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Abstract Having local data communication (without global broadcast of signals) among
the elements is important in very large scale integration (VLSI) designs. Recently, 2-D sys-
tolic digital filter architectures were presented which eliminated the global broadcast of the
input and output signals. In this paper a generalized formulation is presented that allows the
derivation of various new 2-D VLSI filter structures, without global broadcast, using differ-
ent 1-D filter sub-blocks and different interconnecting frameworks. The 1-D sub-blocks in
z-domain are represented by general digital two-pair networks which consist of direct-form
or lattice-type FIR filters in one of the frequency variables. Then, by applying the sub-
blocks in various frameworks, 2-D structures realizing different transfer functions are easily
obtained. As delta discrete-time operator based 1-D and 2-D digital filters (in γ -domain) were
shown to offer better numerical accuracy and lower coefficient sensitivity in narrow-band
filter designs when compared to the traditional shift-operator formulation we have covered
both the conventional z-domain filters as well as delta discrete-time operator based filters.
Structures realizing general 2-D IIR (both z- and γ -domains) and FIR transfer functions
(z-domain only) are presented. As symmetry in the frequency response reduces the com-
plexity of the design, IIR transfer functions with separable denominators, and transfer func-
tions with quadrantal magnitude symmetry are also presented. The separable denominator
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frameworks are needed for quadrantal symmetry structures to guarantee BIBO stability and
thus presented for both the operators. Some limitations of having exact symmetry with sep-
arable 1-D denominator factors are also discussed.

Keywords 2-D filters · Delta operator · Symmetry · VLSI

1 Introduction

Two-dimensional (2-D) digital filters find applications in many digital signal processing areas
such as image processing, beamforming (Joshi et al. 2012), and seismic data processing.
Although 2-D digital filters can be simulated on a general purpose computer, for applications
involving high data rate, such as real time image processing, dedicated computing structures
are needed in order to meet the high throughput demands. Networks using structures such as
systolic arrays are popular candidates for VLSI ASIC implementation due to the regularity and
modularity of the processing elements involved. Having local data communication (without
global broadcast of signals) among the elements is important in such VLSI designs. In Van
(2002) and Khoo et al. (2009), 2-D systolic digital filter architectures were presented which
eliminated the global broadcast of the input and output signals in previous architectures
(Sid-Ahmed 1989; Sunder et al. 1990). In addition, in Khoo et al. (2009), new structures
realizing transfer functions with separable denominators and having diagonal magnitude
symmetry were presented. It is well know that symmetry in the filter response can be used
to reduce the number of multipliers in the filter realization. Recently in Chen et al. (2011),
eight symmetry filter structures were presented. This creates the motivation for this work
to develop a generalized formulation of the filter structures with symmetry as well as delta
operator based filter structures.

In this paper, a generalized formulation is presented that allows the derivation of new 2-D
VLSI filter structures, without global broadcast, using different filter sub-blocks and different
interconnections/frameworks (Khoo et al. 2010). The structures include traditional z-domain
filters and delta operator based filters. The delta discrete-time operator was introduced by
Middleton and Goodwin in 1990. By replacing the conventional shift operator (q) in the
z-domain approach with the delta discrete-time operator (δ), one can overcome the numerical
ill-conditioning and coefficient sensitivity problems faced by the conventional z-domain
filters when the filter poles are clustered near z = 1. It is interesting to note that the delta
operator based design approach use the same integrators as in Bruton and Strecker (1983)
approach for 2-D filters and Agarwal and Burrus (1975) method for 1-D recursive filters
studied in z-domain.

We start by discussing the nature of 2-D filter transfer functions and symmetry in Sects. 2
and 3 for z-domain and delta operator formulations. Then in Sect. 4, the various 1-D sub-
blocks used in the 2-D filter structures are presented. Here, a general digital two-pair approach
is used to describe the sub-blocks which consist of direct-form or lattice-type FIR filter in
one of the frequency variables. Then, by applying the sub-blocks in various frameworks, 2-D
structures realizing different transfer functions are obtained for z-domain and delta operator
based filters. The structures presented in Van (2002), Khoo et al. (2009), Chen et al. (2011)
are among a few of the many possible structures that can be derived using this general
formulation.

Section 5 discusses the filter frameworks for realizing general IIR and FIR transfer func-
tions. Section 6 presents the frameworks for IIR transfer functions with separable denomina-
tors where the structures exhibit the denominator separability as a filter structural property,

123



Multidim Syst Sign Process (2014) 25:795–828 797

which have important symmetry applications. Then, in Sect. 7, the filter frameworks for
realizing transfer functions with quadrantal magnitude symmetry are presented. Following
this, the multiplier savings for the separable denominator and symmetry structures are dis-
cussed. Then, the roundoff noise is compared among some of the representative structures.
Finally, some limitations of having exact symmetry with separable 1-D denominator factors
are discussed.

2 z-domain 2-D filters and symmetry

A general 2-D z-domain IIR transfer function can be represented as in (1), where b00 =
0, N1 × N2 is the order of the filter, and X and Y are respectively the input and output of
the filter. The equation can also represent an FIR transfer function if we set bi j = 0 for all i
and j .

H (z1, z2) = Y (z1, z2)

X (z1, z2)
=

∑N1
i=0

∑N2
j=0 ai j z

−i
1 z− j

2

1 − ∑N1
i=0

∑N2
j=0 bi j z

−i
1 z− j

2

(1)

The usefulness of symmetry relations in the design of 2-D filters have been studied exten-
sively (Rajan and Swamy 1978; Aly and Fahmy 1981; George and Venetsanopoulos 1984;
Fettweis 1997; Reddy et al. 2003). Symmetry present in the frequency response induces a
relation among the filter coefficients and multipliers. This reduces the number of design para-
meters in an optimization scheme, as well as the number of multipliers in an implementation
structure. There are many possible types of symmetries in the magnitude response such as
quadrantal, diagonal, rotational, octagonal symmetries etc. In this paper, we will focus on
quadrantal symmetry.

If P (z1, z2) is a 2-D z-domain polynomial, its frequency response is given by
P

(
e jθ1 , e jθ2

)
. The magnitude squared function of the frequency response is given by:

F (θ1, θ2) =
∣
∣
∣P

(
e jθ1 , e jθ2

)∣
∣
∣
2

= P
(

e jθ1 , e jθ2
)

· P
(

e− jθ1 , e− jθ2
)

= P (z1, z2) ·P
(

z−1
1 , z−1

2

)∣
∣
∣
zi =e jθi

, i=1,2 (2)

If the magnitude squared function possesses quadrantal symmetry, then

F(θ1, θ2) = F(−θ1, θ2)

= F(θ1,−θ2)

= F(−θ1,−θ2),∀(θ1, θ2) (3)

Expressing (3) in terms of the polynomial yields:

P (z1, z2) · P
(

z−1
1 , z−1

2

)
· z−N1

1 · z−N2
2 = P

(
z−1

1 , z2

)
· P

(
z1, z−1

2

)
· z−N1

1 · z−N2
2 (4)

Note that the multiplication by ·z−N1
1 · z−N2

2 is needed so that both sides of the equations
remain a polynomial in negative powers of z.

Applying the unique factorization property of 2-variable polynomials to (4), it can be seen
that P (z1, z2) should satisfy one of the following two conditions:

123



798 Multidim Syst Sign Process (2014) 25:795–828

(i)

P (z1, z2) = k1 · P
(

z−1
1 , z2

)
· z−N1

1 where k1 is a real constant. (5)

(ii)

P (z1, z2) = k2 · P
(

z1, z−1
2

)
· z−N2

2 where k2 is a real constant. (6)

Each of the above condition will provide the constraint on the polynomial for it to possess
quadrantal symmetry in its magnitude response.

Substituting P (z1, z2) = ∑N1
i=0

∑N2
j=0 ai j · z−i

1 · z− j
2 into condition (i) above and assum-

ing k1=1, we get:
N1∑

i=0

N2∑

j=0

ai j · z−i
1 · z− j

2 =
N1∑

i=0

N2∑

j=0

ai j · zi−N1
1 · z− j

2 (7)

Applying a change of variable i ′ = N1 − i to (7), we obtain:
N1∑

i=0

N2∑

j=0

ai j · z−i
1 · z− j

2 =
N1∑

i ′=0

N2∑

j=0

aN1−i ′, j · z−i ′
1 · z− j

2 (8)

So the coefficient constraint ai j = aN1−i, j will ensure that the polynomial P (z1, z2)

possesses quadrantal symmetry in its magnitude response.
The same steps can be applied to condition (ii) above to obtain another coefficient con-

straint ai j = ai,N2− j for quadrantal symmetry.
These coefficient constraints can be applied to the transfer function of an FIR filter to

ensure quadrantal symmetry. For an IIR filter, the constraint can be applied to the numerator
polynomial. The denominator can be selected as separable, i.e. P1 (z1) · P2 (z2). It is easy to
see that P1 (z1) satisfies ai j = ai,N2− j and P2 (z2) satisfies ai j = aN1−i, j , so their product
possesses quadrantal symmetry. In addition, because the denominator is separable, it is easy
to check the stability.

The symmetry constraints can be used to obtain filter structures with fewer number of
multipliers which will be discussed in a later section.

3 Delta operator formulation

Conventional discrete time filters and systems utilizing the shift operator (q) in z-domain
can exhibit unacceptable numerical problems when the filter is narrowband or when the
filter poles are clustered near z = 1 in the complex z-plane, such as when high sampling rates
are needed (Middleton and Goodwin 1990; Goodwin et al. 1992). This translates into very
poor coefficient and filter parameter sensitivity. By replacing the conventional shift operator
(q) in the z-domain approach with the delta discrete-time operator (δ), one can overcome
this numerical ill-conditioning. Since the introduction by Middleton and Goodwin, delta
operator based designs have been studied extensively in the area of digital control systems
and signal processing due to their excellent finite wordlength performance under fast sampling
(Premaratne et al. 1994; Kauraniemi et al. 1998; Wong and Ng 2000). The delta operator is
defined as:

δ [x (nT )] = x (nT + T ) − x (nT )

T
(9)

where T may denote the sampling period or a constant.
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It is easy to see that the relationship between the delta operator and the shift operator is
given by δ = (q−1)/T. In the transform domain, δ is represented by the transform variable
γ = (z − 1)/T. Or, as a causal element: γ −1 = T · z−1/

(
1 − z−1

)
. Following the notations

in Khoo et al. (2006), let γi = (zi − 1)/Ti for i = 1, 2, represent the delta operator in the
transform domain for 2-D systems. Then the transfer functions of a 2-D system H (z1, z2)

in the z-domain and Hγ (γ1, γ2) in the γ -domain are related as follows:

Hγ (γ1, γ2) = H(z1, z2)|zi =(1+Ti γi ), i=1,2 (10)

and

H(z1, z2) = Hγ (γ1, γ2)
∣
∣
γi = (zi −1)

Ti
, i=1,2

(11)

where

Hγ (γ1, γ2) = Y (γ1, γ2)

X (γ1, γ2)
=

∑N1
i=0

∑N2
j=0 ci jγ

−i
1 γ

− j
2

1 − ∑N1
i=0

∑N2
j=0 di jγ

−i
1 γ

− j
2

(12)

If Pγ (γ1, γ2) is a 2-D γ -domain polynomial, then its frequency response is given by

Pγ

(
e jθ1 −1

T , e jθ2 −1
T

)
. The magnitude squared function of the frequency response is given by:

F (θ1, θ2) = Pγ

(
e jθ1 − 1

T
,

e jθ2 − 1

T

)

· Pγ

(
e− jθ1 − 1

T
,

e− jθ2 − 1

T

)

= Pγ (γ1, γ2) ·Pγ

( −γ1

1 + T γ1
,

−γ2

1 + T γ2

)∣
∣
∣
∣
γi = e jθi −1

T , i=1,2
(13)

Following the same procedure in the z-domain discussion, it can be shown that in order
for Pγ (γ1, γ2) to possess quadrantal symmetry in its magnitude squared response, it should
satisfy one of the following two conditions:

(i)

Pγ (γ1, γ2) = k1 · Pγ

( −γ1

1 + T γ1
, γ2

)

where k1 is a real constant. (14)

(ii)

Pγ (γ1, γ2) = k2 · Pγ

(

γ1,
−γ2

1 + T γ2

)

where k2 is a real constant. (15)

Unlike z-domain, the coefficient symmetry constraints here do not result in a simple
relationship. So a symmetry constraint based on the polynomial form will be used instead.
To do that, we first observe that the term γ −2

i + T γ −1
i is self inverse in γi . That is:

γ −2
i + T γ −1

i

∣
∣
∣
γi = −γi

1+T γi

= γ −2
i + T γ −1

i

Therefore, polynomials of the form Pγ

(
γ −2

1 + T γ −1
1 , γ2

)
and Pγ

(
γ1, γ

−2
2 + T γ −1

2

)

satisfies (14) and (15) respectively. This means that polynomials that can be expressed in
terms of γ −2

1 + T γ −1
1 or γ −2

2 + T γ −1
2 will possess quadrantal symmetry (Note that we

will assume T = 1 in the discussion that follows). These polynomial forms will be used in
the numerator of the delta operator IIR filter transfer function with quadrantal symmetry.
However, they cannot be used for the denominator due to stability problem. Instead, the
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denominator is chosen as separable, i.e. P1γ (γ1) · P2γ (γ2). It is easy to see that P1γ (γ1) and
P2γ (γ2) satisfies (15) and (14) respectively, so their product possesses quadrantal sym-
metry. Again, the advantage of a separable denominator is that it is easy to ensure the
stability.

4 Filter sub-blocks

The z-domain transfer function in (1) can also be expressed as:

H (z1, z2) =
∑N1

i=0 Fi (z2) · z−i
1

1 − ∑N1
i=0 Gi (z2) · z−i

1

(16)

where Fi (z2) = ∑N2
j=0 ai j z

− j
2 and Gi (z2) = ∑N2

j=0 bi j z
− j
2 are 1-D FIR functions in z2

variable only. These 1-D functions can be realized by the general digital two-pair networks
depicted as sub-blocks here. The sub-blocks can be lattice or direct form structures. These
sub-blocks are then used in the filter frameworks in Sect. 5 to realize the overall 2-D transfer
function in (16).

In our discussion, we assume that the filter is used to process a square image of size
M×M and the pixel values in the image are fed to the filter in raster-scan mode, i.e. the input
sequence is x(0,0), x(0,1), …, x(0,M−1), x(1,0), x(1,1), … etc. We can then replace z−1

2 by
a single delay register, z−1, and z−1

1 by a shift register of length M, z−M , provided M > N2.
Without loss of generality, we will assume N1 = N2 = N in discussing the filters.

Sub-block #1, shown in Fig. 1, has 2 inputs and 1 output. It is direct form, i.e. the multiplier
values are the same as the polynomial coefficients. It realizes the following two FIR functions:

Fi
(
z−1) = Yi

Xi

∣
∣
∣
∣
Wi =0

=
N∑

j=0

ai j z
− j , Gi

(
z−1) = Yi

Wi

∣
∣
∣
∣

Xi =0
=

N∑

j=0

bi j z
− j (17)

Note that the special arrangement of the delays is to eliminate global broadcast of the
signals, Xi and Wi , and also to control the critical period. The critical period is the time
required for the signal through the slowest (critical) path of the structure and determines the
highest possible clock speed of the structure.

Sub-block #2 is shown in Fig. 2. It has 1 input and 2 outputs and realizes the following
two FIR functions. It is also direct form. It can be used to realize the 2-D transfer function
in (16) with Ei and Di replacing Fi and Gi respectively. The filter framework to achieve this
will be discussed in the next section.

Di
(
z−1) = Vi

Xi
=

N∑

j=0

bi j z
− j , Ei

(
z−1) = Yi

Xi
=

N∑

j=0

ai j z
− j (18)

The alternate lattice form for sub-block#2 is shown in Fig. 3. Unlike a regular lattice, this
structure has different multipliers in the top and bottom branches. The algorithm to extract
the multipliers A, B, kai j , kbi j is as follows:

Step 1: Let Pi N = Ei and Qi N = Di ; j = N

Step 2: k′
bi j = coefficient of z− j term in Qi j

coefficient of z− j term in Pi j
and k′

ai j = constant term in Pi j

constant term in Qi j

Step 3: Pi( j−1) = k′
bi j ·Pi j −Qi j

k′
ai j ·k′

bi j −1 and Qi( j−1) = Pi j −k′
ai j ·Qi j

z−1·
(

1−k′
ai j ·k′

bi j

)
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Fig. 1 Sub-block #1
(2-inputs-1-outputs, direct-form)

{ ai0 , ai1 , ai2, ... , aiN } { bi0 , bi1 , bi2, ... , biN }

F (z   )
-1

i G (z   )
-1

i

Sub-block #1

Xi Wi

Yi

Z-1

Z-1

+

+

+
bi2

bi1

bi0

ai2

ai1

ai0
Z-1

iWiX

Yi

Z-1

Z-1

+

+
bi4

bi3

ai4

ai3

Z-1

+
biNaiN

.

.

.

.

.

.

.

.

.

Step 4: j = j − 1. If j �= 0, go back to Step 2.
Step 5: If N is even, A = Pi0 and B = Qi0. Otherwise, A = Qi0 and B = Pi0.
Step 6: kbi j = k′

bi j · A
B and kai j = k′

ai j · B
A for all even (N-j).

kbi j = k′
bi j · B

A and kai j = k′
ai j · A

B for all odd (N-j).

Like a regular lattice, the structure cannot realize functions where the constant term is
zero, i.e. ai0 = 0 or bi0 = 0. Also note the extra delays (circled in Fig. 3) added to control the
critical period. This will result in latency in the form of extra z−1 factors in (18). However,
the factors can be cancelled in the final reconfiguration to be discussed in Sect. 5 so that the
overall 2-D transfer function will not have any latency. The lattice-form in Fig. 3 has the same
number of multipliers and adders as the direct-form in Fig. 2. It does, however, require more
delay elements.

Another z-domain sub-block is sub-block #3. The direct-form version is shown in Fig. 4.
The alternating delay arrangement is to eliminate global broadcast of the signal Xi and to
control the critical period. The sub-block has 1 input and 1 output and realizes the FIR
function in (19). Note that ρi j can represent either the numerator or denominator coefficient
ai j or bi j .
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Fig. 2 Sub-block #2
(1-input-2-outputs, direct-form)

Xi

Vi
Yi

.

.

.

.

.

.

.

.

.

{ bi0 , bi1 , bi2, ... , biN } { ai0 , ai1 , ai2, ... , aiN }

D (z   )
-1

i E (z   )
-1

i

Sub-block #2

Z-1

Z-1

+

+

+

+

bi2

bi1

bi0

ai2

ai1

ai0
Z-1

biN aiN

+ +

Z-1

Z-1

+ +
bi3 ai3

Z-1

+ +

iYiV

Xi

bi4 ai4

Xi

Z-1 +

kai1

kbi1

+ Z-1

Z-1

Z-1

Z-1+

kai2

kbi2

+

Z-1

Yi
A

+

kaiN

kbiN

+

Z-1

Z-1

Z-1
Vi

B

. . . 

. . . 

Fig. 3 Sub-block #2 (1-input-2-outputs, lattice-form)

Cρi
(
z−1) = Yi

Xi
=

N∑

j=0

ρi j z
− j (19)

The lattice version of sub-block #3 is shown in Fig. 5. This is based on the one-multiplier
lattice in Makhoul (1978). The multiplier values, ki j , can be determined from the function
coefficients ai j , using the regular lattice extraction plus appropriate scaling of the results
(Makhoul 1978). Note that extra delays (in circle) are added to control the critical period,
which will result in latency in the form of z−1 factor in (19). The latency can be removed in
the filter framework to be discussed in Sect. 5. One limitation of the structure is that it cannot
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iYiX

{ pi0 , pi1 , pi2, ... , piN }

C (z   )
-1

pi

Sub-block #3

pi3

+

Z-1

pi2

+ Z-1

pi1

+

Z-1

pi0

+ Z-1

pi4

+ .  .  .

.  .  .

piN

Xi

Yi

Fig. 4 Sub-block #3 (1-input-1-output, direct-form)

Xi

Z-1 +

ki1

+ Z-1

Z-1

Yi
A

. . .

. . .

+-

-

Z-1 +

ki2

+ Z-1

Z-1

+-

-

Z-1 +

kiN

+ Z-1

Z-1

+-

-

Fig. 5 Sub-block #3 (1-input-1-output, lattice-form)

realize functions where ρi0 = 0. Also, compared to direct-form, the lattice version requires
more delays and adders, but the number of multipliers is the same.

For the delta operator formulation, the transfer function in (12) can also be expressed as:

Hγ (γ1, γ2) =
∑N1

i=0 Fg
i (γ2) · γ −i

1

1 − ∑N1
i=0 Gg

i (γ2) · γ −i
1

(20)

where Fg
i (γ2) = ∑N2

j=0 ci jγ
− j
2 and Gg

i (γ2) = ∑N2
j=0 di jγ

− j
2 are 1-D polynomials in γ2 to

be realized by the sub-blocks discuss here. In the sub-blocks, we represent γ −1
2 by γ −1. γ −1

1
will be realized by a delta operator shift register, to be discussed in the next section. Again,
we will assume N1 = N2 = N in discussing the filters.

The sub-blocks #4 and #5 for use in the delta-operator realization are shown in Figs. 6 and
7 respectively. The z−1/1 element inside can be configured to either implement a delay or a
passthrough. This allows the sub-blocks to realize either a regular polynomial or quadrantal
symmetry polynomial.

In the diagrams, the g−1 and zg−1 elements are equivalent to γ −1 = z−1

1−z−1 and z.γ −1 =
z · z−1

1−z−1 = 1
1−z−1 respectively. They can be implemented as shown in Figs. 8 and 9. Note that

the cascade connection of the g−1 and zg−1 elements yields the self inverse term
(
γ −2 + γ −1

)

needed for quadrantal symmetry, i.e. z · γ −2 = (1 + γ ) .γ −2 = (
γ −2 + γ −1

)
.

Sub-block #4 in Fig. 6 has 2 inputs and 1 output. With the z−1/1 element configured as a
delay, it realizes the following two polynomial functions:

Fg
i

(
γ −1) = Yi

Xi

∣
∣
∣
∣
Wi =0

=
N∑

j=0

ci jγ
− j , Gg

i

(
γ −1) = Yi

Wi

∣
∣
∣
∣

Xi =0
=

N∑

j=0

di jγ
− j (21)
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Fig. 6 Sub-block #4
(2-inputs-1-output, delta operator
direct form)

{ ci0 , ci1 , ci2, ... , ciN } { di0 , di1 , di2, ... , diN }

F (g   )
-1

i G (g   )
-1

i

Sub-block #4

Xi Wi

Yi

zg -1

+

+

+
di2

di1

di0

ci2

ci1

ci0

iWiX

Yi

+

+
di4

di3

ci4

ci3

+
diNciN

.

.

.

.

.

.

.

.

.

g g

zg -1

zg -1 zg -1

g -1 g -1

g -1 g-1

Z  /1
-1

Z  /1
-1

With the z−1/1 element configured as a passthrough and with ci j = 0, di j = 0 for
j = 1,3,5…, it realizes the following functions, which can be used for quadrantal symmetry.

Fg
i

(
γ −1) = Yi

Xi

∣
∣
∣
∣
Wi =0

= ci0 + ci2
(
z · γ −2) + ci4

(
z · γ −2)2 + · · ·

=
N∑

j=0,2,4...

ci j
(
z · γ −2)

j
2

=
N∑

j=0,2,4...

ci j
(
γ −2 + γ −1)

j
2 (22)

Gg
i

(
γ −1) = Yi

Wi

∣
∣
∣
∣

Xi =0
= di0 + di2

(
z · γ −2) + di4

(
z · γ −2)2 + · · ·

=
N∑

j=0,2,4...

di j
(
z · γ −2)

j
2

=
N∑

j=0,2,4...

di j
(
γ −2 + γ −1)

j
2
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Fig. 7 Sub-block #5
(1-input-2-outputs, delta operator
direct form)
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Fig. 8 Realization of γ −1
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Fig. 9 Realization of z.γ −1

Z-1

+zg -1

The other delta operator sub-block is Sub-block #5 (Fig. 7) which has 1 input and 2 outputs.
It realizes the following two polynomial functions with the z−1/1 element configured as a
delay:

Dg
i

(
γ −1) = Vi

Xi
=

N∑

j=0

di jγ
− j , Eg

i

(
γ −1) = Yi

Xi
=

N∑

j=0

ci jγ
− j (23)

Sub-block #5 can be used to realize the 2-D transfer function in (20) with Eg
i and Dg

i
replacing Fg

i and Gg
i respectively. The filter framework to achieve this will be discussed in

the next section.
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Fig. 10 Filter framework A (IIR)

With the z−1/1 element configured as a passthrough and with ci j = 0, di j = 0 for
j = 1,3,5…, the sub-block realizes the following functions, which can be used for quadrantal
symmetry.

Dg
i

(
γ −1) = Vi

Xi
=

N∑

j=0,2,4...

di j
(
γ −2 + γ −1)

j
2 (24)

Eg
i

(
γ −1) = Yi

Xi
=

N∑

j=0,2,4...

ci j
(
γ −2 + γ −1)

j
2 (25)

The frameworks to achieve the delta operator transfer functions will be discussed in the
next section.

5 Filter frameworks for realizing general transfer function

The sub-blocks discussed in the previous section are used in the filter frameworks in this
section to realize the general 2-D z-domain transfer function in (1) and the delta operator
transfer function in (12).
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Fig. 11 Filter framework B (IIR)

Filter framework A is shown in Fig. 10. It uses only filter sub-block #1. Notice that the shift
registers (SR) are of length M-1 due to the additional delays added at the input and output
branches to eliminate the global broadcast. It can be verified using Mason’s gain formula that
the structure, with z−1 = z−1

2 and SR = z−1
1 z2, possesses the transfer function in (16).

Filter framework B is shown in Fig. 11. It utilizes sub-block #2 and realizes the 2-D
transfer function in (16) with the notation change from Fi and Gi to Ei and Di respectively,
which highlights the difference in sub-blocks. Filter framework B is the transpose of filter
framework A.

As discussed in Sect. 4, there are two versions of sub-block #2—direct-form (Fig. 2) and
lattice-form (Fig. 3). They can be used in any combination in the framework. The only restric-
tion is that the bottom sub-block has to be direct-form. The reason is that the lattice-form
cannot realize a function where the constant term is zero, as is needed for function D0. Also,
if the lattice-forms are used (which introduce a latency of z−N

2 ), the length of the SR can be
adjusted to compensate for the latency so that the overall 2-D transfer function will not have
any latency. For instance, if the bottom sub-block is direct-form while the rest are lattice,
then the bottom SR will need to be of length M−N−1 (realizing z−1

1 zN+1
2 ) rather than M−1

(realizing z−1
1 z2).

Filter framework C is shown in Fig. 12. It uses only sub-block #3, either the direct-form
of Fig. 4 or the lattice-form of Fig. 5. It realizes the 2-D transfer function in (16) with the
notation change from Fi to Cai and from Gi to Cbi . Note that the direct and lattice-form
sub-blocks can be used in any combination in the framework. The only restriction is that
the Cb0 sub-block needs to be direct-form as the lattice-type cannot realize a function with a
zero constant term. Once again, if the lattice-forms are used, appropriate adjustments can be
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Fig. 12 Filter framework C (IIR)

made to the SR to avoid the latency. Filter framework D, shown in Fig. 13, is the transpose
of framework C.

To realize 2-D FIR transfer functions, the Cbi sub-blocks may be removed in frameworks
C or D above. This yields framework E as shown in Fig. 14.

Filter framework J in Fig. 15 can be used to realize the 2-D delta operator transfer function
in (20) with Eg

i and Dg
i replacing Fg

i and Gg
i respectively. It uses sub-block #5. The Z−1/1

elements in sub-block #5 are configured as delays. Note that the delta operator shift register
(gSR), which realizes z · γ −1

1 , is implemented as shown in Fig. 16. It consists of a regular
shift register with a loop and delay around it. Note that the transpose of filter framework J is
not presented as it has noise problem. Also, there is no polynomial form delta operator FIR
filter.

6 Filter frameworks for realizing transfer functions with separable denominator

By mixing the sub-blocks in specific ways, filter frameworks realizing transfer functions
with separable denominator of the form in (26) can be obtained. The idea is to form two
non-touching loops in different variables as per Mason’s gain formula.

H (z1, z2) = Y (z1, z2)

X (z1, z2)
=

∑N1
i=0

∑N2
j=0 ai j z

−i
1 z− j

2
(

1 − ∑N1
i=1 bi0z−i

1

)
·
(

1 − ∑N2
j=1 b0 j z

− j
2

) (26)
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Fig. 13 Filter framework D (IIR)

The significant feature of these structures is that they exhibit the denominator separability
as a filter structural property, independent of the choice of multiplier values. The separable
denominator transfer function has several advantages over the general one in (1). Firstly,
the stability can be checked by simply solving for the poles of the two 1-D polynomials,
and any unstable pole is easy to stabilize. Secondly, the separable denominator requires
fewer multipliers to realize. Thirdly, the separable denominator is required in realizing stable
magnitude responses possessing various symmetries such as quadrantal symmetry (Reddy
et al. 2003). This was discussed in the earlier section.

Filter framework F is shown in Fig. 17. It is based on framework A. It uses sub-block #2
at the bottom while the rest are sub-block #1 (Note that the lattice-form cannot be used here).
It realizes the transfer function in (27), with Gi ’s being constants. Recall that z−1 = z−1

2 and
SR = z−1

1 z2.

Y

X
= E0 (z2) + ∑N

i=1 Fi (z2) · z−i
1

[1 − D0 (z2)] ·
[
1 − ∑N

i=1 Gi · z−i
1

] (27)

By taking the transpose of filter framework F, framework G can be obtained. See Fig. 18. It
uses sub-block #1 at the bottom of the framework while the rest are sub-block #2. It realizes
the transfer function in (27) but with term Ei replacing Fi, and Di replacing Gi. It is to be
noted that Type-I and Type-II separable denominator 2-D IIR filer structures in Chen et al.
(2011) can be derived from framework G and framework F, respectively.
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Fig. 14 Filter framework E
(FIR)

Filter framework H is shown in Fig. 19. It uses only sub-block #3. It realizes the transfer
function in (27) with the terms Cai replacing Fi for i = 1…N, and Ca0 replacing E0. Also, Cbi

replaces Di for i = 1…N, and Cb0 replaces G0 in (27). Note that the bottom two sub-blocks
have reversed input-output compared to the rest of the sub-blocks. Finally, filter framework
I (Fig. 20) is the transpose of framework H.

Filter framework K (Fig. 21) is used to realize the following delta operator separable
denominator transfer function:

Y

X
=

∑N
i=0

∑N
j=0 ci jγ

−i
1 γ

− j
2(

1 − ∑N
i=1 di0γ

−i
1

)
·
(

1 − ∑N
j=1 d0 jγ

− j
2

)

= Eg
0 (γ2) + ∑N

i=1 Fg
i (γ2) · γ −i

1
[
1 − Dg

0 (γ2)
] ·

[
1 − ∑N

i=1 Gg
i · γ −i

1

] (28)

The framework bears some similarity to the z-domain framework F. It uses sub-block #5
at the bottom while the rest are sub-block #4. The Z−1/1 elements in sub-blocks #4 and #5
are configured as delays. Recall that γ −1 = γ −1

2 and gSR = z · γ −1
1 . By applying Mason’s

rule, it is easy to see that the structure satisfies (28).
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Fig. 15 Filter framework J (delta operator IIR)

Fig. 16 Implementation of delta
operator shift register.
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7 Quadrantal symmetry filter frameworks

The presence of symmetry in the 2-D frequency response induces certain relationship among
the filter coefficients which can result in fewer multipliers in the implementation. The
z-domain quadrantal symmetry coefficient constraint ai j = a(N−i) j derived earlier can be
applied to frameworks F and G to yield the new quadrantal symmetry structures as shown
in Figs. 22 and 23. Note that the changes are highlighted in red, and although the structures
shown are 2×2, they can easily be generalized to higher orders. As mentioned in Sect. 2, the
coefficient constraint is only applied to the numerator of the IIR transfer function while the
denominator is chosen as separable.

In a similar manner, the symmetry constraint can be applied to filter frameworks H and I,
as well as FIR framework E, to yield new structures with the symmetry. They are shown in
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Fig. 17 Filter framework F (separable denominator)
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Fig. 18 Filter framework G (separable denominator)
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Fig. 19 Filter framework H (separable denominator)

Figs. 24, 25 and 26. It is also possible to apply the other symmetry constraint ai j = ai,N− j

to the filter frameworks, but the resulting structures are more complicated.
The delta operator filter structure with quadrantal symmetry is shown in Fig. 27. It realizes

the following transfer function:

Y

X
=

∑N
i=0

N∑

j=0,2,4...

ci jγ
−i
1

(
γ −2

2 + γ −1
2

) j
2

(
1 − ∑N

i=1 di0γ
−i
1

)
·
(

1 − ∑N
j=1 d0 jγ

− j
2

) (29)

It is based on framework K. As mentioned in Sect. 3, the numerator is based on the
quadrantal symmetry polynomial form while the denominator is chosen as separable. Note
that the Z−1/1 elements in sub-blocks #4 and #5 need to be configured as passthrough. The
structure can only realize even order transfer function. Compared to the z-domain symmetry
structures, the delta operator one does not require special signal routing. Only the sub-block
parameters need to be changed. The changes are highlighted in red in the figure.

8 Comparison of multipliers required for the structures

The quadrantal symmetry structure has the lowest number of multipliers compared to all the
other structures. The filter frameworks realizing regular 2-D IIR transfer function require
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Fig. 20 Filter framework I (separable denominator)

2(N +1)2 −1 multipliers. The separable denominator frameworks require fewer multipliers:
(N + 1)2 + 2N . The quadrantal symmetry structures require the least number of multipliers:
only (N + 1)2/2 + 2N and (N/2 + 1) · (N + 1) + 2N when N is odd and even respectively.
For the 2-D FIR z-domain structures, the number of required multiplier is reduced from
(N + 1)2 to (N + 1)2/2 (for N odd) or (N/2 + 1) · (N + 1) (for N even) with quadrantal
symmetry.

9 Roundoff noise

In the roundoff noise calculation, the filter is first scaled using L2 norm to prevent overflow
at all the internal nodes. The total roundoff noise gain is then calculated by summing the
square of the L2 norm of the transfer function from each multiplier output to the filter output.
The L2 norm of a 2-D function F is determined as follows:

‖F (z1, z2)‖2 =
√

1

π2 ·
∫ π

0

∫ π

0

∣
∣F

(
e jθ1 , e jθ2

)∣
∣2 · dθ1 · dθ2

Because of the numerous possible structures, the roundoff noise is analyzed only for
some of the basic shift operator structures—filter frameworks A through D using the direct-
form sub-blocks. The in-depth study on the roundoff noise will be provided in a future
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Fig. 24 Quadrantal symmetry framework based on framework H

publication. One of the selection criteria for the choice of structure may be the roundoff
noise.

Assuming a 2-D lowpass filter, the roundoff noise is plotted against the filter cutoff fre-
quency as shown in Fig. 28 for different filter orders. It can be seen that filter frameworks
B and D have the lowest roundoff noise and their advantage increases with the filter order.
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Fig. 26 Quadrantal symmetry
framework based on framework
E (FIR)
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This is due to the fact that the noise transfer functions of frameworks B and D are bounded
by one in magnitude, while those of frameworks A and C can exceed unity.

10 Some limitations of having exact symmetry with separable 1-D denominator
factors

As stated earlier, for a 2-D digital filter to possess exact symmetry in its magnitude response,
the transfer function must have a denominator with only 1-D (stable) separable factors.
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Fig. 28 Roundoff noise

This is needed to ensure that the 2-D filter is BIBO stable while possessing the said sym-
metry. However, as the denominator is in a constrained form, it may not be possible to
meet certain specifications such as sharp cut off in the transition band of the filter magni-
tude specs. This can force the use of higher order transfer function in the separable case
resulting in more expensive implementation. One solution is to utilize a filter design pro-
cedure with 2-D non separable denominator factors in the filter transfer function to achieve

123



Multidim Syst Sign Process (2014) 25:795–828 819

Fig. 29 Fan filter specification

Table 1 4×4 z-domain fan filter results

Filter order Filter stopband angle (φ)(◦) Non-separable design error Separable design error

4×4 15 23.69 32.27
4×4 25 16.15 27.75
4×4 35 9.77 32.16
4×4 45 14.72 28.63
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Fig. 30 4×4 non-separable denominator z-domain filter (stopband angle = 35◦)

an approximate quadrantal symmetric magnitude response (Lin et al. 1988). In the approach
presented in this paper, the numerator of the filter transfer function is still chosen as a quad-
rantal symmetric polynomial allowing us to reduce the number of multipliers in the final
realization as well as to attain the near quadrantal symmetric overall response. The stability
problem in the non-separable case is solved by using the planar least squares inverse (PLSI)
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Fig. 32 2×2 non-separable denominator z-domain filter (stopband angle = 35◦)

polynomial stabilization approach first established by Anderson and Jury (1976), Jury et al.
(1977).

A fan filter with a narrow transition band is used for illustration. The filter magnitude
specification is shown in Fig. 29. The filter stopband has an angle of 2φ. The filter transition
band is specified by x1 = 0.0157 and x2 = 0.113.

Optimization is used to obtain the transfer function that satisfies the fan filter specifications.
The objective is to minimize the least squared error between the filter magnitude response
and the give filter specifications. The objective or error function is given in (30). It is based
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Fig. 34 4×4 separable denominator γ -domain filter (stopband angle = 35◦)

Table 2 4×4 γ -domain fan filter results

Filter order Filter stopband angle (φ)(◦) Non-separable design error Separable design error

4×4 15 20.12 28.10
4×4 25 14.89 23.70
4×4 35 12.76 26.07
4×4 45 11.69 30.13
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Fig. 35 2×2 non-separable denominator γ -domain filter (stopband angle = 35◦)

on the difference between the magnitude response of the transfer function and the desired
magnitude response, at selected frequency points in both the passband and stopband.

Error =
∑

k

∑

l

[F (θ1k, θ2l) − Fd (θ1k, θ2l)]
2

(30)

where F is the transfer function magnitude squared response, Fd is the desired response, and
θ1k, θ2l are the sample frequency points where the desired response is specified.

After optimization, the denominator factors are stabilized, if necessary, using the PLSI
approach. The results are shown in Table 1 for a z-domain filter of order 4×4 and differ-
ent stopband angles. It can be seen that the objective function errors are smaller for the
non-separable denominator designs compared to the traditional 1-D separable denominator
designs.

The magnitude contour plot for the non-separable denominator design with filter stopband
angle of 35 degree is shown in Fig. 30. The corresponding contour plot for the separable
denominator design in shown in Fig. 31. It can be seen that non-separable denominator
design has a much sharper transition band. The plot also displayed very good quadrantal
symmetry despite it being not exact.

The same sharp transition bands can be observed for the 15, 25,45 degree stopband designs.
In addition, for certain cases, a non-separable design of lower order may achieve the same
error as a separable design. For example, a 2×2 non-separable denominator design has a
design error of 24.62, which is slightly smaller than a 4×4 separable design (error of 32.16).
Its contour plot is shown in Fig. 32.

Similar observations can be seen in the delta-operator based designs for the same fan filter
specifications (Table 2). The non-separable designs have smaller objective function errors
and sharper transition bands compared to the separable designs. The results are shown in
Figs. 33 and 34. The quadrantal symmetry in the plot for the non-separable design, although
not exact, is still quite acceptable.
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Fig. 36 2×2 filter structure with quadrantal symmetric numerator and non-separable denominator (Type I)

Again, for certain cases, it is possible for a lower order non-separable denominator
design to achieve the same performance as a higher order separable design. For exam-
ple, a 2×2 non-separable denominator γ -domain design has a design error of 24.63, which
is slightly smaller than a 4×4 separable design (error of 26.07). It contour plot is shown
in Fig. 35.

It can be seen from the example that the non-separable denominator designs with approx-
imate symmetry can achieve a sharper transition band when compared with exact quadrantal
symmetric response using a transfer function with separable denominator.

A 2×2 VLSI filter structure realizing a z-domain quadrantal symmetric numerator and
non-separable denominator is shown in Fig. 36. An alternate structure based on its transpose
is shown in Fig. 37. They can easily be generalized to higher orders.

11 Conclusion

A generalized formulation is presented that allows the derivation of several new 2-D VLSI fil-
ter structures using different 1-D filter sub-blocks and different interconnection frameworks.
The 1-D sub-blocks are represented by general digital two-pair networks which consist of
direct-form or lattice-type FIR filters in one of the frequency variables. Then, by applying the
sub-blocks in various frameworks, 2-D structures realizing different transfer functions are
easily obtained. The structures cover conventional z-domain filters as well as delta operator
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Fig. 37 2×2 filter structure with quadrantal symmetric numerator and non-separable denominator (Type 2).

based filters. These structures can realize general 2-D IIR and FIR transfer functions, IIR
transfer functions with separable denominators, and transfer functions with quadrantal mag-
nitude symmetry. The quadrantal symmetry structures have the advantage of lowest number
of multipliers.

In Sect. 10, it has been shown that near quadrantal symmetric response could be achieved
by choosing (at the optimization stage) a transfer function with a numerator that is a quadrantal
symmetric polynomial and a non-separable 2-D denominator polynomial. The advantages of
this approach compared to the exact quadrantal symmetric method are also discussed. 2-D
VLSI structures without global broadcast are given for the non-separable case.

As a future research problem, the noise and sensitivity properties of the structures, espe-
cially for the delta-operator based one, are important topics to investigate. Further, the pos-
sibility of extending the structures to cover other types of symmetries (diagonal, four fold
rotational and octagonal) needs to be explored. Recently, a new state space formulation was
presented for multidimensional signal processing systems (Velten et al. 2012). It is hoped that
the block framework structures given in the paper will be useful in the analysis and design
with this new state space formulation. It will also be interesting to see whether improved
design method could be developed for 2-D filter banks (Zhao and Swmay 2013), based on
the present work on structures as well as the optimization steps to achieve approximate
symmetry.
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