erties of Neural Machine Translation: Encoder-Decoder Approaches,”

arXiv preprint arXiv:1409.1259, 2014.

[27] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning Phrase Representations Us-

ing RNN Encoder-Decoder for Statistical Machine Translation,” arXiv
preprint arXiv:1406.1078, 2014.

[28] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,

“FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Net-

works,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 2462–2470.

[29] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Op-

timal Speed and Accuracy of Object Detection,” arXiv preprint
arXiv:2004.10934, 2020.

[30] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440–1448.

[31] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,

“Selective search for object recognition,” International Journal of Com-
puter Vision, vol. 104, no. 2, pp. 154–171, 2013.

[32] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks,” Advances in
Neural Information Processing Systems, vol. 28, 2015.

[33] R. Nabati and H. Qi, “Centerfusion: Center-Based Radar and Camera

Fusion for 3D Object Detection,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2021, pp. 1527–

1536.

[34] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and

S. Savarese, “Social LSTM: Human Trajectory Prediction in Crowded

Spaces,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 961–971.

[35] T. Yagi, K. Mangalam, R. Yonetani, and Y. Sato, “Future Person Local-

ization in First-Person Videos,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7593–7602.

111

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 17,2023 at 08:51:59 UTC from IEEE Xplore. Restrictions apply.

