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Abstract—Inter-vehicle communication is being developed con-
tinuously in order to accomplish a better driving experience.
Through the exchange of information between vehicles and
Road Side Unit (RSU), number of accidents can be reduced
by notifying the driver through the facts obtained. In general,
broadcast information for vehicles is sent in an ad hoc manner.
However, unfiltered information may be useless and wasted
for most vehicles. Thus, a raised question is whether precise
information can be delivered only to the target vehicles without
interfering with other non-target vehicles. A computer vision
(CV) and sensor fusion-based transmission system are exchanged
by RSU and Vehicle On-board Unit (OBU) is developed to
attain this objective. In order to correctly transmit the specific
information to the target vehicles, we propose a data fusion
driven lane-level precision data transmission system that utilizes
three kinds of sensory inputs: Road Side Camera (RSC), GPS,
and magnetometer. By combining common features from these
sensory inputs, our system is able to select the receiver of specific
information on the road. Our system focuses on the scenario
where a message can be transmitted to the target vehicles located
in a certain lane. The experimental evaluation shows a recognition
rate of 87.34% and the generated messages have a total delay
less than 72 ms.

Index Terms—alert message, data fusion, inter-vehicle-
communication, V2X communication

I. INTRODUCTION

The impressive growth of Internet of Things (IoT) has an

impact on the smart city that consists of robust infrastructure,

intelligent data communication, and system control [1], [2]. To

establish a more digital and connected society, the availability

of Intelligent Transport System (ITS) becomes vital [3]. ITS

aims to improve the traffic efficiency, decrease traffic conges-

tion, and enhance driver’s experience. Since 5G provides faster

network connection and lower latency, ITS can enable an inter-

vehicle communication which allows the driver to be more

aware of their surroundings. Therefore, it can also enhance a

safe and improved driving system.

Inter-vehicle communications such as V2V/V2X allow vehi-

cles to communicate with the neighbor vehicles and the RSU

in an ad hoc manner [4], [5]. The interchange information

usually consists of vehicle’s status such as speed, location and

direction of travel. These data exchanges can help to avoid a

collision by sending a warning message to alert the driver [6],

[7]. A more advanced autonomous driving system can even

stop the vehicle directly.

In this work, we conduct a scenario where the vehicles

communicate with RSU via V2X communications to get

their surrounding vehicle/road/traffic information. Although

this current information exchange system has been adequately

good, the information is frequently undelivered to the suitable

target. Combining the Computer Vision (CV) technology with

V2X communication, the proposed system can deliver road in-

formation to the target vehicles in a certain lane by integrating

the data from RSC and vehicles.

RSC is equipped with three sensors which are camera,

GPS, and magnetometer, while vehicle is equipped with a

GPS sensor. Thus, if any critical information is discovered,

this information is delivered to the target vehicle directly via

V2X communications. In addition, our proposed idea also

improves the quality of delivery critical information in terms of

positioning system. Since in this particular issue, GPS sensor’s

error rate could reach up to ten meters [8].

Fig. 1 shows the scenario where the proposed fusion model

is performed in Mobile Edge Computing (MEC) Server.

Assuming that there is pothole in the upper lane, a danger

message will be sent to the vehicles on the upper lane, while a

caution message will be sent to the surrounding vehicles (e.g.

on second lane). That means the data transmission process

should be effectively controlled up to lane level.

The technical novelties and contributions of this paper are

as follows.

Fig. 1: Lane-level data dissemination scenario.
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1) Propose a new data fusion method called lane-level preci-

sion data transmission infrastructure which combines CV

and V2X communication technology.

2) Attain an identity-awareness in V2X communication us-

ing data fusion technology.

3) Enhance the vehicle’s location precision on autonomous

vehicles, with our technique, 80% positioning accuracy

of vehicle is improved to lane level.

4) Improve a better driving experience by increasing the

accuracy of vehicle positioning and critical information

delivery in order to intensify vehicle’s safety.

The rest of this paper is organized as follows. Section

II reviews related works. Section III discusses our proposed

system model and design. Performance evaluation results are

shown in Section IV. Finally, Section V gives conclusions and

future works.

II. RELATED WORKS

A lot of works have developed V2V/V2X-assisted au-

tonomous driving applications. In [9], an autonomous decision

making system with a lane change maneuver algorithm is

proposed. The system is in charge of finding the available

lane and is able to control the vehicle to position itself in a

certain gap on the target lane. In [10], a particle filter based

on V2V communications is proposed to improve localization

results of vehicles. However, this proposed solution highly

depends on network quality; therefore, it is not suitable for

cases with unstable network conditions. References [11], [12],

[13] utilize smartphone sensors to reach lane-level localization

on highways based on driving conditions. However, these

works do not consider how to deliver critical information via

V2X communications, such as alerting drivers to avoid car

accidents, and do not consider how to apply CV to find high

level information, such as potential emergencies.

On the other hand, CV has made significant progress

recently. Convolutional neural networks [14], [15], [16] have

been proven to be successful for image recognition and

classification. As a convenient tool, You Only Look Once

(YOLO) [17], [18] is able to detect thousands of objects from

an image. A vision assisted positioning approach is proposed

in [19]. Data fusion between V2V/V2X communications and

CV for augmenting surrounding information is proposed in

[20]; the result shows an augmented reality (AR) so the driver

can visually see the driving status of its surrounding vehicles

via V2V communications. Another application of data fusion

is implemented in [21], [22] for drone views.

Despite these progresses, a lane level transmission filter is

desirable to reduce irrelevant information transmission towards

non-target vehicles. To our best knowledge, we are the first to

fuse images from RSC, GPS, and magnetometer sensors data

via V2X communications to attain lane-scale precision data

transmission. Herein, we will use CV to extract high-level

features for data fusion, lane mapping, and potential danger

events that need to be alerted to drivers.
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Fig. 2: System model of data fusion driven lane-level precision

data transmission.

III. DATA FUSION DRIVEN LANE-LEVEL

PRECISION DATA TRANSMISSION

Fig. 2 shows the proposed system model for data fusion

driven lane-level precision data transmission. A RSC continu-

ously captures videos and sensing data. The series of images

and camera orientation are sent to MEC server to be processed.

Each vehicle has an embedded on-board units (OBU) that

connects to a GPS and a C-V2X transceiver. The GPS data

are also transmitted to MEC server. In case of any critical

information is discovered, MEC server shall find out the target

vehicles by our proposed approach, and send the alert to target

vehicles.

The videos transmitted to the MEC server are processed by

YOLO [17] in order to identify the vehicles. On the other

hand, based on GPS data sent by the RSC and vehicles,

we can obtain the distances between RSC and vehicles. In

addition, based on the orientation of RSC (obtained by the

magnetometer sensor equipped on RSC), we can get the angle

values between RSC and the vehicles. The next challenge is

how to find out the target vehicles.

Assuming there are several vehicles V t = {vt1, vt2, ..., vtn}
captured by RSC. Periodically, each vti , i ∈ {1, 2, 3, ..., n}
will transmit its position to the MEC server on RSU for

processing every time t. Bt = {bt1, bt2, ..., bto} are messages

sent by the vehicles during a certain time t. Then, our proposed

approach will find out which messages are transmitted by

which vehicles, and get a set M:

M t =
{
(vti , b

t
j) | vti ∈ V t and btj ∈ Bt

}
(1)

There is a Lane Mapping module in the MEC server. This

module maps the vehicles into the certain lane l, and the lanes

L from the view of RSC can be denoted as follows:

L = {l1, l2, ..., lk} , (2)

Furthermore, a Precise Data Transmission module will find

out the target vehicles based on M t, L, and V t. Each block
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diagram in Fig. 2 is demonstrated as follows:

A. Data Pre-processing

In this block, the data from camera, GPS, and magnetometer

sensors are extracted to get the common features. In this work,

distance and angle features are considered.

1) 2D Distance and Angle Calculator Module: To identify

the vehicles in the image, we use YOLO [17]. The main

purpose of this module is to get the list of detected vehicles

in the frame and the angle between RSC to each vehicle on

the road. Assume the RSC has 35 mm as a digital camera’s

full frame format with a specific focal length [23]. Once the

image has been captured and analyzed using YOLO, vehicle’s

distance from RSC can be estimated using the height of

object by combination of the Lens equation and Magnification

Equation [24] as follows:

distvt
i
= |f × hvt

i
× z

h
′
vt
i
× hs

|, (3)

where hvt
i

represents each vehicle’s real height, f is camera

focal length, z denotes the vertical dimensions of the captured

frame, h
′
vt
i

is the height of the graphic image produced in

pixels at time t and hs is the height of camera’s sensor. As

our particular circumstances are based on the static camera’s

position, the angle is calculated by pixel position of vehicles’

bounding box. To acquire this result, we assume the RSC

orientation as the specified position of 0 degree in pixels.

Based on theorem of Pythagorean and trigonometric function,

we can calculate the angle of each vehicle towards RSC as

follows:

anglevt
i
= |arcsin(xvt

i

yvt
i

)− arcsin(
xc

yc
)|, (4)

where xvt
i

represents the length from outer corner of each

vehicle’s bounding box towards the vertical center of the

specific image, xc stands for proximity from x position of

RSC’s orientation in pixel towards the vertical center of the

image, yvt
i

represents the width acquired from top position of

each vehicle’s bounding box position towards the bottom of

the frame vertically, while yc denotes the width produced from

y position of RSC’s orientation in pixel towards the bottom of

frame vertically.

2) 3D Distance and Angle Calculator Module: From the

RSC view side in Fig. 3, RSC location is defined as locc. MEC

server will receive some messages Bt = {bt1, bt2, ..., bto} trans-

mitted from each vehicle in which each btj , j ∈ {1, 2, ..., o} is

defined as the location of the vehicle itself locbtj . Furthermore,

the distance between RSC and btj , along with the angle derived

from RSC and btj shall be derived correctly. To obtain the

distance between two GPS locations, the haversine formula

[25] can be applied as follows:

distbtj =
∣∣∣locc − locbtj

∣∣∣ (5)

In order to calculate the angle from the RSC towards vehicle,

the bearing between the RSC and the vehicle can be obtained

from the GPS receivers equipped on the RSC and the vehicle.

Therefore, it can be calculated as follows:

β = atan2(A,B), (6)

where A and B are two variables, which can be calculated as:

A = cos(Latbtj )× sin(ΔLong), (7)

B = cos(Latc)× sin(Latbtj )

−sin(Latc)× cos(Latbtj )×ΔLong,
(8)

Afterwards, it can calculate the angle from the RSC towards

a certain vehicle by differentiating between the vehicle’s bear-

ing and the RSC orientation (obtained from the magnetometer

equipped on the RSC) denoted as β and α respectively. In

our experiment, the orientation is assumed as 0 when the

magnetometer points towards the north.

anglebtj = |β − α| (9)

B. Information Classification
After performing the recognition and extracting the distance

along with angle features, the next step is how to identify

the vehicles and lane information. Subsequently, the necessary

information shall be transmitted to the target vehicle. Since

each lane may have various situations, the Information Classi-

fication block should be able to perform an accurate lane-level

information transmission.

௩೔೟ݕ௩೔೟ݔ
ݖ

௖ݔ
ℎ௩೔೟ᇱݕ௖

(a) 2D Distance and Angle Calculator Module Illustration.

ℎ௩೔೟

ℎ௩೔೟ᇱ ݖ

௕ೕ೟ܿ݋݈

௖ܿ݋݈

௕ೕ೟ݐܽܮ) (௕ೕ೟݃݊݋ܮ Location data
Alert Messages

(b) 3D Distance and Angle Calculator Module Illustration.

Fig. 3: Distance and angle calculation.
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Fig. 4: The road map in our experiment.

1) Data Fusion Module: Since we already obtained the

distance and angle values from 2D and 3D Distance and Angle

Calculator module, we shall calculate the value of weight

from each vti in V t and btj in Bt to identify and locate the

vehicle. From this calculation, a weight matrix shall be derived

and defined as wt
ij , i = 1...n, j = 1...o. Then the weight and

confidence value shall be derived and given to each pair of

(vti , b
t
j). The distance and angle weight can be calculated with

2 steps as follows:

1) Distance weight: max(Δdist) is the maximum distance

difference between the results from 2D and 3D Distance

Calculator modules.

distwt
ij
=

max(Δdist)−min

{
|distvt

i
−distbt

j
|
}

max(Δdist) (10)

2) Angle weight: max(Δangle) is the maximum angle

difference between the result from 2D and 3D Angle

Calculator module.

anglewt
ij
=

max(Δangle)−min

{
|anglevt

i
−anglebt

j
|
}

max(Δangle) (11)

Then, a total amount of weight is added to derive wij(t).

wt
ij =

(
distwt

ij
+ anglewt

ij

)
(12)

2) Vehicle Mapping Module: The weight matrix Wt is

defined in Eq. (13) that has been derived from each btj . In the

previous data fusion module, the weight is used to score the

position estimation of the vehicle. The most straightforward

method is to select the highest score of the corresponding

pair.

Wt =

⎡
⎢⎢⎣

wt
11 wt

12 ... wt
1j

wt
21 wt

22 ... wt
2j

.....
wt

i1 wt
i2 ... wt

ij

⎤
⎥⎥⎦ (13)

TABLE I: Weight table for every transmission time t

weight vt1 vt2 vt3

bt1 92 94 60

bt2 35 90 40

However, in Table I, we can see that although the highest

score is vt2 and bt1, the scores of vt1 and bt1 are both high.

On the other hand, the score vt2 and bt2 is much higher than

(vt1,bt2). Thus (vt1,bt1),(vt2,bt2) might be a better choice. To solve

this situation, we define a confidence function (C(wij)
t) to

choose wt
ij :

C(stij) =
maxn

i=1 weight(wt
ij , v

t
i)∑n

i=1 weight(wt
ij , v

t
i)

, (14)

Intuitively, if stij of vti and btj is much higher than stij of

others, C(sij)
t will be higher. Therefore, the Vehicle Mapping

module shall be conducted by following steps:

Step 1: Filter the instance for those estimated vehicle posi-

tions which available on the image (threshold = 0.8).

Step 2: Calculate the weight for estimated positions of the

filtering process and get the weight table.

Step 3: Calculate the confidence function for each estimated

position in the table.

Step 4: Analyze the confidence score from the higher con-

fidence to the highest weight which is not matched

yet.

Step 5: Match the vti and btj respectively.

3) Lane Mapping Module: The RSC’s location is static and

the vehicles should be classified into different lanes based on

its location. As explained in the previous step, the information

of road lanes and vehicles are already acquired. The next step

is to pair the lane region with the group of vehicles. Our goal

is to classify the vehicles mapped in M t on each lane. To

deliver the information to the target vehicles, we classify the

vehicles on each lane as follows:

V l =
{
vti | lane(vti) = l and l ∈ L

}
, (15)

In this case, l is the specific lane which target vehicles located.

Every vehicle detected previously will be classified into the

corresponding lane as long as it is located in the lane region.

Then, through this formula, the transmission to the vehicles

in the expected lane will be able to be conducted.

4) Precise Data Transmission Module: After going through

Vehicle Mapping and Lane Mapping module, we are aware of

lane-scale vehicle information. At this phase, the alert or traffic

information can be precisely transmitted to the target vehicles

at the specific lane. Therefore, as Table II shows, the format of

the notification messages is {<condition><position>}. E.g.

{1F} shows that the pothole will be in front of the vehicle.

On the other hand, the caution message is used to alert other

surrounding vehicles whether the vehicle might change lanes

into their lane.
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TABLE II: Alert messages

Type Messages

1 Danger

2 Caution

F Front

L Left

R Right

C. Delay Analysis

The total delay T is computed by the amount of the tcomp

and tcomm where tcomp represents processing delay and tcomm

represents transmission delay. These can be calculated by

Eqs.( 16) - ( 17):

T = tcomp + tcomm, (16)

tcomm =
m

C
, (17)

where m is the message size and C is the communication

link capacity (bandwidth). Assuming that the bandwidth used

in our experiment is the IEEE 802.11p standard [26].

IV. EXPERIMENTAL RESULTS

CARLA simulator [27] has been used to evaluate the

vehicle identification and data transmission of the proposed

method. In these experiments, RSC is deployed on the road to

obtain graphic images to expand our surrounding awareness

towards the road environment. Meanwhile, several vehicles are

arranged on the road with different speeds and locations to

assess these experiments. The simulated environment is a 500

meter long four-lane road. This road has two opposite lanes

and also a contoured road condition as shown in Fig. 4. On the

other hand, we record the location of the vehicle at a certain

time. YOLO version 3 [18] is used to find the bounding boxes

of the vehicle in Fig. 3(b) shown by the graphic image obtained

from RSC.

We verify the proposed data fusion driven lane-level preci-

sion system model through three experiments. To evaluate our

Fig. 5: Vehicle recognition distance (m).

Fig. 6: Comparison of vehicles accuracy based on number and

the distance of vehicles.

system model performance, the lane-level accuracy formula on

Eq. (18) for total vehicles and Eq. (19) for vehicles on each

lane are defined. v̂ and N denote the identified vehicles and

total number of the vehicles, respectively.

Acc =

∑tn
t0

N t
v̂∑tn

t0
N t

v

, (18)

Accl =

∑tn
t0

N t

v̂l∑tn
t0

N t
vl

, (19)

In the first experiment, we simulate the accuracy versus

vehicle recognition distance for one vehicle in Fig. 5. We

can observe that while the vehicle distance to RSC increases,

the accuracy will be decreased. From 30 experiments, the

results of the accuracies are 96.67% at 40 meters and 76.67%

at 200 meters. In the second experiment, we consider five

cases (case 1 to case 5) in Fig. 6, where case 1 has five

vehicles and five more vehicles will be added for each of

the next case respectively. In Fig. 6, each case considers

short distance, normal distance, and long distance for the

comparison of vehicles accuracy based on number and the

distance of vehicles. The short distance, normal distance, and

long distance are defined as 0-80 meters, 80-160 meters, and

160-200 meters, respectively. We observe that short distance

in each case has the best accuracy and different number of

1 2

43

Fig. 7: Simulation experiment with different weather (1) clear,

(2) soft rain, (3) mid rain, (4) heavy rain.
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Fig. 8: Accuracy of the system under different environment.

vehicles affects the accuracy value. The average accuracies

for three distances are 90.32%, 87.79%, 83.92%, respectively.

In the third experiment, we consider the effects under

different environments in Fig. 7, including clear, soft rain, mid

rain, and heavy rain. The average accuracy reduction in Fig. 8

is around 6% between clear weather and hard rain weather.

From above three simulations and verification, even in 25

vehicles, the accuracy can be satisfied to enhance the driving

experiments. Our experiment shows that delay transmission

is less than 72 ms as shown in Fig. 9. Since our experiment

is in line with the recommendations from ITU-T G-114 [28],

our experiment is proved feasible to be applied. G-114 states

that communication system should have a one-way delay of

maximally 150 ms.

V. CONCLUSION AND FUTURE WORKS

In this work, in order to achieve better driving experience,

the following designs are conducted. 1) Propose the data fusion

driven lane-level precision system model by fusing vehicle

data via OBU and video data via RSC. 2) Consider three

type information including video, GPS and magnetometer. 3)

Propose the vehicle mapping method to pair the vehicle and

broadcast information. 4) Propose the lane mapping method

to pair the vehicle and lane. From the experiments, we can

observe that the accuracy can attain 87.34% on average

with total delay less than 72 ms. Thus, we can precisely

deliver the necessary information to the needed vehicles. Other

vehicles will not receive the necessary information to avoid

generating garbage messages. Ultimately, the drivers can enjoy

their driving experience according to this useful information

transmission via the proposed system model. In the near

Fig. 9: Total delay of data fusion driven lane-level precision

data transmission.

future, we can scale up the number of RSCs to explore the

optimization of the proposed method.
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