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Energy-Efficient FastICA Implementation for
Biomedical Signal Separation
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Abstract— This paper presents an energy-efficient fast
independent component analysis (FastICA) implementation
with an early determination scheme for eight-channel
electroencephalogram (EEG) signal separation. The main
contributions are as follows: 1) energy-efficient FastICA using
the proposed early determination scheme and the corresponding
architecture; 2) cost-effective FastICA using the proposed
preprocessing unit architecture with one coordinate rotation
digital computer-based eigenvalue decomposition processor and
the proposed one-unit architecture with the hardware reuse
scheme; and 3) low-computation-time FastICA using the four
parallel one-units architecture. The resulting power dissipation
of the FastICA implementation for eight-channel EEG signal
separation is 16.35 mW at 100 MHz at 1.0 V. Compared with
the design without early determination, the proposed FastICA
architecture implemented in united microelectronics corporation
90 nm 1P9M complementary metal–oxide–semiconductor
process with a core area of 1.221 × 1.218 mm2 can achieve
average energy reduction by 47.63%. From the post-layout
simulation results, the maximum computation time is 0.29 s.

Index Terms— Blind source separation, electroencephalogram,
energy efficiency, fast independent component analysis, hardware
implementation.

I. INTRODUCTION

INDEPENDENT component analysis (ICA) has been
widely used to solve the problem of the blind source

separation (BSS) with the applications to speech, image or
biomedical signal processing [1]–[3]. On the other hand, since
many scientists need to observe the corresponding pure brain
activities, the signals of electroencephalogram (EEG), func-
tional magnetic resonance imaging and magnetoencephalo-
gram (MEG) can be analyzed by the ICA algorithm in the
brain research [4]–[6]. In the previous analyses [5], the signal
characteristics of EEG and MEG are conformed to indepen-
dent components processed by the ICA algorithm. The ICA
approach enables us to project each independent component
onto a multiple-dipole map for EEG signals [3].

In terms of algorithms, there exist many ICA-related
approaches [6]–[15]. The information-maximization (INFO-
MAX) algorithm [7] derived from higher-order statistics pos-
sesses high computation complexity. On the other hand, the
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fast ICA (FastICA) algorithm [8]–[12] based on approximate
negentropy and Newton iteration can reduce the computation.
A comparative study of ICA algorithms for brain computer
interface (BCI) systems [6] shows that the FastICA algorithm
has good quality of the extracted component. Recently, a new
contrast function [14] for ICA can avoid the permutation
ambiguity and has better separation quality than that of the
conventional ICAs. The RobustICA algorithm [15] shows bet-
ter extraction quality than FastICA by iteratively maximizing
the Kurtosis contrast function with algebraic optimal step size,
and has efficient computational cost required to reach a given
source extraction quality. Beyond the scope of this paper, some
non-ICA-based BSS methods [16], [17] are used to extract
one global signal [16] and to separate dependent sources [17].
However, the above literatures do not focus on ICA hardware
implementation.

In terms of implementations, a nice survey using very large-
scale integration (VLSI) approaches has been described in
[18]. Although some ICAs are implemented by analog [19],
[20] or mixed-signal [21] approaches, these approaches either
cost much deign time or mostly not exhibit the same behavior
as they do in the ideal simulation. Thus, field programmable
gate array (FPGA) and application specific integrated circuit
(ASIC) design methodology will be a promising approach.
Several FPGA implementations of the ICA algorithm have
been proposed in the literature. Kim et al. [22] proposed the
FPGA implementation of the ICA algorithm constructed by the
adaptive noise canceling (ANC) module for 2-channel BSS.
The power dissipation of the 2-channel ANC module is
98.8 mW at 12.288 MHz and 1.8 V in FPGA. Du et al.
[23] proposed the parallel ICA (pICA) algorithm and the
corresponding FPGA implementation on a pilchard board. The
parallel ICA based on FastICA divides the process into several
sub-processes to achieve the single program multiple data
parallelism. In [24], Du et al. proposed the corresponding
pICA ASIC deign with four weight vectors. Charoensak
et al. [25] provided an FPGA design of the ICA-based
BSS. This FPGA implementation is translated from the
high-level language in MATLAB into the hardware descrip-
tion language. However, the translated code from the high
level language usually cannot lead to an optimized register-
transfer-level code and the corresponding hardware perfor-
mance may become worse. A pipelined FastICA design
[26] adopts the floating-point arithmetic unit to increase
the precision. An INFOMAX ICA design in FPGA for
the four-channel EEG signal separation [27] uses the fixed-
point arithmetic; however, the resulting BSS quality can be
improved.

1045–9227/$26.00 © 2011 IEEE
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Since BCI with ICA computation is demanded to control an
external device on-line and to monitor the biomedical signals,
the low computation time is desired. On the other hand, due
to the energy limitation of a portable device, the low-energy
system is expected. In order to support the portable demand
and achieve the on-line feedback, a low-energy and low-
computation-time ICA implementation is required. However,
the existing FPGA-based ICA implementations either con-
sume huge power or have high area cost/computational time.
Thus, one energy-efficient cost-effective low-computation-time
FastICA chip which is suitable to be embedded in a portable
device with satisfactory BSS quality of the mixed signals
or the EEG component is desired. Note that, in this paper,
the BSS quality of the hardware implementation is evaluated
by the absolute correlation coefficient of the mixed signals
or the EEG component compared with simulation results in
MATLAB. The originality of the target design is described in
the following.

1) To our best knowledge, the proposed energy-efficient,
low-area and low-computation-time eight-channel
FastICA architecture and chip layout implementation
with satisfactory BSS quality should be the first one
for EEG signal separation.

The originality of the proposed architectures is summarized as
follows.

1) The early determination scheme and the corresponding
architecture are proposed to save the energy.

2) The low-area preprocessing unit architecture using
one CORDIC-based eigenvalue decomposition (EVD)
processor is proposed in the preprocessing part.

3) The low-area one-unit architecture using the hardware
reused scheme is proposed in the fixed-point iteration
part.

In addition, the four parallel one-units architecture is used to
lower the computation time. Note that the four parallel one-
units architecture is different from that of [23] and [24] due to
the proposed low-area one-unit architecture. As a result, the
proposed energy-efficient eight-channel FastICA architecture
consumes 16.35 mW at 100 MHz with the core size of 1.221 ×
1.218 mm2 in united microelectronics corporation (UMC)
90 nm CMOS process. The maximum computation time of
the FastICA implementation is 0.29 s. Compared with the
reference design without using the early determination scheme,
the energy reduction by 39.06% and 47.63% of mixed signals
and EEG signals, respectively, can be attained.

This paper is organized as follows. A brief review of the
FastICA algorithm is described in Section II. In Section III,
the low-energy, area-cost-effective and low-computation-time
VLSI architecture of the FastICA algorithm is proposed. In
Section IV, we show the software simulation results and
corresponding post-layout simulation results for the validity
of the FastICA implementation. Finally, the conclusion is
remarked in the last section.

II. BACKGROUND OF THE FASTICA ALGORITHM

A BSS system with n blind source signals is defined as

X = AS (1)

where A is an n by n mixing matrix. X and S are expressed
in (2) and (3), respectively

X = [x1 x2 . . . xn]T (2)

S = [s1 s2 . . . sn]T (3)

where X is a matrix with n observed mixed signal vectors,
and S is a matrix with n blind source signal vectors that
are statistically independent and no more than one signal is
Gaussian distributed. xm and sm are expressed in (4) and (5),
respectively

xm = [xm(1) xm(2) . . . xm(i)]T, for m = 1, 2, 3, . . . , n

(4)

sm = [sm(1) sm(2) . . . sm(i)]T, for m = 1, 2, 3, . . . , n

(5)

where xm(i) and sm(i) denote a mixed signal and a source
signal at a discrete time i , respectively. The goal of the ICA is
to recover the source signal S. In order to achieve the purpose,
the ICA algorithm estimates the matrix A by observing the
matrix X and computes the weight matrix WT that is equal to
the inverse of matrix A. Subsequently, the blind source signal
S can be obtained by the ICA unmixing model as described
below

S = WT X (6)

where

W =

⎡
⎢⎢⎢⎣

w11
w21
...

wn1

w12
w22
...

wn2

· · ·
w1n

w2n
...

wnn

⎤
⎥⎥⎥⎦ .

In order to estimate one of the independent components, a
linear combination wT X needs to be considered, where w is
a column vector of the matrix W. In other words, one of the
independent components can be obtained by maximizing the
non-Gaussianity of wT X. The FastICA algorithm proposed
by Hyvärinen-Oja in [2] and [8]–[11] can successfully extract
a wide class of non-Gaussian source signals. The FastICA
algorithm consists of two steps. One is the preprocessing step
and the other is the fixed-point algorithm.1 The corresponding
descriptions of the steps are stated as follows.

A. Preprocessing of FastICA

The aim of the preprocessing is to center and whiten the
mixed signals. That means the mixed signals with zero mean
and unit variance can be obtained through this preprocessing.
The centering expression of the preprocessing part can be
written as follows:

x̄m(i) = xm(i) − E{xm}, for m = 1, 2, 3, . . . , n (7)

where x̄m(i) and E{xm} denote the mixed signal with zero
mean and expected value of the random variable xm(i) of
xm , respectively. After subtracting the mean value, x̄ is a

1The fixed-point algorithm is named in [2] and [9].
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zero-mean vector. Due to the number of n random vec-
tors (i.e., x1, x2, x3, …, xn), the centering matrix can be
expressed as below

X̄ =

⎡
⎢⎢⎢⎣

x̄T
1

x̄T
2
...

x̄T
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x̄1(1) x̄1(2) · · · x̄1(i)
x̄2(1) x̄2(2) · · · x̄2(i)

...
... · · · ...

x̄n(1) x̄n(2) · · · x̄n(i)

⎤
⎥⎥⎥⎦ . (8)

The EVD can be used to decompose the covariance matrix of
X̄ and the corresponding operation is expressed as below

CX = E
{

X̄ X̄T
}

= EDET (9)

where E consisting of eigenvectors denotes the orthogonal
matrix of CX and D in (10) represents the diagonal matrix
of CX

D = diag(d1, d2, . . . , dn) (10)

where d1, d2, . . ., dn denote the eigenvalues of CX. The
whitening process of X̄ is expressed below

Z = D− 1
2 ET X̄ = PX̄ (11)

where P equals D−1/2ET and denotes the whitening matrix of
X̄. The centered matrix X̄ is linearly transformed to a matrix
Z such that the covariance matrix of Z equals the identity
matrix. That means the matrix Z is uncorrelated, where the
corresponding proof is released in [26].

B. Fixed-Point Algorithm

In Section II-A, the preprocessing part including center-
ing and whitening has been illustrated. Next, the fixed-point
algorithm is required for the weight training. Herein, the one-
unit operation [2] of the fixed-point algorithm for the FastICA
algorithm is discussed. One-unit operation can be regarded to
update an artificial neuron with a weight vector w by a learning
rule. In [2], non-Gaussianity is measured by the approximation
of negentropy J (wT X) as shown below

J (y) ∝ [E{G(y)} − E{G(ν)}]2 (12)

where G is a non-quadratic function and is defined as follows:
G(u) = 1

a
log cosh(au) (13)

where a denotes a constant parameter. The FastICA algorithm
based on the fixed-point iteration scheme is to find the
maximum of the non-Gaussianity of wT X as measured by
negentropy. The unit vector w is substituted into the projection
wT X such that the negentropy is maximized. The fixed-point
iteration operations [2], [9] of the FastICA algorithm using an
approximate negentropy and Newton iteration are addressed
as follows.

Step 1: Choose an initial (e.g., random) vector w with unit
norm.

Step 2: Calculate w+ = E{Z[g(wT Z)]T } − E{g′(wT Z)}w.
Step 3: Calculate w = w+/

∥∥w+∥∥.
Step 4: If not converged, go back to Step 2

where g is the derivative of the non-quadratic function G.
When the old and new vectors w are in the same direction, the

learning converges and the absolute dot-product value of two
vectors is close to 1. To avoid different vectors converging to
the same maxima, the vectors {w1, w2, . . ., wn} are needed to
orthogonalize before each iteration. The deflation scheme [2],
[9] is a simple way to orthogonalize the weight vectors since
the deflation scheme estimates each independent component
one by one at each iteration step based on Gram–Schmidt
orthonormalization. Gram–Schmidt orthonormalization for the
(k+1)-th component as expressed below

w+
k+1 = wk+1 −

k∑
j=1

(wT
k+1w j )w j (14)

wk+1 = w+
k+1∥∥w+
k+1

∥∥ (15)

where a new weight vector wk+1 is obtained by subtracting
the vector projected from the old weight vector. We perform
the fixed-point algorithm for wk+1 such that k independent
components or k vectors including {w1, w2,…,wk} are esti-
mated and wk+1 is orthogonalized with other vectors in (14)
at each iteration.

C. Fixed-Point Algorithm with Loop Unrolling

In Section II-B, the independent components are estimated
one by one using the deflation approach. Assume the num-
ber of channels, n, is a multiple of four, and W = [w1
w2w3. . .wn−1 wn], where wi , for i = 1, 2, 3, . . . , n, denotes
the column vector. In order to reduce the computation time,
the loop for the one-unit operation can be unrolled by four
such that the independent components are estimated in parallel
[10]. Thus, the fixed-point algorithm with unrolling the loop of
the one-unit operation by four for n channels is addressed as
follows.

Step 1: Set initial n vectors with unit norm (i.e., wi for
i = 1, 2, 3, . . ., n), and j = 0.

Step 2: Unroll the loop for the one-unit processing by four
at the j -th loop

w+
4 j+1 = E{Z[g(wT

4 j+1Z)]T } − E{g′(wT
4 j+1Z)}w4 j+1

w+
4 j+2 = E{Z[g(wT

4 j+2Z)]T } − E{g′(wT
4 j+2Z)}w4 j+2

w+
4 j+3 = E{Z[g(wT

4 j+3Z)]T } − E{g′(wT
4 j+3Z)}w4 j+3

w+
4 j+4 = E{Z[g(wT

4 j+4Z)]T } − E{g′(wT
4 j+4Z)}w4 j+4.

Step 3: If j = (n/4) − 1, go to Step 4. Otherwise, increase
j by one and go back to Step 2.

Step 4: W is processed sequentially by Gram–Schmidt
orthonormalization.

Step 5: If satisfying the convergence threshold or reaching
the maximum iteration, the fixed-point algorithm process is
terminated. Otherwise, go back to Step 2 with resetting j = 0.
When four one-unit processes are computed in parallel, the
number of iterations for n weight vectors estimation can be
reduced to n/4 times due to Step 2 process. In Step 5, the
convergence threshold is a predetermined value and is used to



1812 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

Centering
unit

EVD
controller

CORDIC
engine

Data
memory

OWMM

Preprocessing unit

One unit

Four parallel one-units

EVD processor

Mixed-Signal/
EEG signal

Separated
signal

NWMM

Convergence
checking unit

Separated data
generator

Covariance
calculation unit

Whitened data
geneartor

Early
determination

unit

Controller

Two times

Fixed-point iteration unit using

Four parallel one-units processing

Gram-Schmidt
ortho normalization

unit
One unit

One unit

One unit

Fig. 1. System diagram of the proposed eight-channel FastICA architecture.

compare with the sum of absolute dot-products (SAD). The
function of the SAD value is defined as

S AD =
n∑

i=1

abs(wT
i w+

i ) (16)

where abs denotes an absolute operator and each dot-product
value is obtained by calculating the inner product of an old
weight vector and a new weight vector. At each iteration, the
matrix W is substituted into the projection W

T
X such that

the negentropy is maximized. Finally, the maximum of the
non-Gaussianity of W

T
X can be estimated when achieving

the convergence.

III. ENERGY-EFFICIENT AND COST-EFFECTIVE FASTICA
ARCHITECTURE

In this section, an energy-efficient cost-effective eight-
channel FastICA architecture as shown in Fig. 1 is designed for
mixed signal and EEG signal separation, where the gray-line
arrows represent the main block control precedence and the
black-line arrows denote the data flow. The proposed FastICA
architecture consists of two parts: the preprocessing unit and
the fixed-point iteration unit using four parallel one-units.
According to the algorithm, the preprocessing unit and the
fixed-point iteration unit are operated sequentially such that
the same data memory can be shared. On the other hand, two
matrix memories are required for the fixed-point algorithm.
One is to store an old weight matrix and another is to keep
a new weight matrix. Without loss of generality, we use eight
channels and 256 samples per channel to demonstrate the oper-
ations of the proposed energy-efficient FastICA architecture
as shown in Fig. 1. First, the input data are stored in the data
memory. Second, data are fetched from the data memory to
perform centering through the centering unit and the processed
data are written back to the data memory. Third, data are
fetched from the data memory to calculate covariance through
the covariance calculation unit and the treated data are sent to
the EVD processor to calculate the eigenvalue and eigenvector.
Fourth, the whitened data produced by the whitened data
generator are written back to the data memory. Thus, the
preprocessing process is completed. Next, data fetched from
the data memory and the old weight matrix memory (OWMM)

1
D−1/2

P +
Z

×

× ×

+ R
E
G

+Data
memory

REG
D

D−1/2ET PX

CX � EDET

C
X

x(i) − E{x}

x(i)

Block 1

Block 2

Block 3 Block 4

R
E
G

R
E
G

R
E
G

R
E
G

REG
E

>>8

>>8

Fixed-to-
floating

converter 1 EVD
processor

R
E
G

R
E
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Fixed-to-
floating

converter 2

E{x} x(i)

x(i)

x(i)

x(i)

E{XX }
T

−

Fig. 2. Block diagram of the proposed preprocessing unit.

are fed to the four parallel one-units to perform four one-
unit operations by two loops/times. Through Gram–Schmidt
orthonormalization unit, the resulting data are written back
to the new weight matrix memory (NWMM). Through the
convergence checking unit, the convergence can be detected.
On satisfying the convergence threshold or reaching the max-
imum iteration, the fixed-point iteration process is terminated.
Otherwise, the early determination unit determines whether
the difference between an old SAD value and a new SAD
value is small enough. If the difference value is small enough,
the iteration process can be terminated for saving energy
consumption. Otherwise, go back to the four parallel one-
units. Finally, the separated signals are obtained and written
back to the data memory. Thus, the FastICA training is
finished.

A. Implementation of the High-Dimensional and Low-Area
Preprocessing Unit

In the preprocessing unit, the proposed architecture is
divided into four blocks and one EVD processor as shown
in Fig. 2. Since EEG signals captured by sensors are digitized
via an analog-to-digital converter, the inputs of the BSS
system are fixed-point EEG signals. In order to increase the
computational accuracy, the floating-point operation is adopted
after the centering and covariance operations. Thus, a fixed-
point operation is performed in the gray computation elements
of Block 1 and Block 2. The EVD processor is implemented by
one CORDIC engine. Block 3 and Block 4 perform floating-
point operation. The detailed operations of each block are
described in the following.

1) Centering: Centering is to force signals with zero mean.
The centering operation in (7) can be recast as follows:

x̄(i) = x(i) − E{x} = x(i) −
(∑256

j=1 x( j)

256

)

= x(i) −
⎛
⎝

256∑
j=1

x( j)

⎞
⎠ >> 8 (17)



VAN et al.: ENERGY-EFFICIENT FASTICA IMPLEMENTATION 1813

18-bit integer

s
L

e
L

f
L

1 8 23

18
Fixed-point representation

Floating-point representation

24-bit integer

s
L

e
L

f
L

1 8 23

24
Fixed-point representation

Floating-point representation

(b)(a)

Fig. 3. Illustration of (a) fixed-to-floating converter 1 and (b) fixed-to-floating
converter 2.

where i = 1, 2, . . ., 256 and >>8 denotes a right-shifted
eight-bit operator. The term on the right hand side in (17)
can be realized in Block 1 of Fig. 2. Note that the input
bit width of x(i) and output bit width of x̄(i) are 12 and
18 bits, respectively, in Block 1 of the preprocessing unit.
The detailed operations are described in the following. The
input signals are stored in the one-port data memory. Data
are read sequentially from the data memory, and the elements
of x are accumulated one by one and channel by channel.
After accumulating 256 element values of one channel, a right-
shifted eight-bit operation is utilized instead of division to
obtain the mean of the mixed signals for each channel. The
next step is to read the same mixed signals again from the
data memory and subtract the mean of each channel. After
the results are written back to the data memory, the centering
operation is finished.

2) Whitening: The main task of the preprocessing unit is
to whiten the mixed signals. The first step is to calculate the
covariance matrix of X̄ in Block 2 of Fig. 2, where X̄ and the
corresponding covariance matrix are defined in (8) and (18),
respectively

CX = E{X̄ X̄T } = 1

256

⎡
⎢⎢⎢⎣

x̄T
1 x̄1 x̄T

1 x̄2 . . . x̄T
1 x̄8

x̄T
2 x̄1 x̄T

2 x̄2 . . . x̄T
2 x̄8

...
... . . .

...

x̄T
8 x̄1 x̄T

8 x̄2 . . . x̄T
8 x̄8

⎤
⎥⎥⎥⎦ . (18)

The covariance matrix of mixed signals is a real symmetric
matrix due to the results of x̄T

1 · x̄2 = x̄T
2 · x̄1, x̄T

1 · x̄3 =
x̄T

3 · x̄1 and so forth. Thus, only 36 elements are needed to
be calculated. A multiplier and one accumulator are used to
calculate all elements of CX. Since one-port data memory is
used, only one data can be obtained at one time. Thus, two
data streams are retrieved from memory after three cycles and
then to perform the multiplication. After 256 multiplications
and accumulations, the right-shifted eight-bit can achieve the
division of 256. In order to satisfy the more accurate require-
ment of EEG signal processing, the matrix CX is transformed
from the fixed-point number representation into the floating-
point number representation to ensure data to approach the
whitened data. In the fixed-to-floating converter, the fixed-
point number Lfixed adopts an 18- or 24-bit integer format and
the floating-point number Lfloat adopts the IEEE-754 single-
precision format as shown in Fig. 3, where sL , eL , and fL

denote a sign bit, an 8-bit biased exponent and a 23-bit fraction
part of a mantissa, respectively. The value of a normalized
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Fig. 4. EVD Processor using one CORDIC engine.

number Lfloat can be expressed as

Lfloat = (−1)sL × (1. fL) × 2eL−127. (19)

The next step is to calculate the eigenvalue and eigenvector
of CX in (9). A special solution for obtaining eigenvalues and
eigenvectors of a 2 × 2 matrix is used in previous literature
[26]. This preprocessing method is not easily applicable to
an n × n matrix for n > 2. In order to implement the high-
dimensional EVD processor in the preprocessing part, the
cyclic Jacobi method is adopted in this paper. The cyclic
Jacobi method is known as a simpler algorithm to calculate
the eigenvalue and eigenvector [28] and can be implemented
in hardware [29]–[31]. The basic principle of the cyclic Jacobi
method is described as follows. The cyclic Jacobi method
applying a sequence of Jacobi rotations Js to the right side
and the left side of the symmetric matrix B is expressed below

B′ = JT
pqBJpq (20)

where a symmetric matrix B and a Jacobi rotation J are defined
in (21) and (22), respectively

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · b1p · · · b1q · · ·
...

. . .
...

...
...

bp1 · · · bpp · · · bpq · · · bpn
...

...
. . .

...
...

bq1 · · · bqp · · · bqq · · · bqn
...

...
...

. . .
...

· · · bnp · · · bnq · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

J(p, q, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0 p
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0 q
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1
p q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

where ( p, q) denotes a position index pair whose range is
1 ≤ p < q ≤ n in the cyclic-by-row manner. This is also
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Fig. 6. Block diagram of the proposed hardware reused one-unit architecture.

called as a Jacobi sweep. The optimal rotation angle in the
(p, q) plane is derived from the following equation:

[
b′

pp 0
0 b′

qq

]

=
[

cos θ − sin θ
sin θ cos θ

] [
bpp bpq

bqp bqq

] [
cos θ sin θ

− sin θ cos θ

]
.

(23)

Since bpq = bqp, the optimal rotation angle can be expressed
as [30]

θopt = 1

2
tan−1 2bpq

bqq − bpp
. (24)

In general, a symmetric matrix B can be transformed into a
diagonal matrix D by a series of Jacobi rotations. That means
the off-diagonal elements will approximate to zero by a series
of Jacobi rotations. For n = 8, diagonal matrices D and E can
be expressed in (25) and (26), respectively

D = ET BE (25)

E = J12J13 . . . J18J23 . . . J28J34 . . . J78 (26)

where each Jacobi rotation matrix J is recorded by the matrix
E in (26). The initial value of the matrix B is the covariance
matrix of CX, and the initial value of the matrix E is the
identity matrix I.
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The CORDIC algorithm that performs iterative operations
with shift-and-add behavior for vector rotations by arbitrary
angles [29], [30] is used to implement the cyclic Jacobi
method. The CORDIC algorithm is operated in two modes
including the vectoring mode and the rotation mode. In
this paper, two modes for vectoring and rotation are imple-
mented in one CORDIC engine to reduce hardware cost.
One CORDIC-engine-based EVD processor architecture as
shown in Fig. 4 adopts the floating-point operation, where the
controller is used to determine which mode can be executed.
The CORDIC engine in the vectoring mode can obtain zr =
z0+tan−1(y0/x0) for inputs x0, y0 and z0 [31] with r CORDIC
iterations. In order to obtain the optimal angle in the ( p, q)
plane, bqq −bpp feeds to x0, 2bpq which is obtained by adding
one for the exponential term feeds to y0, and an initial value
zero feeds to z0 in Fig. 4. After r CORDIC iterations in
the vectoring mode, the CORDIC engine outputs zr and then
subtracts one from the exponential term of zr to obtain the
optimal angle in (24) that stored at the register θ . Thus, (24)
is realized by shift-and-add operation and arctan table without
the dedicated division and arctan computation hardware. In
other words, the vectoring mode is used to generate the
optimal angle in (24). Next, the corresponding vectors are
rotated in the rotation mode with the optimal angle and are
saved at the register D. Register E is operated in a similar
behavior. Registers D and E are used to store eigenvalues
and eigenvectors, respectively. Since the covariance matrix is
a symmetric matrix, some rotation results are the same in the
plane, e.g., JT [ bp1 bq1 ]T J equals JT [ b1p b1q ]T J. Thus, only
two vectors [ bpp bqp ]T and [ bpq bqq ]T are needed to rotate
in the second rotations [30]. We also need to take down the
accumulative records of all orthonormal transforms to obtain
matrix E by (26). After eight Jacobi sweeps, the eigenvalue
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Fig. 9. Separation results of 12-bit 8-channel EEG signals with one second window size at 1000, 512, 256, 128, 64 and 32 Hz sample rates.

and eigenvector are obtained. The matrix P is obtained by
multiplying D−1/2 and ET in Block 3 of Fig. 2, where we
apply an inverse square root structure [32] to implement
D−1/2. In [32, Fig. 3], the inverse square-root structure applies
an initial approximation and a modified Newton-Raphson
iteration, where the former one uses a lookup table, operand
modification and multiplication, and the latter one consists
of one square unit, one multiplier-complement unit and one
multiplier-add operation unit. Converting X̄ into the floating-

point representation and multiplying the matrix P is to obtain
the whitened signal in Block 4 of Fig. 2. Finally, the whitened
data in the floating-point number representation are stored at
the data memory after preprocessing.

The accuracy of eigenvalue and eigenvector of the CORDIC
algorithm can be evaluated by the number of CORDIC iter-
ations and Jacobi sweeps. In Fig. 5, when the numbers of
CORDIC iterations and Jacobi sweeps are greater than 10
and 4, respectively, we find that the BSS quality evaluated
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TABLE I

HIGH ACCURACY PIECEWISE LINEAR FUNCTION APPROXIMATION FOR

HYPERBOLIC TANGENT

x a b RMSE

|x| ≥ 7 0 1 × sign(x) 9.924 × 10−8

3 ≤ |x| < 7 0.0006965 0.9959 × sign(x) 7.079 × 10−4

2 ≤ |x| < 3 0.02922 0.9113 × sign(x) 2.113 × 10−3

1.5 ≤ |x| < 2 0.1162 0.7358 × sign(x) 2.024 × 10−3

1 ≤ |x| < 1.5 0.2844 0.4878 × sign(x) 4.45 × 10−3

0.5 ≤ |x| < 1 0.598 0.1788 × sign(x) 6.959 × 10−3

0 ≤ |x| < 0.5 0.9533 0 5.661 × 10−3

by the sum of absolute correlation coefficients can be more
promising for mixed signals. That means more accuracy of the
FastICA algorithm can be achieved. The absolute correlation
coefficients can be obtained between the output values of
the FastICA algorithm in different CORDIC iterations/Jacobi
sweeps and output values of the deflation FastICA algorithm in
MATLAB. In order to increase reliability, in our experiment,
the numbers of CORDIC iterations and Jacobi sweeps are set
to 18 and 8, respectively.

B. Implementation of the Low-Area One-Unit Processing Unit

Considering eight channels and 256 samples per chan-
nel, the one-unit processing equation can be recast in the
following:

w+ = E
{

Z[g(wT Z)]T
}

− E
{

g′(wT Z)
}

w

= E
{

Z[tanh(wT Z)]T
}

−
256∑
i=1

{
1 − tanh2(wT zi )

256

}
w

= E
{

Z[tanh(wT Z)]T
}

−
{

256 − ∑256
i=1 tanh2(wT zi )

256

}
w

(27)
where zi is the i -th column vector of the matrix Z. A low-
area one-unit architecture using the hardware reusing scheme
is shown in Fig. 6, where the reused operations are addressed
as follows.

Step 1: Calculate one element of the vector wT Z and save
the element at the register R1, where one element equals wT zi .

Step 2: Calculate one element of the vector tanh(wT Z) and
save the element at the register R2, where one element equals
tanh(wT zi ).

Step 3: Calculate one element of the vector Z[tanh(wT Z)]T

and save the element at the register R3
Step 4: Calculate the value of

∑256
i=1 tanh2(wT zi ) and save

the value at the register R4.
Step 5: Calculate the value of 256−∑256

i=1 tanh2(wT zi ) and
save the value at the register R5.

Step 6: Calculate one element of the vector w+ and save
the element at the output register.

Step 7: Repeat Step 1–Step 6 until eight elements of the
vector w+are obtained.
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Fig. 10. Eight-channel mixed signals generated by MATLAB.

In the proposed hardware reuse architecture as shown in
Fig. 6, the data memory has two access types for read
operation. One is read in row scan and another is read in
column scan for the matrix Z. In Step 1, one element of the
vector wT Z is calculated, where the whitened data Z are read
in column scan from the data memory. Then, the element is
saved to the register R1. In Step 2, the value of the register
R1 is retrieved to calculate the hyperbolic tangent of that,
and the result is saved to the register R2. In [33], only nine-
piecewise linear function approximation is adopted such that
the accuracy is not enough to our work. In order to achieve
high accuracy, the 13-piecewise linear function approximation
is adopted to calculate the hyperbolic tangent. The hyperbolic
tangent is expressed as follows:

tanh x ≈ ax + b (28)

where x , a, and b denote an input variable and two parameters,
respectively. The range of x and the values of a and b are listed
in Table I, where the first six ranges represent 12-piecewise
linear function approximations due to the symmetry. At the
worst case, the root mean square error (RMSE) can be attained
in the order of 10−3. In Step 3, the value of the register R2 is
retrieved and the whitened data Z are read in row scan from the
memory, after 256 iterative accumulations, one element of the
vector Z[tanh(wT Z)]T is obtained and saved to the register R3.
In order to simplify the computation, we do not really compute
E{g′(wT Z)} = {∑256

i=1 [1 − tanh2(wT zi )]/256}. In Step 4,
corresponding to the register R2, the value of tanh2(wT zi ) is
accumulated by 256 iterations and saved to the register R4.
Thus,

∑256
i=1 tanh2(wT zi ) is obtained. In Step 5, the result

of 256 minus the value of the register R4 is saved to the
register R5. In Step 6, the resulting value of one element
of Z[tanh(wT Z)]T at the register R3 minus the element of
[256 − ∑256

i=1 tanh2(wT zi )]w is stored at the output register.
Division by 256 is not necessary in Step 6 because the
expectation will not affect the normalization value. Repeat
Step 1∼Step 6 until eight elements of the vector w+ are
obtained. Thus, the one-unit processing is finished.
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Fig. 11. Comparison results of (a) deflation FastICA and (b) FastICA using four parallel one-units by MATLAB simulation for mixed signals.
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Fig. 12. Eight-channel EEG signals.

C. Implementation of the Early Determination Unit and Analy-
sis of the Data Memory Size

From the simulation analysis as shown in Fig. 7, four time-
slots EEG signals denote four eight-channel EEG signals that
captured at different times. Among four time slots, before
achieving the convergence or maximum iteration number, it
can be observed that the SAD values are nearly the same
in several adjacent iterations. That means the direction of
the new weight vector is close to that of the old vector.
Thus, we can set up one constraint to early terminate the
iteration to save computation. In our experiment, the maximum
iteration number is set to 300. Similarly, for some converged
signals such as EEG signals at time slot 4 in Fig. 7, the
SAD values have this consumption behavior before attaining
the convergence. Thus, the early determination scheme and
the corresponding low-cost architecture in Fig. 8 for energy
saving are motivated to develop. The early determination
unit is enabled when the process does not converge after
the convergence checking unit. In the early determination
unit, when the difference value 2 (DV2) between an old
SAD value and a new SAD value is less than the difference
value 1 (DV1) that is obtained by 0.001 × (input convergence
threshold), the control flow is determined to go to the separated
data generator unit to obtain the separated results. Otherwise
(i.e., DV2 is larger than or equal to DV1), the control flow

TABLE II

CHIP SPECIFICAITON SUMMARY OF THE PROPOSED FASTICA

Process Technology UMC 90 nm 1P9M CMOS process

Power Supply 1.0 V

Max. Operating Frequency 100 MHz

Memory

Data Memory 2048 × 32 single-port SRAM

OWMM 64 × 32 single-port SRAM

NWMM 64 × 32 dual-port SRAM

CoreSize 1.221 × 1.218 mm2

Gate Count 272 K*

Core Power Consumption 16.35 mW@1.0 V

No. of Channels 8

Max Computation Time 0.29 s

* The number is counted by the size of two-input NAND gate.

goes back to the four parallel one-units to train W again.
In Fig. 8, since the early determination unit only consists
of one multiplier, one subtractor, and one comparator, the
unit is cost effective with the slightly hardware overhead.
Thus, the proposed early determination unit not only signif-
icantly saves energy as shown in Section IV but also shows
cost-effective.

The energy-efficient FastICA architecture is designed for
eight-channel BSS. Due to low area cost, low energy and
satisfactory BSS quality requirement, the data memory size
of the input data length will be constrained. Fig. 9 shows
the separation results of 12-bit 8-channel EEG signals with
one second window size at sample rates of 1000, 512,
256, 128, 64, and 32 Hz using four parallel one-units
FastICA. From Fig. 9, the left finger movement component
in dotted rectangular box can be observed at each sample
rate. In order to increase reliability, in our experiment, the
sample rate of EEG signals is set to 256 Hz. Thus, the
data memory size with 256 ×8 × 32 = 65 536 bits can
achieve low area cost and satisfactory BSS results in the
proposed architecture. Note that the output data in the 32-bit
floating-point format is also stored in the data memory.
The other detailed environment setting will be addressed in
Section IV-A.
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Fig. 13. Comparison results of (a) deflation FastICA and (b) FastICA using four parallel one-units by MATLAB simulation for eight-channel EEG signals.
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Fig. 14. Comparison results of FastICA using four parallel one-units by (a) MATLAB and (b) post layout simulation without the early determination scheme
for mixed signals.
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Fig. 15. Comparison results of FastICA using four parallel one-units by (a) MATLAB and (b) post layout simulation with the early determination scheme
for mixed signals.

In summary, the EVD processor with floating-point oper-
ation, sufficient number of CORDIC iterations and Jacobi
sweeps, 13-piecewise linear function approximation, and suit-
able data memory size can support high accurate FastICA such
that the satisfactory BSS quality can be attained. Most impor-
tantly, the energy-efficient, cost-effective, low-computation-
time FastICA implementation is achieved by the following
architectures: 1) the early determination scheme and the
corresponding architecture; 2) the proposed preprocessing unit

architecture with one CORDIC-based EVD processor and
the proposed one-unit architecture with the hardware reuse
scheme; and 3) the four parallel one-units architecture.

IV. IMPLEMENTATION AND COMPARISON RESULTS

In this section, the software simulation is illustrated
to verify the algorithm and the post-layout simulation is
explained to verify the proposed architecture and schemes.
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Fig. 16. Comparison results of FastICA using four parallel one-units by (a) MATLAB and (b) post layout simulation without the early determination scheme
for eight-channel EEG signals.
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Fig. 17. Comparison results of FastICA using four parallel one-units by (a) MATLAB and (b) post layout simulation with the early determination scheme
for eight-channel EEG signals.

The comprehensive evaluation and comparison results are
addressed in this section.

A. Software Simulation and Post-Layout Simulation

In order to ensure the BSS quality of the proposed FastICA
implementation using four parallel one-units, we compare
absolute correlation coefficients with the deflation FastICA
[34]. The inputs of eight-channel mixed signal patterns with
12-bit precision are generated by seven non-Gaussian distrib-
utions plus one Gaussian distribution in MATLAB as shown
in Fig. 10. Fig. 11(a) and (b) shows the output waveforms
via deflation FastICA and FastICA using four parallel one-
unit operations by MATLAB, respectively. The numbers in the
middle of Fig. 11 denote the absolute correlation coefficients
of the separated signals. Each absolute correlation coefficient
is obtained by calculating the absolute correlation between
deflation FastICA simulation values on the left-hand side and
FastICA simulation values using four parallel one-units on the
right-hand side of Fig. 11. Herein, the real eight-channel EEG
signals with the 12-bit precision as shown in Fig. 12 that
captured from FZ, FC3, FCZ, FC4, C3, CZ, C4, and CPZ
of the international 10–20 electrodes placement system with

256 Hz sample rate and one second window size are applied
in this experiment. Since the input EEG signals are captured
in a planned manner, a left finger movement component, to
our best knowledge, appears in the middle of the signals in
Fig. 12 and is tested in this experiment. The MATLAB output
simulation waveforms of deflation FastICA and FastICA using
four parallel one-units are shown in Fig. 13(a) and (b),
respectively. The smallest and average absolute correlations
of the left finger movement component are 0.9114 in Fig. 13
and 0.9874 among 50 separation test cases/events, respectively.
On the other hand, since we do not know whether there
exist other components in other separated channels, we do
not comment on other absolute correlation coefficients of
other channels in Fig. 13. From Figs. 11 and 13, the values
of the absolute correlation coefficient of mixed signals and
one EEG component are 0.9675 and 0.9114, respectively. In
other word, the FastICA algorithm using four parallel one-
units can approach the BSS quality of the deflation FastICA
algorithm.

In the proposed FastICA architecture, a 12-bit integer input
and 32-bit floating-point output are chosen to ensure the
performance accuracy. Fig. 14(a) and (b) shows the output
waveforms after the FastICA operation by MATLAB and
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TABLE III

COMPARISON RESULTS AMONG VARIOUS ICA IMPLEMENTATIONS

[22] [23] [24] [26] [27] This
paper

Application Speech Image Image Speech EEG EEG

Algorithm ICA pICA pICA FastICA INFOMAX FastICA

No. of Channels/Weight Vectors (WVs) 2 20 (WVs) 4 (WVs) 2 4 8

Speed (MHz) 12.288, N/A 21.829∗1 21.357∗2

35.921∗3
20.161,

N/A
50 68 100

Power Dissipation (mW) 98.8, 14.5 N/A N/A N/A N/A 16.35

High-Dimensional Preprocessing
(n > 2)

No No No No No Yes

Gates (million) 0.0114, N/A
(for ANC) N/A 0.2295,

N/A N/A 0.315 0.272

Computation Time (s) ≥60, N/A 1129.5 N/A 0.003 N/A 0.29
(Max)

Implementation Approach FPGA, ASIC FPGA FPGA,
ASIC

FPGA FPGA ASIC

*1: For Sub-matrix. *2: For External Decorrelation. *3: For Comparison.

Data
memory

Controller

OWMM

NWMM

Preprocessing
unit

Fixed-point
iteration unit

using four
parallel

one-units
processing

Fig. 18. Proposed eight-channel FastICA layout.

post-layout simulation, respectively, where the absolute
correlation coefficients are also shown in the middle.
Considering the early determination scheme, the output
waveforms and absolute correlation coefficients are shown
in Fig. 15. As we can see, the mixed signals are well
separated for each channel and the corresponding absolute
correlation coefficients are 1, 1, 1, 1, 0.9998, 0.9999, 0.9995,
and 0.9996, respectively. The simulation result indicates the
validity of the FastICA implementation using four parallel
one-units with the early determination scheme. Considering
the real eight-channel EEG signals as shown in Fig. 12, the
MATLAB and post-layout simulation waveforms, and the
corresponding absolute correlation coefficients are shown in
Fig. 16. With the early determination scheme, the output
waveforms and absolute correlation coefficients are shown
in Fig. 17. In summary, the simulation results as shown in
Figs. 14–17 show that the proposed architecture can approach
the behavior of the FastICA algorithm. For mixed signals in
Fig. 10, the absolute correlation coefficient is 0.9995 at least
with the early determination scheme. For eight-channel EEG

0
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4

Proposed work without 
early determination

Proposed work with
early determination

mJ

0
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Proposed work without
early determination

Proposed work with
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39.06%
47.63%

(a) (b)

Fig. 19. Energy evaluation results with/without the early determination
scheme for mixed signals and EEG signals. (a) Mixed signals. (b) EEG signals.

signals in Fig. 12, the absolute correlation coefficient for
the EEG component is 0.9993 with the early determination
scheme.

B. Implementation and Comparison Results

Concerning the chip implementation, the cell-based design
flow with the standard cell library in UMC 90 nm CMOS
process is adopted. A chip layout of the proposed FastICA
is shown in Fig. 18. The chip specifications of the proposed
architecture are listed in Table II.

In Fig. 19, compared with the design without early determi-
nation, the energy reduction can be achieved by 39.06% and
47.63% for the cases of the mixed signals and EEG signals,
respectively. Next, the comprehensive comparison results in
terms of the application, algorithm, number of channels/weight
vectors, speed, power dissipation, gate count, computation
time and implementation approach among the existing ICA
architectures are listed in Table III. In terms of application
and algorithm, the architectures in [22] and [26] are applied
to speech processing. The former one [22] applies the ICA
algorithm and the latter one [26] uses the FastICA algorithm.
Both architectures implemented by FPGA are capable of
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processing two-channel speech signals and operating at 12.288
and 50 MHz, respectively. The power dissipation of the design
in [22] is 98.8 mW in FPGA approach. The architecture [23]
based on pICA has speeds of 21.829, 21.357, and 35.921
MHz for submatrix group, external decorrelation group and
comparison group, respectively, in FPGA and can be applied
to hyperspectral image analysis. The architecture [27] based
on INFOMAX achieves the speed of 68 MHz in FPGA and
is capable of processing four-channel EEG signals. Here, in
Table III, the high-dimensional preprocessing means an eight-
channel preprocessing unit is provided. In [26], 2-D closed-
form solution is adopted to calculate eigenvalues in the pre-
processing part; however, this closed form solution may not be
easily applied to the high-dimensional preprocessing system.
The proposed FastICA architecture is applicable to the high-
dimensional preprocessing system due to the CORDIC-based
EVD processor. Considering the gate count per channel/weight
vector, the proposed FastICA implementation has lower gate
count compared with the works in [24] and [27]. In terms
of the computation time, the proposed FastICA has less com-
putation time than the works in [22] and [23]. The maximum
computation time in this paper is obtained when the maximum
iteration number is reached. When the chip operates at 100
MHz, the maximum computation time is about 0.29 s which
is less than one second window size. Thus, the resulting chip
implementation of the proposed architecture has enough speed
for real-time processing. From the simulation, implementation
and comparison results, to our best knowledge, we should
be the first one to present the energy-efficient, low-cost and
low-computation-time eight-channel FastICA architecture and
implementation with satisfactory BSS quality for EEG signal
separation via a digital ASIC approach.

V. CONCLUSION

In this paper, we have presented the energy-efficient, low-
cost and low-computation-time FastICA architecture and chip
layout implementation with satisfactory BSS quality for eight-
channel EEG separation. The applied schemes include the
early determination scheme for energy saving, the CORDIC
reuse scheme for the high-dimensional and low-area EVD
processor, hardware reuse scheme for the low-area one-unit
architecture, four parallel one-units for low computation time,
and the high-accuracy piecewise linear function approximation
for hyperbolic tangent computation in one-unit operation. With
such performance, the proposed design has the potential to be
embedded in the portable biomedical systems.
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