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Abstract This paper proposes a cost-effective and
variable-channel floating-point fast independent compo-
nent analysis (FastICA) hardware architecture and imple-
mentation for EEG signal processing. The Gram-Schmidt
orthonormalization based whitening process is utilized to
eliminate the use of the dedicated hardware for eigenvalue
decomposition (EVD) in the FastICA algorithm. The pro-
posed two processing units, PU1 and PU2, in the present-
ed FastICA hardware architecture can be reused for the
centering operation of preprocessing and the updating step
of the fixed-point algorithm of the FastICA algorithm, and
PU1 is reused for Gram-Schmidt orthonormalization oper-
ation of preprocessing and fixed-point algorithm to reduce
the hardware cost and support 2-to-16 channel FastICA.
Apart from the FastICA processing, the proposed hard-
ware architecture supports re-reference, synchronized av-
erage, and moving average functions. The cost-effective
and variable-channel FastICA hardware architecture is im-
plemented in 90 nm 1P9M complementary metal-oxide-
semiconductor (CMOS) process. As a result, the FastICA
hardware implementation consumes 19.4 mW at 100 MHz
with a 1.0 V supply voltage. The core size of the chip is
1.43 mm2. From the experimental results, the presented
work achieves satisfactory performance for each function.
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1 Introduction

Electroencephalogram (EEG) research plays an important role
for exploring the relation between human beings’ behavior
and brain [1, 2]. The EEG signals are the electrical potential
recordings captured from the scalp sensors, where the electri-
cal potentials mean that the components of the brain activity
[3] are mixed. In addition, the EEG signals may be contami-
nated by the artifacts of eye activity or muscular activity
[4–10]. Therefore, analyzing EEG signals becomes a chal-
lenge. In the brain research, the independent component anal-
ysis (ICA) algorithm is regarded as a useful method to study
the brain activity through EEG signals [4–10]. The ICA algo-
rithm is developed to solve the blind source separation (BSS)
problem such that the mixed-up signals can be separated
[11–19] and the brain activity information can be revealed.

Hardware architecture and implementation of ICA algo-
rithms are challenges while considering cost, flexibility, speed
and/or power. Many literatures have proposed the following
ICA hardware implementations. Kim et al. [20] proposed a
field-programmable gate array (FPGA) implementation of the
2-channel BSS constructed by the adaptive noise canceling
(ANC) module. The 2-channel ANC model consumes
98.8 mW at 12.288 MHz at 1.8 V in FPGA. Du et al.
[21–24] proposed parallel ICA algorithm and the correspond-
ing FPGA implementation on a pilchard board, where several
sub-processes run with multiple data parallelism. Jain et al.
[25] proposed a parallel architecture for the FastICA algo-
rithm. The floating-point arithmetic unit is adopted on
pipelined FastICA design to increase the precision in [26].
One hardware efficient fixed-point FastICA is addressed
in [27]. The fixed-point arithmetic is used on an FPGA-
based INFOMAX ICA design [28]. Acharyya et al. [29]
proposed a pioneering coordinate rotation digital computer
(CORDIC)-based [30] n-dimensional FastICA algorithm
and architecture by reusing the CORDIC module. Although
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the proposed architecture [29] has low complexity character-
istics by the algorithm analysis, the post-layout result of the
proposed overall architecture is not available. Van et al. [31]
proposed an energy-efficient eight-channel FastICA imple-
mentation with early determination scheme. The use of the
dedicated eigenvalue decomposition (EVD) processor for
eight-channel preprocessing in [31] adds the overhead to the
hardware cost. Besides, it is predicted that the computational
complexity for EVD based whitening process is largely in-
creased when a higher channel number is requested [31]. Yang
et al. [32] proposed a low-power eight-channel FastICA pro-
cessor for epileptic seizure detection with fixed-point arith-
metic. Roh et al. [33] proposed a 16-channel self-configured
ICA implementation for the wearable neuro-feedback system.

The Gram-Schmidt [34] based whitening described in [12,
35, 36] has been pointed out that the Gram-Schmidt based
whitening may be applied to the solution of BSS problem
[35]. Concerning the computational complexity and hardware
cost, in this paper, the Gram-Schmidt orthonormalization is
applied in whitening process and fixed-point algorithm.
Thus, it is expected that the computational complexity
can be reduced and the hardware resource is possible for
reuse. Note that the Gram-Schmidt orthonormalization
has been adopted for the fixed-point iteration in the
principle component analysis (PCA) algorithm to reduce
the dimensions in [37]. To the best of our knowledge,
the state-of-the-art dedicated hardware implementations
do not adopt the Gram-Schmidt based whitening for
the FastICA processing. On the other hand, for more
flexibility, it is desired to support the variable channel
selection and provide re-reference [1], synchronized average
[1], and moving average [2] functions for EEG signal process-
ing. Thus, we are motivated to propose a cost-effective
FastICA architecture [38] that supports variable-channel
FastICA operations and re-reference, synchronized average,
and moving average functions. Herein, two reused processing
units (PUs) are proposed to achieve cost-effective and
variable-channel FastICA hardware implementation. The
main contributions of this work are summarized as follows:

1) Propose a cost-effective and 2-to-16 channel floating-
point FastICA architecture with two new reused PUs
adopting Gram-Schmidt based whitening.

2) Implement the FastICA hardware architecture in the
application-specific integrated circuit (ASIC) approach
to support variable-channel FastICA, re-reference, syn-
chronized average, and moving average functions.

As a result, the proposed FastICA architecture is imple-
mented in the TSMC 90 nm 1P9M complementary metal-
oxide-semiconductor (CMOS) process with the core size of
1.43 mm2. The power consumption for 16-channel processing
is 19.4 mW at 100 MHz.

The rest of this paper is organized as follows. The back-
ground for the FastICA algorithm is described in Section 2.
The Gram-Schmidt orthonormalization based whitening is de-
scribed and analyzed in Section 3. Next, the cost-effective and
variable-channel FastICA architecture with the proposed PUs
and the corresponding post-layout implementation are de-
scribed in Section 4. In Section 5, we show the software and
the corresponding post-layout simulation results for the vali-
dation of the proposed hardware implementation. Last, the
conclusion and future work is remarked in Section 6.

2 Background for the FastICA Algorithm

2.1 Independent Component Analysis

Considering the number of blind source signals and the sam-
ple number are n and m, respectively, the BSS system can be
modeled as (1) [26, 29, 31].

X ¼ AS ð1Þ

whereX,A, and S denote an n bymmixed-signal matrix, an n
by nmixing matrix, and an n bym blind-source-signal matrix,
respectively. X and S can be further expressed as

X ¼ x1 x2⋯xn½ �T ð2Þ

S ¼ s1 s2⋯sn½ �T ð3Þ

The mixed-signal vector xi and the source-signal vector si
can be respectively expressed in the following equations.

xi ¼ xi 1ð Þxi 2ð Þ⋯xi mð Þ½ �T ; for i ¼ 1; 2; 3;…; n; ð4Þ

si ¼ si 1ð Þsi 2ð Þ⋯si mð Þ½ �T ; for i ¼ 1; 2; 3;…; n; ð5Þ

where xi( j) and si( j) represent a mixed signal and a source
signal at discrete time j, respectively. The ICA algorithm aims
to find the matrix S without knowing the matrix A, where the
matrix S is assumed to have no more than one Gaussian-
distributed source-signal vector. By observing the matrix X,
the inverse of the matrix A can be estimated as the weight
matrix WT, and the blind source signal S can be obtained in
(6) [31].

S ¼ WTX; ð6Þ
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where

W ¼
w11

w21

⋮
wn1

w12

w22

⋮
wn2

⋯

w1n

w2n

⋮
wnn

2664
3775: ð7Þ

The basic idea of ICA is to maximize the non-Gaussianity
of wTX, where w denotes a column vector of W. Among the
ICA algorithms, the FastICA algorithm proposed in [3,
13–16] has fast convergence rate and good performance on
low signal-to-noise ratio (SNR) condition [8]. Therefore, the
FastICA algorithm is chosen for the hardware implementation
for EEG signal processing.

2.2 Preprocessing

In the FastICA algorithm, preprocessing is required to center
and whiten the mixed signals. Through the preprocessing, the
mixed signals can become zero mean and unit variance. The
centering process can be expressed in (8).

xi jð Þ ¼ xi jð Þ−E xif g; for i ¼ 1; 2; 3;…; n; ð8Þ

where xi jð Þ and E{xi} denote the mixed signal value with zero
mean and the expected value of the random variable xi(j) of

vector xi [31], respectively. Therefore, the centering matrix X
can be expressed in (9).

X ¼
xT1
xT2
⋮
xTn

2664
3775 ¼

x1 1ð Þ x1 2ð Þ ⋯ x1 mð Þ
x2 1ð Þ x2 2ð Þ ⋯ x2 mð Þ
⋮ ⋮ ⋯ ⋮

xn 1ð Þ xn 2ð Þ ⋯ xn mð Þ

2664
3775 ð9Þ

For the whitening process, EVD can be used to obtain unit-
variance signals. Equation (10) can be obtained through the
EVD on the covariance matrix Cx of ex, where ex denotes the

random column vector of X.

Cx ¼ E exexT� � ¼ EDET ; ð10Þ

where E denotes the eigenvector matrix of Cx and D repre-
sents the eigenvalue matrix of Cx. D can be further expressed
in (11) [31].

D ¼ diag d1; d2;⋯; dnð Þ; ð11Þ

where d1, d2,…, dn are the eigenvalues of Cx. The whitening
process can then be written in (12) [31].

Z ¼ D−1=2ETX ¼ PX ð12Þ

After the whitening process, the covariance matrix of ez
becomes the identity matrix I as shown in (13), where ez de-
notes the random column vector of Z.

E ezezT� � ¼ PE exexT� �
PT ¼ D−1=2ETEDETED−1=2 ¼ I ð13Þ

Therefore, unit covariance of whitened signal can be
guaranteed.

2.3 Fixed-Point Algorithm

The weight matrix is the key to find the independent compo-
nent. The non-Gaussianity needs to be measured well in order
to find the independence between vectors. In [15], the
negentropy approximation is used to estimate the non-
Gaussianity. With this approximation, the FastICA algorithm
can find the maximum of non-Gaussianity by adjusting the
weight matrix. For the training of the weight matrix, the
fixed-point algorithm [15] is required. To estimate several
independent components, either the symmetric orthogonaliza-
tion or the deflationary orthogonalization can be utilized in the
fixed-point algorithm [15]. The independent components are
estimated in parallel for the fixed-point algorithm with the
symmetric orthogonalization. On the other hand, the indepen-
dent components are estimated one by one with the deflation-
ary orthogonalization. In this work, we adopt the fixed-point
algorithm with the symmetric orthogonalization such that the
computation of the fixed-point algorithm can be parallelized

in the hardware design. AssumeW ¼ w1w2⋯wn½ �, wherewi,

for i=1, 2,…, n, represents the column vector ofW [31], the
fixed-point algorithm with the symmetric orthogonalization
can be described as follows.

Step 1 Set the initial values for wi with unit norm for i=1, 2,
3, …, n.

Step 2 Calcu l a t e the upda t ing s t ep [16 ] , wþ
i ¼

E ez g wT
i ez� �� �� �

−E g0 wT
i ez� �� �

wi, for i=1, 2, 3, …,
n, where g is the derivative of the non-quadratic
functionG uð Þ ¼ 1

a logcosh auð Þ, where a is a constant
parameter.

Step 3 Calculate the Gram-Schmidt orthonormalization for

W using (14), (15) and (16).

w1 ¼ wþ
1

wþ
1

�� �� ð14Þ

w#
kþ1 ¼ wþ

kþ1−
Xk
i¼1

wþ
kþ1

� �T
wi

h i
wi; for k ¼ 1; 2; 3;…; n−1

ð15Þ
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wkþ1 ¼
w#

kþ1

w#
kþ1

�� �� ; for k ¼ 1; 2; 3;…; n−1 ð16Þ

Step 4 Go back to Step 2 if not converged.

Note that the symmetric orthogonalization is based on
EVD in [15]. In this work, we adopt the Gram-Schmidt
orthonormalization for the symmetric orthogonalization based
fixed-point algorithm [31] in Step 3. Finally, when the con-
vergence is achieved, the maximum of the non-Gaussianity of

W
T
Z can be estimated.

3 Gram-Schmidt Orthonormalization Based Whitening
for the FastICA Algorithm

As mentioned in the previous section, the EVD based whiten-
ing process is generally adopted in the FastICA algorithm. In
[31], since whitening process and fixed-point algorithm apply
CORDIC and multiplier as well as adder modules, respective-
ly, a specially designed CORDIC-based EVD processor is
needed for EVD based whitening process. However, the hard-
ware cost of a dedicated computing unit and the computation-
al complexity of the EVD based whitening will be large while
the number of channels increases in [31]. The pioneering work
in [29] can reduce the hardware cost by reusing the CORDIC
module to perform both EVD based whitening and the fixed-
point algorithm of FastICA. In this work, the concept of
Gram-Schmidt based whitening process [12, 35, 36] is
adopted for the FastICA algorithm. The Gram-Schmidt based
whitening process has lower computational complexity than
the conventional EVD based whitening does. In this section,
we will analyze and compare the computational complexity of
the conventional EVD based whitening process and the Gram-
Schmidt based whitening process in this section.

3.1 Computational Complexity Analysis

The Gram-Schmidt orthonormalization based whitening
process for the FastICA algorithm is described as follows.
First, the Gram-Schmidt orthonormalization for the
mixed signal values with zero mean are illustrated in (17),
(18) and (19).

zþ1 ¼ x1
x1k k ð17Þ

z#kþ1 ¼ xkþ1−
Xk
i¼1

xTkþ1z
þ
i

� �
zþi ; for k ¼ 1; 2; 3;…; n−1 ð18Þ

zþkþ1 ¼
z#kþ1

z#kþ1

�� �� ; for k ¼ 1; 2; 3;…; n−1 ð19Þ

Such process gives an orthogonal matrix Z+=[z1
+z2

+⋯zn
+]T,

where the vectors {z1
+z2

+⋯zn
+} are mutually orthogonal. The

covariance matrix of ezþ is then derived in (20).

E ezþ ezþð ÞT
n o

¼ diag
zþ1
� �T

zþ1
m

;
zþ2
� �T

zþ2
m

;⋯;
zþn
� �T

zþn
m

 !
¼ 1

m
I;

ð20Þ

whereezþ denotes the random column vector of Z+. Since unit
variance is required for the whitening process, it is necessary
to scale the orthogonal matrixZ+ with a factorm1/2 as follows.

zkþ1 ¼ m1=2zþkþ1; for k ¼ 0; 1; 2;…; n−1 ð21Þ

Therefore, the covariance matrix ofez can equal the identity
matrix I.

The computational complexity is defined as the sum of
multiplications, divisions and square roots. Tables 1 and 2
summarize the computational complexity of the whitening
p r o c e s s b a s e d o n EVD a n d G r am - S c hm i d t
orthonormalization, respectively, where mul, div and sqrt de-
note the corresponding multiplication, division and square
root. Since it is a black box for us to know the detailed imple-
mentation of EVD function call in MATLAB, EVD is as-
sumed to be performed by cyclic Jacobi method [39] for com-
putational complexity in Table 1, where J denotes an n by n
Jacobi rotation matrix [39]. Note that, the shift and add oper-
ations are excluded in Tables 1 and 2 since they contribute less
complexity compared to the multiplication, division, and
square root operations.

In Table 1, since the covariance matrix Cx is an n by n
symmetric matrix, only n(n+1)/2 elements are required for
the calculation of Cx. Therefore, the computational complex-
ity for the calculation of Cx is m[n(n+1)/2] due to m multipli-
cations for each element calculation ofCx. The product of an n
by n matrix and a Jacobi rotation matrix costs 4n multiplica-
tions since only 2n elements are needed to calculate, where
each element needs two multiplications. Thus, 4n[n(n-1)/2-1]
multiplications are required for the matrix multiplication of
[n(n-1)/2] J matrices to obtain the eigenvector matrix E. In
Table 2, xTkþ1z

þ
i

� �
zþi needs to be calculated for i=1, 2, 3,…, k

and k=1, 2, 3, …, n-1. Since the calculation of xTkþ1z
þ
i

� �
zþi

needs 2m multiplications, the computational complexity for
the calculation of zk+1

# can be obtained as 2m∑k=1
n− 1k.

The bar charts in terms of the number of multiplications
and the sum of divisions and square roots versus number of
channels withm=512 are shown in Fig. 1a and b, respectively.
As can be seen in Fig. 1a and b, the computational complexity
is mainly dominated by the multiplications for both EVD and
Gram-Schmidt based orthonormalization whitening process.
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As a result, the Gram-Schmidt orthonormalization based whit-
ening process shows less computations than the EVD based
whitening process does, especially when the channel number
increases. Obviously, the computations for the eigenvalue ma-
trixD and eigenvector matrixE are not required for the Gram-
Schmidt based whitening. Therefore, EVD is not necessary in
the Gram-Schmidt based whitening process such that the
CORDIC module for EVD processing is not required in the
proposed hardware architecture. Instead, from the analysis,
the Gram-Schmidt based whitening process can be realized
by general computing modules such as addition, multiplica-
tion, and inverse-square-root modules. Since these computing
modules can be shared in the fixed-point algorithm of
FastICA, the hardware cost is expected to be saved.

3.2 Influence of the Whitening Process on the FastICA
Algorithm

Besides the computational complexity, two whitening ap-
proaches mentioned in the previous subsection need to be
explored to see the influence on the separation quality of the
FastICA algorithm. Therefore, the MATLAB coding resource
[40] of FastICA algorithm is modified/recoded and then sim-
ulated with the EVD based and the Gram-Schmidt
orthonormalization based whitening processes, respectively.
The random mixing matrix A and the uniformly distributed
source-signal matrix S are used to generate the mixed-signal
matrix X. The mixed-signal matrix X is then processed with
the FastICA algorithm by above two whitening approaches.

The estimated source-signal vectors are then compared with
the source-signal vectors using the performance index defined
in (22).

Performance Index ¼ 1

n

Xn
i¼1

abs corr coef bsi; sið Þ ð22Þ

where ŝi and abs_corr_coef (ŝi,si) denote the i-th estimated
source-signal vector computed by the FastICA algorithm and
the absolute correlation coefficient between ŝi and si, respec-
tively. The absolute correlation coefficient [41] is expressed in
(23) using the notations in this paper.

abs corr coef bsi; sið Þ ¼ E bsi−E bsif gð Þ si−E sif gð Þf g
σsiσ^ si

						
						 ð23Þ

where σ denotes the standard derivation. Note that the order of
the estimated source-signal vector is sorted by associating the
estimated source-signal vector and the source-signal vector
with the maximum absolute correlation coefficient in the
simulation.

Figure 2 shows the average performance index and the
average iteration number versus number of channels, where
the sample number is set to 512. The average performance
index and the average iteration number are obtained with
500 test rounds. The maximum iteration number is set to
511 in the simulation. As can be seen, the performance indices
and iteration numbers with EVD based and Gram-Schmidt
orthonormalization based whitening processes are close. That

Table 1 Computational
complexity of the EVD based
whitening process.

Procedure Computational complexity

Calculate covariance matrix Cx ¼ E exexT� �
m n nþ1ð Þ

2

h in o
muls

Calculate eigenvector matrix E=J12J13⋯J1nJ23⋯Jn−1,n 4n n n−1ð Þ
2 −1

h in o
muls

Calculate eigenvalue matrix D=ETCxE (2n3) muls

Calculate whitening matrix P=D−1/2E (n2) muls+(n) divs+(n) sqrts

Calculate whitened signal Z ¼ PX (mn2) muls

Total 4n3 þ 3
2m−1
� �

n2 þ m
2 −4
� �

n
� �

muls
+(n) divs+(n) sqrts

Table 2 Computational
complexity of the Gram-Schmidt
orthonormalization based
whitening process.

Procedure Computational complexity

Calculate zþ1 ¼ x1
x1k k (m) muls+(m) divs+(1) sqrt

Calculate z#kþ1 ¼ xkþ1−∑
k

i¼1
xTkþ1z

þ
i

� �
zþi for k=1, 2, 3,…, n-1. 2m ∑

n−1

k¼1
k


 �
muls

Calculate z
þ
kþ1 ¼

z#kþ1

z#kþ1k k for k=1, 2, 3,…, n-1. [m(n-1)] muls+[m(n-1)] divs+(n-1) sqrts

Calculate zk+1=m
1/2zk+1

+ for k=0, 1, 2,…, n-1. (mn) muls

Total (mn2+mn) muls+(mn) divs+(n) sqrts
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means the Gram-Schmidt orthonormalization based whiten-
ing process can be an alternative way to replace the EVD
based whitening process with similar separation quality in
MATLAB simulation.

4 Cost-Effective and Variable-Channel FastICA
Hardware Architecture and Implementation

In this section, the cost-effective floating-point FastICA hard-
ware architecture and implementation for FastICA processing,
re-reference, synchronized average and moving average func-
tions are addressed. The reasonable sample size for the hard-
ware implementation of the FastICA function is explored first.
Then, the hardware architecture, hardware operations, and im-
plementation of these four functions are revealed and
illustrated.

4.1 Sample Size Analysis

Since FastICA is a statistical algorithm, increasing the sample
size improves the separation quality. However, the memory
size will become larger once the sample size increases. In
addition, larger sample size will lead to larger computation
complexity according to the discussion in Section 3. For the
above reasons, the reasonable sample size for hardware im-
plementation needs to be determined. Therefore, we simulate
the average performance index versus the number of channels
with the sample sizes of 256, 512, and 1024 in Fig. 3, where
the simulation is performed by the double-precision floating-
point (i.e., the most accurate precision) FastICA algorithm
with the Gram-Schmidt orthonormalization based whitening
process. The details ofA and X in this section are the same as
those of the simulation described in Section 3.2. From the
simulation result, using 1024 samples can reach the best
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Figure 1 a Number of
multiplications and b sum of
divisions and square roots versus
number of channels with EVD
and Gram-Schmidt
orthonormalization based
whitening process.
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performance among three different sample sizes, but the mem-
ory cost will become a penalty. On the other hand, although
using 256 samples attains the lowest memory cost, the perfor-
mance index is the worst among three different sample sizes.
In summary, 512 is a tradeoff sample size for hardware imple-
mentation. To evaluate the effects of IEEE-754 single-preci-
sion floating-point and fixed-point arithmetic, the FastICA
algorithm with the Gram-Schmidt orthonormalization based
whitening process is performed with the 32-bit floating-point
and 32-bit fixed-point simulations, respectively. The 11-bit
fraction part of the fixed-point simulation is adopted for the
random data and three datasets in Section 5. Figure 3 shows
the performance index versus number of channels with
floating-point and fixed-point simulation. It can be seen that
the performance indices with 512 sample size manipulated by

double-precision and single-precision floating point are al-
most the same. For the targeted variable channel number with
maximum of 16, the performance index with fixed-point sim-
ulation is lower than that of the floating-point simulation. It
should be noted that the channel number should not be too
high while considering an acceptable performance index. As a
result, the maximum channel number, the sample size and the
arithmetic format in our hardware implementation are set to
16, 512 and single-precision floating-point arithmetic format,
respectively, according to the simulation result, where the de-
tails will be discussed in the next subsection.

4.2 Hardware Architecture

Figure 4 shows the system diagram of the proposed FastICA
hardware architecture to realize the FastICA, re-reference,
synchronized average andmoving average functions. The pro-
posed FastICA hardware architecture can perform different
operations according to the instruction input, where the avail-
able instruction set is listed in Table 3 and is briefly described
as follows. The LOAD instruction loads either fixed-point or
floating-point data into the memory. The OUTPUT instruction
outputs the processed data from the memory. The FASTICA
instruction operates the FastICA algorithm. The REREF in-
struction produces the re-reference signal. The SYNAVG in-
struction offers the synchronized average signal. Finally, the
MOVAVG instruction can make the proposed architecture act
as a moving average filter for the input signal. In this work, the
names of REREF and MOVAVG are the same as those in [42,
43] and MATLAB, respectively.

In the proposed hardware architecture, the IEEE-754 sin-
gle-precision floating-point format in (24), where the nota-
tions are the same as those of [31], is adopted in the hardware
design in order to preserve the computation accuracy.

Lfloat ¼ −1ð ÞsL � 1: f Lð Þ � 2eL−127; ð24Þ

where Lfloat, sL, eL and fL represent the value of the IEEE-754
single-precision floating-point number, sign bit, 8-bit expo-
nent bit and 23-bit fraction part of the mantissa, respectively.
Since the input EEG signals will be in fixed-point format if
they are captured by the scalp sensors and quantized by the
analog-to-digital converter (ADC), the fixed-to-floating con-
verter is utilized in this work to convert the fixed-point format
into the IEEE-754 single-precision floating-point format. Af-
terwards, the input signals are stored at the data memory.

Herein, the processing units (PUs), PU1 and PU2, are
utilized to process the data stored in the memory. The
simplified architecture of the PUs is illustrated in Fig. 5.
Each PU contains a multiply-and-add (MAA) unit, a
temporary memory, and a division-by-2λ operation unit,
where the name of multiply-and-add (MAA) is the same
as that in [44] and λ is a positive integer. In this work,
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and Gram-Schmidt orthonormalization.
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PU1 and PU2 are reused in the centering operation of
preprocessing and the updating step [16] (i.e., Step 2 of
the fixed-point algorithm in Section 2.3) of the fixed-
point algorithm. Through parallel manipulating the PU1

and PU2, the centering operation and the updating step
can be accelerated. It is noted that, since the Gram-
Schmidt orthonomalization processes the vectors sequen-
tially, only PU1 is reused for the Gram-Schmidt
orthonomalization in preprocessing and fixed-point algo-
rithm of the FastICA algorithm. Thus, PU1 adopts the
inverse-square-root unit based on the design of [45] for
the Gram-Schmidt orthonomalization but PU2 does not.
The temporary memory is used to store the computation
result such that the result can be reused in the subse-
quent computation or transferred to the data memory.
Since the IEEE-754 single-precision floating-point for-
mat is utilized in the hardware design, the division-by-
2λ operation can be realized by subtracting λ for several
functions as mentioned in Sections 4.3 and 4.5. For the
FastICA function, PU1 and PU2 are reused to perform
the centering operation of preprocessing and the
updating step of the fixed-point algorithm, and PU1 is
reused for the computations of the Gram-Schmidt
orthonormalization. Therefore, the dedicated EVD calcu-
lation unit is not required in the proposed hardware
architecture. Other three function computations are real-
ized by the two reused PUs in the proposed hardware
architecture. Thus, the cost-effective hardware architec-
ture can be attained. The hardware operations of the

FastICA and other functions with the proposed PUs will
be described in detail in the following subsections.

The 32-bit instruction format of the proposed hard-
ware architecture is described in Table 4. The first 3
bits of the instruction represent the OP code for differ-
ent operations. The remaining bits of the instruction are
used to specify the user-defined parameters. The range
of the OP code and the parameters are described in
Table 5. Notably, the third parameter format of the
FASTICA instruction is defined as the first 15 bits of
IEEE-754 single-precision floating-point format. In order
to simplify the hardware design, the first parameters can
only be set to 2, 4, 8 or 16 for SYNAVG and
MOVAVG instructions. Also, the second parameters of
LOAD and OUTPUT can only be set to either 511 or 0
since they are used to specify the input data format or
the output data type. With those functions and the user-
defined parameters, the flexibility of the proposed hard-
ware architecture can be attained.

For the chip implementation of the proposed FastICA hard-
ware architecture, the cell-based design flowwith the standard
cell library in TSMC 90 nm 1P9M CMOS process is adopted.
Artisan Memory Compiler is used to generate the memory
module. Synopsys Design Compiler is employed to synthe-
size the proposed design with the timing constraint of 10 ns.
Finally, Cadence SoC Encounter is used for the placement and
routing procedure. Figure 6 shows the layout of the proposed
FastICA hardware implementation, where the layout area oc-
cupies 1.43 mm2.

Processing Unit 1Data
Input Data

Output

Fixed-to-
Floating
Converter

Data
Memory

Controller

Processing Unit 2

M
U
X

Instruction Input

Figure 4 System diagram of the
proposed FastICA hardware
architecture.

Table 3 Instruction set of the proposed FastICA hardware architecture.

Instruction Parameters Operation

LOAD Number of channels, input data type (fixed/floating) Load data into the memory

OUTPUT Number of channels, content type (weight/signal) Output data from the memory

FASTICA Number of channels, number of maximum iterations, threshold value Perform FastICA algorithm

REREF Number of channels, index of the baseline channel Remove baseline

SYNAVG Number of trails Average all trails

MOVAVG Number of samples on average, index of the target channel Moving average filter
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4.3 Hardware Operations of the Preprocessing
with Gram-Schmidt Orthonomalization Based Whitening
Process of FastICA

To illustrate the hardware operations of the FastICA function
using the PUs in Fig. 5, the computations of the preprocessing
are described in this subsection. For the centering process, (8)
can be recast in (25).

xi jð Þ ¼ xi jð Þ � 1

512

X512
l¼1

xi lð Þ; ð25Þ

where i=1, 2, …, n and j=1, 2, …, 512. The computation of
(25) is described as follows. First, xi(l) are read from the data
memory and used to calculate the result of [∑l=1

512xi(l)]/512 using
the MAA unit and the division-by-2λ operation unit, where λ is
set to 9. Next, the result of xi( j) minus [∑l=1

512xi(l)]/512 is calcu-
lated on the MAA unit and saved at the data memory. The cen-
tering process can be either performed on the MAA unit of PU1

or the MAA unit of PU2. Therefore, PU1 and PU2 concurrently
perform the computations of the centering process for different
channels, respectively. For example, if n=16, x1 jð Þ and x2 jð Þ
are calculated first with i=1 and i=2 in PU1 and PU2, respective-
ly, for j=1, 2,…, 512. Next, x3 jð Þ; x4 jð Þf g, x5 jð Þ; x6 jð Þf g,…,
x15 jð Þ; x16 jð Þf g are calculated with i={3, 4}, i={5, 6}, …,

i={15, 16} in PU1 and PU2 for j=1, 2, 3,…, 512, respectively.
After the centering process, (17), (18), (19) and (21) are used

in the Gram-Schmidt orthonormalization based whitening pro-
cess and can be recast as (26), (27) and (28), respectively.

z#kþ1 ¼
xkþ1 ; fork ¼ 0
xkþ1− xTkþ1z

þ
1

� �
zþ1 −⋯− xTkþ1z

þ
k

� �
zþk ; for k ¼ 1; 2;…; n−1

�
ð26Þ

Figure 5 Simplified architecture of the processing units (PUs) and the
corresponding controller.

Table 4 Instruction format of the proposed FastICA hardware
architecture.

OP Code First parameter Second parameter Third parameter

3 bits 5 bits 9 bits 15 bits

Table 5 Range of the OP code and parameters of the instructions.

Instruction OP
code

First
parameter

Second
parameter

Third
parameter

LOAD 0(000) 1~16 511/0 (fixed/floating) –

OUTPUT 1(001) 1~16 511/0 (weight/signal) –

FASTICA 2(010) 2~16 1~511 1~20

REREF 3(011) 1~16 0~15 –

SYNAVG 4(100) 2/4/8/16 – –

MOVAVG 5(101) 2/4/8/16 0~15 –

Data
Memory

Processing
Units

Data
Memory

Data
Memory

Temporary
Memory Temporary

Memory

Figure 6 Layout of the proposed FastICA hardware implementation.
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zþkþ1 ¼
z#kþ1

z#kþ1

�� �� ¼ z#kþ1 1= z#kþ1

�� ��� � ¼ z#kþ1 z#kþ1

� �T
z#kþ1

h i−1=2
ð27Þ

zkþ1 ¼ 5121=2zþkþ1 ð28Þ

According to (26), (27) and (28), the computations of the
Gram-Schmidt orthonormalization based whitening process
are described as follows.

Step 1 Let i=1 and initially set z#kþ1 ¼ xkþ1 at the temporary
memory.

Step 2 Go to Step 6 if k=0. Otherwise, go to Step 3.
Step 3 Calculate xTkþ1z

þ
i on the MAA unit.

Step 4 Renew zk + 1
# with the calculation result of z#kþ1−

xTkþ1z
þ
i

� �
zþi using the MAA unit and increase i by 1.

Step 5 Repeat Step 3-Step 4 until i>k.
Step 6 Calculate [(zk+1

# )Tzk+1
# ]−1/2 on the MAA unit and the

inverse-square-root unit.
Step 7 Calculate zk+1

+ on the MAA unit.
Step 8 Repeat Step 1-Step 7 until n vectors {z1

+,z2
+,⋯,zn

+} of
Z+ are obtained.

Step 9 Calculate zk+1 on the MAA unit. Repeat this step
until n vectors {z1,z2,⋯,zn} of Z are obtained.

Note that the calculations of Step 1-Step 9 are only per-
formed on the MAA unit of PU1. In Step 1, xkþ1 is read from
data memory. In Step 3, zi

+ is read from data memory to com-
pute the dot product of xkþ1 and zi

+ on the MAA unit. In Step
4, the result of xTkþ1z

þ
i

� �
zþi is calculated and subtracted from

zk+1
# on theMAA unit. In Step 5, Step 3-Step 4 are repeated as

i≤k such that z#kþ1 ¼ xkþ1−∑k
i¼1 xTkþ1z

þ
i

� �
zþi can be obtained.

In Step 6, the result of (zk+1
# )Tzk+1

# is calculated on the MAA
unit and then processed with the inverse-square-root operation
unit to obtain the result of [(zk + 1

# )Tzk + 1
# ]−1/2. In Step 7,

the result of zk + 1
+ is calculated by multiplying zk + 1

# and
[(zk+1

# )Tzk+1
# ]−1/2 on the MAA unit. In Step 8, Step 1-Step 7

are repeated to sequentially perform the calculations of n

vectors {z1
+,z2

+,⋯,zn
+} of Z+ with k=0, 1, 2, …, n-1. In Step

8, when Step 1-Step 7 are done with k=n-1, the calculation of
Z+ is completed. In Step 9, zk+1 is obtained by multiplying
5121/2 and zk+1

+ on the MAA unit. Step 9 is repeated until n
vectors of Z are obtained. The result of Z is saved at the data
memory. The proposed FastICA hardware architecture sup-
ports variable-channel processing, where the number of chan-
nels, n, is confined to 2-to-16 and defined by the user. In Step
8, the controller controls PU1 to sequentially calculate {z1

+,z2
+,

z3
+,⋯,zn

+}. While the controller detects that the last calculation
of zn

+ is completed, the controller controls the PU1 to execute
the operation of Step 9. By setting different number of chan-
nels, n, the hardware operations of Gram-Schmidt
orthonormalization can be realized on the same PU1. For ex-
ample, if n=16, z1

+ will be calculated first using Steps 1, 2, 6,
and 7 with k=0. Next, z2

+ will be calculated through Step 1-
Step 7 with k=1. Afterward, {z3

+,z4
+,⋯,z16

+ } will be calculated
sequentially with k=2, 3, …, 15, respectively. The vectors
{z1,z2,⋯,z16} are calculated through Step 9 until {z1

+,z2
+,⋯,

z16
+ } are obtained. Similarly, if n=4, z1

+ will be calculated first
and then {z2

+,z3
+,z4

+} will be calculated sequentially.

4.4 Hardware Operations of the Fixed-Point Algorithm
of FastICA

To implement the fixed-point algorithm using the two reused
PUs, the equations can be recast in (29), (30) and (31).

wþ
i ¼ E ez g wT

i ez� �� �� �
−E g0 wT

i ez� �� �
wi

¼

X512
j¼1

ez j g wT
i ez j� �� �� �

−
X512
j¼1

g0 wT
i ez j� �� �

wi

512

;

≅

X512
j¼1

ez j α wT
i ez j� �þ β

� �� �
−
X512
j¼1

αf gwi

512

ð29Þ

where ez j denotes the j-th column vector of Z, and α and β
denote two parameters.

w#
kþ1 ¼

wþ
kþ1 ; fork ¼ 0

wþ
kþ1− wþ

kþ1

� �T
w1

h i
w1−⋯− wþ

kþ1

� �T
wk

h i
wk ; for k ¼ 1; 2; …; n−1

(
ð30Þ

wkþ1 ¼
w#

kþ1

w#
kþ1

�� �� ¼ w#
kþ1 1= w#

kþ1

�� ��� � ¼ w#
kþ1 w#

kþ1

� �T
w#

kþ1

h i−1=2
ð31Þ

The two non-linear functions g wT
i ez j� �

and g0 wT
i ez j� �

in (29) are realized as α wT
i ez j� � þβ and α, respectively,

by the piecewise linear approximation method. The
values of α and β are obtained by table look-up ac-
cording to the value of wT

i ez j. Further discussions of the
piecewise linear approximation method can be found in
[38]. According to (29), (30) and (31), the computa-
tions of the fixed-point algorithm are described as
follows.
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Step 1 Let j=1 at the beginning.
Step 2 Calculate wT

i ez j on the MAA unit.
Step 3 Calculate α wT

i ez j� � þβ on the MAA unit.
Step 4 Calculate ez j α wT

i ez j� �� þβ� on the MAA unit.
Step 5 Accumulate the results of ez j α wT

i ez j� �þ β
� �

and α at
the temporary memory using the MAA unit, respec-
tively, and increase j by 1.

Step 6 Repeat Step 2-Step 5 until j>512.
Step 7 Calculate wi

+ on the MAA unit.
Step 8 Repeat Step 1-Step 7 until n vectors {w1

+,w2
+,⋯ ,wn

+}
are obtained.

Step 9 Calculate the Gram-Schmidt orthonormalization

for W.
Step 10 Repeat Step 1-Step 9 until W is converged.

Note that the calculations of Step 1-Step 7 can be per-
formed on the MAA unit in either PU1 or PU2. In other words,
two wi

+ vectors can be concurrently calculated on the MAA
units of PU1 and PU2, respectively. In Step 2, wi and ez j are
read from the data memory to calculate their dot product on
the MAA unit. In Step 3, the result of α wT

i ez j� � þβ are calcu-
lated on the MAA unit. In Step 4, ez j is read from the data

memory and multiplied by α wT
i ez j� � þβ on the MAA unit. In

Step 5, the results of ez j α wT
i ez j� �� þβ� and α are separately

accumulated at the temporary memory using theMAA unit. In
Step 6, Step 2-Step 5 are repeated as j≤512 to obtain

∑512
j¼1 ez j α wT

i ez j� ��� þβ�g and ∑j=1
512{α}. In Step 7, the result

of∑512
j¼1 ez j α wT

i ez j� ��� þβ�gminus∑j=1
512{α}wi is calculated on

the MAA unit. The division-by-512 operation is not necessary
in Step 7 since it does not affect the normalization result. In
Step 8, Step 1-Step 7 are repeated to obtain n vectors {w1

+,w2
+,

⋯ ,wn
+}. According to the user-defined number of channels, n,

the calculations of wi
+ vectors are repeated on both PU1 and

PU2 to obtain all n vectors of wi
+ with i=1, 2, 3,…, n. For

example, if n=16, w1
+ and w2

+ are calculated first with i=1 and
i=2 in PU1 and PU2, respectively, through Step 1-Step 7.
Next, {w3

+, w4
+}, {w5

+, w6
+},…, {w15

+ , w16
+ } are calculated with

i={3, 4}, i={5, 6}, … and i={15, 16} in PU1 and PU2, re-
spectively. In Step 9, the Gram-Schmidt orthonormalization is

calculated for W. The calculation of the Gram-Schmidt
orthonormalization is similar to Step 1-Step 8 of the whitening
process in Section 4.3. In Step 10, the sum of absolute dot-
products of the old weight vectors and the new weight vectors

ofW is calculated on the MAA unit to determine whetherW
is converged.

4.5 Implementation of the Re-reference, Synchronized
Average and Moving Average Functions

In terms of the re-reference, synchronized average and mov-
ing average processing, the re-reference signal yr,i( j), the

synchronized average signal ys( j), and the moving average
signal ym( j) are defined in (32), (33), and (34), respectively.

yr;i jð Þ ¼ xi jð Þ � xbaseline jð Þ; for j ¼ 1; 2; 3;…;m; ð32Þ

ys jð Þ ¼ 1

h

Xh
trial¼1

xtrial jð Þ; for j ¼ 1; 2; 3;…;m; ð33Þ

ym jð Þ ¼ 1

r

Xr−1
k¼0

xtarget�channel j−kð Þ; for j ¼ 1; 2; 3;…;m; ð34Þ

where i=1, 2, 3,…, n and h and r denote the number of trails
and the number of samples on average, respectively. Since
h and r are the first parameters of SYNAVG and
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Figure 7 First dataset: 16-channel mixed signals generated by MATLAB
and [42].
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MOVAVG instructions, respectively, they can only be set
to 2, 4, 8, or 16 in the proposed hardware architecture as
mentioned in Section 4.2. Therefore, the division opera-
tion in (33) and (34) can be performed with the division-
by-2λ units in the PUs by setting λ to 1, 2, 3 or 4. The
operations of addition and subtraction in (32), (33), and

(34) are performed on the MAA units of PU1 and PU2.
For the re-reference function, PU1 and PU2 concurrently
perform the computations for different channels, respec-
tively. For the synchronized average and moving average
function, PU1 and PU2 concurrently perform the compu-
tations for different discrete time j, respectively.
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Figure 8 Comparison between (a) the floating-point software separation results, (b) the artificial source signals and (c) the fixed-point software
separation results of the FastICA function for the first dataset.
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5 Evaluation and Comparison Results

In this section, the double-precision floating point (i.e., the
most accurate precision) software simulation in MATLAB is
performed to verify the FastICA algorithm based on the
Gram-Schmidt orthonormalization for whitening process and
fixed-point algorithm. The software simulations of the re-ref-
erence, synchronized average and moving average functions
are also performed in MATLAB. The hardware architecture is
validated by the post-layout simulation results. Finally, the
results are summarized and compared with other related
works.

5.1 Software Simulation

To verify the separation quality with the FastICA algorithm
based on the Gram-Schmidt orthonormalization for whitening
process and fixed-point algorithm, the software simulation is
performed. In our simulation, three datasets are adopted. The
first dataset contains 16-channel artificial mixed signals which
are obtained by randomly mixing the 16-channel artificial
source signals in 12-bit fixed-point format as shown in
Fig. 7. Note that the 16-channel artificial source signals con-
tains two-channel sparse and very sparse source signals in [46]
and other 14-channel source signals generated by MATLAB
functions including abs, sin, square, rem, sinc, rand, log and
randperm. Since the source signals in the first dataset are
known, the software separation result can be compared to
the source signals to determine the separation quality. Figure 8
shows the artificial source signals, the floating-point and
fixed-point software separation results of the FastICA algo-
rithm with the Gram-Schmidt orthonomalization based whit-
ening process for the first dataset. The numbers between
Fig. 8a and b denote the absolute correlation coefficients be-
tween the source signals and the floating-point separation re-
sults. On the other hand, the numbers between Fig. 8b and c
denote the absolute correlation coefficients between the
source signals and the fixed-point separation results. For the
floating-point separation results, the average and minimum
absolute correlation coefficients are 0.9830 and 0.9656, re-
spectively. The signal-to-interference ratio (SIR) [47] results
for 16-channel source signals and the software separation re-
sults with the first dataset are 25.0082, 13.0428, 19.1261,
12.8986, 13.6465, 19.4119, 11.6197, 14.2428, 18.2994,
13.4162, 12.5925, 28.7617, 12.6471, 16.2938, 13.4617, and
15.8396 dB, respectively. The average value of the SIR results
is 16.2693 dB. As a result, the artificial mixed signals are well
separated in the floating-point software simulation. For the
fixed-point separation results, the average and minimum ab-
solute correlation coefficients are 0.8389 and 0.4223, respec-
tively. The average and minimum absolute correlation coeffi-
cients of the fixed-point separation results are lower than those
of the floating-point simulation results.

The second dataset contains the 16-channel EEG signals
which are adopted from the dataset in the EEGLAB toolbox
[42, 43]. The details of the experiment were described in [6].
Figure 9 shows the 16-channel EEG signals which are cap-
tured from the positions of FPZ, F3, FZ, F4, C3, C4, CZ, P3,
PZ, P4, PO3, POZ, PO4, O1, OZ, and O2 of the international
10–20 electrodes placement system. The 16-channel EEG sig-
nals are transformed to 12-bit fixed-point format with the
sampling rate of 256 Hz and the windows size of two seconds.
Figure 10a and b show the floating-point software simulation
results and the fixed-point software simulation results for the
second dataset, respectively. The numbers in the middle of
Fig. 10 denote the absolute correlation coefficients between
the floating-point simulation results and the fixed-point simu-
lation results. For the floating-point simulation results, as can
be seen in Fig. 10a, the independent components associated
with the late positive event-related potential can be extracted
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Figure 9 Second dataset: 16-channel EEG signals.
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in the first three rows. The floating-point simulation results of
Fig. 10a are similar to those reported in [6]. However, in
Fig. 10b, one component cannot be easily observed in the
second row. The average and minimum absolute correlation
coefficients are 0.5507 and 0.3231, respectively.

The third dataset contains 4-channel EEG signals which
have eye blinking artifact as shown in Fig. 11. The 4-
channel EEG signals are captured from the positions of FP1,
FP2, F3 and F4 of the international 10–20 electrodes place-
ment system. The sampling rate and the format of the third
dataset are the same as those of the second dataset. The soft-
ware simulation results for the third dataset are shown in
Fig. 12. As can be seen, the eye blinking component can be
separated in the first row in Fig. 12. According to the software
simulation results with the above three datasets, the validation
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Figure 10 Software simulation
result utilizing the FastICA
algorithm with the Gram-Schmidt
orthonormalization based
whitening process for the second
dataset in MATLAB: (a) floating-
point simulation results and (b)
fixed-point simulation results.

0 100 200 300 400 500 600
0

2000

4000

0 100 200 300 400 500 600
0

5000

0 100 200 300 400 500 600
1000

2000

3000

0 100 200 300 400 500 600
1000

2000

3000

Figure 11 Third dataset: 4-channel EEG signals.
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of the FastICA algorithm with the Gram-Schmidt
orthonormalization based whitening process can be achieved
for both artificial mixed signals and EEG signals.

Figure 13 shows the software simulation result of the re-
reference function, where the EEG signals at the positions of
PZ and CZ in Fig. 9 are used for the input signal and the
baseline signal, respectively. Figure 14 shows the software
simulation result of the synchronized average function with
16 EEG trials captured from the position of CPZ. Finally, the
EEG signal with high-frequency noise adopted from [46] and
the corresponding software simulation result of moving aver-
age function are shown in Fig. 15. As can be seen, the high-
frequency noise of EEG signal can be filtered after the moving
average processing.

5.2 Post-Layout Simulation

In this subsection, the post-layout simulation is performed.
The results of post-layout simulation are compared to the soft-
ware simulation results done in the previous subsection to
validate the function of the proposed cost-effective hardware
implementation. For the FastICA function, the three datasets
mentioned in the previous subsection are used for the post-
layout simulation. Figures 16, 17 and 18 show the comparison
results with the first dataset of the 16-channel artificial mixed

signals in Fig. 7, the second dataset of the 16-channel EEG
signals in Fig. 9 and the third dataset of the 4-channel EEG
signals in Fig. 11, respectively. In Figs. 16, 17 and 18, the
numbers in the middle of the figures denote the absolute cor-
relation coefficients between the software simulation results
and the post-layout simulation results. For the first dataset, the
average and the minimum values of the absolute correlation
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Figure 12 Software simulation result utilizing the FastICA algorithm
with the Gram-Schmidt orthonormalization based whitening process for
the third dataset in MATLAB.
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MATLAB.
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Figure 14 a 16 trials of the EEG signals from the position of
CPZ; b software simulation result of the synchronized average
function in MATLAB.
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coefficients are 0.9967 and 0.9852, respectively. For the sec-
ond dataset, the average and minimum values of the absolute
correlation coefficients are 0.9441 and 0.8424, respectively.
For the third dataset, the average absolute correlation coeffi-
cient is 0.9868. Although the datasets in this work are different
from those in [31], it should be noted that the minimum value
of the absolute correlation coefficients of the second dataset
(16-channel EEG signals), 0.8424, is near to that of the EEG
signals in Fig. 17 of [31], 0.8499. According to the compari-
son results, the post-layout simulation result can attain enough
accuracy compared to the software simulation results among
three datasets.

Figure 19 shows the comparison result of the artificial
source signals and the post-layout simulation results with the
first dataset in Fig. 7, where the numbers in the middle of
Fig. 19 denote the absolute correlation coefficients between
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Figure 15 a EEG signal with high-frequency noise; b software
simulation result of the moving average function in MATLAB.
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of the FastICA function for the
first dataset in Fig. 7.

106 J Sign Process Syst (2016) 82:91–113



0 100 200 300 400 500 600
-10

0
10

0 100 200 300 400 500 600
-10

0
10

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-10

0
10

0 100 200 300 400 500 600
-10

0
10

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

0 100 200 300 400 500 600
-5
0
5

1

1

1

1

1

1

1

0.9610

0.9495

0.9796

0.9084

0.8571

0.8484

0.8424

0.8851

0.8742

Software Simulation Results Post-Layout Simulation ResultsFigure 17 Comparison between
the software simulation results
and post-layout simulation results
of the FastICA function for the
second dataset in Fig. 9.

1

1

0.9735

0.9735

Software Simulation Results Post-Layout Simulation Results

0 100 200 300 400 500 600
-5

0

5

0 100 200 300 400 500 600
-5

0

5

0 100 200 300 400 500 600
-5

0

5

0 100 200 300 400 500 600
-5

0

5

0 100 200 300 400 500 600
-5

0

5

0 100 200 300 400 500 600
-5

0

5

0 100 200 300 400 500 600
-5

0

5

0 100 200 300 400 500 600
-5

0

5

Figure 18 Comparison between
the software simulation results
and post-layout simulation results
of the FastICA function for the
third dataset in Fig. 11.
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the source signals and the post-layout simulation results. The
average and minimum absolute correlation coefficients are
0.9822 and 0.9678, respectively. The SIR results for the 16-
channel source signals and the post-layout simulation results
with the first dataset are 22.2621, 13.0944, 18.5266, 14.6086,
14.0360, 19.4625, 12.1755, 14.3472, 17.7386, 13.8883,

13.5538, 27.8766, 12.8188, 16.7454, 13.8240 and
14.1117 dB, respectively, with an average value of
16.1919 dB. The results show that the separation quality of
the proposed cost-effective FastICA hardware implementation
is satisfactory. Figures. 20, 21, and 22 show the comparison
results of the re-reference, synchronized average and moving
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average functions, respectively. As can be seen, the absolute
correlation coefficients can be up to 1 such that their accura-
cies can be guaranteed. According to the simulation results,
since the post-layout simulation results are close to the soft-
ware simulation results, the function of the hardware imple-
mentation can be validated with enough accuracy.

5.3 Evaluation and Comparison Results

According to the post-layout implementation results of the
proposed FastICA hardware architecture, Table 6 summarizes
post-layout characteristics. The power consumption results of
the proposed hardware architecture for the FastICA process-
ing are measured after RC extraction of the placed and routed
netlist with Synopsys PrimeTime. The FastICA hardware ar-
chitecture consumes 19.4 mWat 100 MHz when 16 channels
are activated. Figure 23 shows the power consumption results
among different number of channels. In the proposed FastICA
hardware architecture, the power consumption results of dif-
ferent number of channels are close since the PU1 and PU2 are
frequently utilized due to the heavy computations of the
updating step [16] in (29) with the sample number of 512.
On the other hand, Fig. 24 shows the energy evaluation results
among different number of channels. As can be seen, with
higher channel number, the energy consumption increases
since the computation time increases due to the larger compu-
tational complexity. For the proposed FastICA hardware ar-
chitecture, we target on the FastICA processing for the EEG
data with the window size of 2 s and the sampling rate of
256 Hz. As can be seen in Table 6, since the maximum hard-
ware computation time for the 16-channel FastICA processing
is 1.85 s at 100 MHz, the maximum computation time is
shorter than 2 s. That means the proposed FastICA hardware
architecture can output 512 samples per channel every 2 s. In
other words, the throughput is 256 samples/s. Thus, the

proposed FastICA hardware architecture implementation can
support enough throughput and real-time application in this
work.

Table 7 lists comparison results in terms of application,
algorithm, arithmetic, number of channels/weight vectors,
sample size, speed, power dissipation, gate count, computa-
tion time, implementation approach, process technology, core
area and variable channel among the post-layout implementa-
tion results of the proposed FastICA hardware architecture
and the existing ICA implementations. In [20] and [26],
FPGA implementations are used for two-channel ICA pro-
cessing with the operating frequencies at 12.288 and
50 MHz, respectively. The number of gates in [20] is 11.469
thousand in FPGA approach; however, its computation time is
larger than 60 s for ANC. Based on the parallel ICA algorithm,
the operating frequency of the ICA implementation on FPGA
is 20.161 MHz [21, 22] and between 21.357 and 35.921 MHz
[23] for image processing. The design of [28] operates at
68 MHz on FPGA using INFOMAX algorithm for four-
channel EEG signals processing. In [31, 32], the hardware
implementation can achieve eight-channel FastICA process-
ing with a dedicated EVD processor. In [33], the self-
configured ICA implementation can achieve 16-channel pro-
cessing with dedicated principal component decomposition
engine (PCDE) for EVD processing. Since the implementa-
tion approach information and post-layout results of the over-
all architecture are not provided in [29], this low-complexity
pioneer work is not listed in Table 7 for hardware comparison.
In this work, the proposed hardware architecture can perform
the FastICA processing with a variable number of channels
from 2 to 16. By proposing two reused PUs for the prepro-
cessing and the fixed-point algorithm in the FastICA algo-
rithm, the gate count of this work is only 47.43 % higher than
that reported in [31], while the processing capability in this
work can be up to 16 channels and 512 samples that are two
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the software simulation result and
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the software simulation result and
post-layout simulation result of
the moving average function.
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times as those provided in [31]. The gate count of this work
with floating-point implementation is 5.79 times as that re-
ported in [32] with fixed-point implementation; however, the
FastICA processor in [32] is only for eight-channel electro-
corticography (ECoG) signal processing. For 16-channel EEG
signal processing in our work, the separation quality results in
Section 5.2 could be guaranteed using the floating-point arith-
metic and two times sample size. Although the ICA hardware
[33] can provide the 16-channel FastICA processing with
good separation quality, the variable-channel feature is not
offered. On the other hand, the core size of [33] is larger than
that of this work even considering the difference of process
technology. In summary, this hardware architecture is cost
effective while considering the satisfactory separation quality
for 2-to-16 channel EEG signal processing application. In ad-
dition, the user-defined parameters as well as the functions of
re-reference, synchronized average and moving average add
the flexibility to the proposed hardware architecture.

6 Conclusion

In this work, we propose the cost-effective and 2-to-16
variable-channel FastICA hardware architecture for EEG

signal processing. With the Gram-Schmidt based whit-
ening in FastICA, the proposed two PUs can be shared
between the preprocessing and the fixed-point algorithm
to increase the hardware efficiency of the presented
FastICA hardware architecture. The functions of re-ref-
erence, synchronized average and moving average as
well as the user-defined parameters are also supported
in the proposed FastICA hardware architecture to attain
the flexibility. The evaluation and simulation results
demonstrate that the proposed hardware architecture
can achieve the satisfactory BSS quality and attain an
efficient hardware usage. On the other hand, if more
than 16-channel capability is demanded, the sample size
must be largely increased, where the analysis is shown
in Fig. 3, such that large memory size will be requested.
This will be the near future work while considering
separation quality and memory size with larger sample
size for larger channel number.

Table 6 Summary of the post-layout characteristics.

Power supply 1.0 V

Max. Clock 100 MHz

Core power for 16 channels 19.4 mW

Gate count 401Ka

Core area 1.300×1.100 mm2

Pin count 131

Process technology TSMC 90 nm CMOS

Max. Computation time 1.85 s

a This number is counted using the size of two-input NAND gate
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Figure 23 Power consumptions in linear scale of the proposed FastICA hardware architecture versus different number of channels.
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hardware architecture versus different number of channels.
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