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Abstract— This paper proposes a continuous location and
skeletal tracking system using multiple RGB-Depth sensors
(such as Kinects) deployed along a corridor with overlapping
coverages. First, we transform the coordinates of all sensor
into a unified coordinate. Second, the system recognizes users
(such as patients under rehabilitation) from different views of
these sensors and classifies them by their patient IDs. Third,
the patient information can be continuously handed over among
sensors when they move around the area. Experiment results
show that the skeletal association during handover achieves
approximately 90.61% in accuracy and 96.89% in precision in
44,817 experiment trials. By our observation, injured people
possess asymmetric gait parameters especially on the ratio of
the duration of the swing/stance phase. For example, the injured
foot generally has a longer swinging duration than the healthy
side. The proposed system has potential in patient rehabilitation
monitoring applications.

Keywords: Depth sensor, Gait analysis, Rehabilitation, Sensor
network, Skeleton tracking.

I. INTRODUCTION

For people suffering from neurological disorder, they typ-
ically have limited mobility. Traditionally, rehabilitation and
physical therapies are exercised to help their recovery, during
which the medical personnels need to monitor such patients to
diagnose their posture problems. Nowadays, non-contact sens-
ing technologies, such as RGB-Depth cameras, are promising
tools to help track the locations and postures of the patient
without the presence of medical personnel. Posture tracking
is an interesting but challenging problem introducing various
forms of applications such as activity recognition, human-
machine interaction, and pose mimicking. To develop an
effective solution, both high dimensionality and severe self-
occlusions of human behavior need to be conquered. Marker-
based optical motion capture (MOCAP) [1, 2] provides a
possible solution. However, it requires complex hardware setup
in a specific area and target users need to be tagged in advance.

Recently, non-contact RGB-Depth sensors appear as
promising sensing tools for posture tracking. For example,
Kinect has been successfully applied to the fields of video
games, surveillance, and healthcare. The main technology
behind the Kinect sensor is depth sensing, which is able to
reconstruct 3D skeletons of human bodies using the captured
RGB and depth images. However, such RGB-Depth sensors
normally have limited coverage per sensor (about 3 to 5
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meters by one Kinect). To remove this limitation, this research
considers using multiple RGB-Depth sensors for continuous
tracking of rehabilitating patients’ motions and postures. The
achievements of this research are:

o The transformation of multiple sensors’ coordinates into
one common coordinate system

« The skeleton association during handover among sensors

« Continuous gait analysis with skeletal movements con-
tributed by multiple sensors.

We have performed experiments to verify the feasibility of
our system with the Kinect API on Microsoft .net Framework
4.0 with six subjects. Then, we used the recorded coordinates
of the skeletal joints to perform gait analysis. Our system can
capture and derive gait parameters such as gait length, gait
duration and portion of the stance/swing phase within one
gait when a user walks inside its covering area. With such
capability, we can construct a tracking area and observe peo-
ple’s walking behaviors. Our observation shows that an injured
person tends to have a shorter stance phase on the injured side
and prolong the supporting duration on the normal side, while
a healthy person generally shows symmetric characteristics on
both sides.

The rest of this paper is organized as follow. Section II
presents the related works. Section III introduces our system
infrastructure. Section IV shows our experimental results.
Section V concludes this paper.

II. RELATED WORKS

A. Indoor Activity Tracking

Early development for location tracking includes Active
Bat [3] and Cricket [4]. RADAR [5] adopts the Wi-Fi in-
frastructure for indoor localization and its extensions includes
[6, 7]. Inertial sensors are used for activity recognition [8, 9]
and pedestrian tracking [10, 11]. Vision-based solutions are
discussed in [12, 13]. Later, Kinect was developed as a motion
sensing device for Microsoft Xbox, in which an RGB camera,
an infrared depth sensor, and a microphone array mounted on
a horizontal bar are embedded. It also has the capability of
identifying human skeletal structures. Thus, tracking human
skeletal structure in its field of view [14] become possible.
Recent applications of Kinects are discussed in [15, 16].
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Fig. 1. Properties of the Kinect sensor.
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B. Gait Analysis

Human gait analysis has extensive applications in clinical
diagnoses and rehabilitations, such as neurological diseases
[17] and fall detection [18]. Marker-based systems are possible
solutions, but unfortunately, users have to be tagged when
tracking. Force or pressure platforms can observe further
information [19], but the sensing field is quite limited and
the measurements only contain information from lower limbs.
Accelerometer-based sensor arrays provide a cheaper alterna-
tive [20], but the test subjects must be tagged and continuous
sensor calibration is needed. Advanced vision systems and
depth cameras are non-intrusive tools for gait analysis [21, 22].
Kinect is developed based on depth cameras and has been
used in biometrics verification [23, 24] and Parkinson’s disease
analysis [25]. Advanced skeletal tracking applications such as
[26] are also proposed to broaden the conventional usage as a
gaming console.

ITI. SYSTEM INFRASTRUCTURE

A single Kinect sometimes barely provides sufficient skele-
tal information for gait analysis, and even misses a human
passing by easily. The major reason is that a Kinect has
only limited 57° forward-facing horizontal field of view with
maximum 3.5m in depth. Fig. 1(a) shows the axes of a Kinect
sensor and Fig. 1(b) shows the area where the skeleton of a
175¢m-tall subject can be tracked when the Kinect is placed
0.8m above the floor. In order to overcome the limitations, our
non-contact posture monitoring system contemplates multiple
Kinects, as shown in Fig. 2, over a corridor to track and
record the locations of 20 skeletal joints continuously when
the subjects enter the tracking area.

In our scenario, the system should be able to monitor the
subjects’ gaits. It can handle handover events continuously
when the subjects move from the field of view of one Kinect to
another, and observe gait parameters in the tracking duration.
Skeletal tracking is one of the popular way to achieve the goal
of gait analysis, as most of the abnormalities can be detected
by the captured joint motions of the lower limbs.

Theoretically, a single Kinect sensor can track a full skeleton
without clipping in a 2.8m straight line with its field of view,
but it requires the user’s face, upper body and pre-processing
time for the Kinect sensor to successfully identify and track a
skeleton. Therefore, the actual skeletal tracking region is much
narrower than the field of view described in specifications
while the tracked subjects pass by the field of view instead of
staying in it. In order to track skeletons robustly, visualize their
locations and identify postures correctly, we develop an indoor
tracking service by using multiple Kinects with seamless
handover capabilities so that the coverage limitation can be
alleviated. To develop the multiple-Kinect infrastructure, we
should consider the following issues:

A. Coordinate Transformation among Multiple Kinects
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When a user enters the tracking area, the system starts
tracking the skeleton automatically and continuously until the
user exits the tracking area. The recorded skeletal frames are
sent to the data collecting server via LAN connections, the
synchronization of the recorded frames is done by merging the
Kinect time stamp of the recorded frame on the server side. To
combine the skeletons detected by multiple Kinects in overlap-
ping fields of view, a common coordinate system of multiple
Kinects should be established to ensure the measurements of
one Kinect can be successfully identified and handed over to
another. Each coordinate of a Kinect can be transformed to the
common coordinate using the rotation matrix derived from the
orientation and the displacement of the device.

Let (6%,0;,0%) be the orientation of a Kinect device
K* around the three axes of the common coordinate, and
(Ax?, Ay, Az*) be the displacements of the device from
(0,0). Let S* = {ul|n = 1,...,20} be the skeleton detected
by Kinect K¢, where ut,ul,...,ub, be the skeletal joints.
Each joint coordinate u?, of the Kinect K* can be converted
into common coordinate using the following transformation,
denoted as Tk (-):

Az’
Txi(uy) = R.(02)Ry(0,)Ro(0;) - uy, + |Ay*| (D)
Az
where the three rotation matrices are:
_ [cos @ —sinf: O]
R.(0)) = |sin®. cosfl 0 (2)
| 0 0 1]
‘ [ cos 0; 0 sin 02_
R,0)=1| 0 1 0 3)
|—sinf, 0 cos@, |
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Fig. 4. Deployment of Kinect sensors.

1o 0
R.(6;) = |0 cos® —sind, 4)
0 sin@:  cosf’

The Kinect sensor can provide a three-dimensional virtual
skeleton consisting of 20 coordinates of skeletal joints at the
sampling rate of 30 frames per second.

B. Skeleton Association for Handover

Since there might be several people moving around in
the tracking region simultaneously, and the tracking region
is covered by multiple Kinects with overlapping fields of
view. The system infrastructure needs to identify whether the
skeletons detected by different Kinects belong to the same
person or not. The observed coordinates of the skeleton joints
are transformed and compared to make decisions. However,
some joints might be obstructed during the tracking; therefore,
the skeleton might not consist of a complete 20 fully tracked
joints, and some joints are only inferred or become not
available at all.

Each Kinect can detect two skeletons simultaneously, we
denote two skeletons detected by Kinect K% as S% and S°.
When a skeleton frame S° = {u! |n = 1,2, ...,20} is detected
by Kinect K¢, the skeletal joints are partitioned into three
subsets J}, . Jf,; and J;, according to their visibility in
the field of view of K*. The tracked set J;,, includes the
coordinates of the tracked joints, the inferred set J;, ¢ contains
the coordinates of the inferred joints, and those which belong
to the non-tracked set J¢ , do not have sufficient position
information and will be discarded in our design. Let K¢, K7 be
the two Kinects and both detect a single skeleton in their field

of view, say ' = {ul,ub, ..., uby}, 87 = {ul, ul, ..., uly},
where u* and v’ are three-dimensional vectors denoting the
positions of the tracked skeleton joints.

Let Cij = {nlu;, € Jjy,u), € J/;} be the subset of
common tracked joints detected by both K* and K7, and ¢; ;
be the averaged joint position error, which is defined as:

1 ) .
€ = o Z [T (uz,) — Tres (u)] 5
‘ Z’]| neC; ;

®)

where Tgi(u?) denotes the transformed location of joint
coordinate u; detected by Kinect K* in the common coordinate
system. The system associates two skeletons S¢ and S/ as the
same person if €; ; < dyp,.

Fig. 3 illustrates an example of the association. Kinect
K' detects two skeletons S and S and Kinect K7 detects
S7. The system will calculate associations for {S%, 57} and
{87,879} 1f €9 < dy,, the system will associate skeleton S
and S7 as the same person, instead of S? and S7. If both €%
and €7 are smaller than dyp, then the system will associate
the one with S7 that creates the smallest difference.

To determine the proper distance threshold dy; for asso-
ciation, we have performed the corresponding experiments
using two Kinects at various distances d;; and different
viewing angles 0; ;. The deployment of two Kinects system is
illustrated in Fig. 4. In our experiments, a single subject is told
to walk in front of two Kinects ranging each other from 1, 1.5
and 2 meters, in parallel deployment (6; ; = 0°) illustrated in
Fig. 4(a), and at different viewing angles of 0; ; = 30° and 60°
as shown in Fig. 4(b). Thus, total nine different configurations
can be obtained.

The testing field is a 10m x 10m indoor area with sufficient
illumination approximately at 400Ix. The data set contains ten
recording trials of ten different subjects for each of nine con-
figurations. Each recording trial elapses for about two minutes
and approximately 1,500 pairs of skeletal frames are tracked
simultaneously by both two Kinects in one configuration.

The results are shown in Fig. 5, where we group the frame
pairs by the number of the tracked common joints |C; ;|
observed by K% and K. The column chart shows the average
joint distance error €;;, and the area chart represents the
number of frame pairs containing the corresponding number
of tracked common joints. We set the association distance
threshold dy;, = 25c¢m, as the average distance errors of the
tracked common joints never exceeds 25¢m for a single person
moving in the coverage region in all configurations.

C. Gait Analysis with Skeletal Movements

By using the designed association rule and the handover
function, we create a rectangular tracking area with the Kinect
array to track the locations of skeletal joints continuously.
To get the key parameters for gait analyses, two types of
information are required:

» The swinging traces of both foot joints.

o The time of foot strike events on both feet.

The swinging trace of a foot in the common coordinate
system can be obtained by merging the coordinates of the

157



25 = = 3000
O# Frame Pairs Average Joint Error

2500
" 20 o
5 2000 £
9 2
g N d 1500 £
z o
810 / «
5 ~ 1000 5
E 1 2
5 d N 500 2
7 Z

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Common Joints Observed

Fig. 5. Average error distance €; ; and the number of frame pairs by different
numbers of tracked common joints |C; ;|.

)

{2

Y

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 106% 110%
right left i ; left right i right
foot strike  toc off i foot strike  toc off : foot strike

right swing phase
left stance phase

| right stance phase |
I left swing phase [

Fig. 6. Illustration of a normal human gait cycle.

foot joints from the corresponding side of the Kinect system.
Fig. 6 illustrates a normal human gait cycle. The stance phase
of a single foot starts with the corresponding heel striking the
ground and ends with the toes leaving it. We define ¢ to be
the angle between the segment between ankle to body center,
and the segment between body center and its projection to
the ground, which is assumed to be perfectly horizontal. In
this research, the foot strike events are detected by finding the
local maximums of angle ¢.

To avoid obstructions, we deploy two pairs of Kinect
systems to track both left and right sides of the subject’s
skeleton separately. Then, we use the foot strike events to
extract the movements of both feet in the entire swinging
trace. When a maximum is identified as a foot strike event, the
succeeding maximum will be the event that the ankle is swung
behind the body, so the next actual foot strike event will be
the next other maximum of ¢. With the recorded sequence of
joint coordinates, ¢ can be derived from the motion of skeletal
joints recorded by the Kinect pairs on both sides. Fig. 7 shows
the change of ¢ of the right foot ankle on a normal subject in
the duration of two gait cycles.
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Fig. 8. Variation of ¢ during period of two right gaits.

To obtain a continuous stream of joint coordinates on each
side, the Kinect pair on each side weights their coordinate
during the handover period. When the first Kinect K* detects
S?, the weight of the coordinate provided by K is 1. After S
is detected by K7 and the system associates S? and S7 as the
same person, the system will mark the start of the handover
period. When S? disappears, the system will mark the end of
the handover period. The weight of the coordinate of S° is
linearly decreased to O during the period, while the weight of
the coordinate of S7 is linearly increased to 1. The weight
function is illustrated in Fig. 8.

Let T'y[n],n = 1,...,N and I';[m],m = 1,..., M be the
ankle movement curves within one gait cycle of the left and
right sides, respectively. The step vectors vy and v, of the left
and right feet can be calculated as vy = I'y[N] — I'/[1] and
vy = I'.[M] — T';[1]. From the two curves and two vectors,
we can derive the following key terms for gait analysis:

« Step length: the distance between corresponding succes-
sive points of heel contact of the opposite feet, which can
be calculated from ||vg|| and ||v.||.

o Swinging area: the areas (denoted as Ay and A,) which
are bounded by I'y, vy and I',, v,.

o Gait duration: the time duration of the left step and the
right step (denoted as ¢, and ¢,.), which can be determined
using the successive foot strike event on the same foot.

o Time duration of the swing/stance phase: the time dura-
tion of the swing/stance phase can be determined using
the foot strike event and the toe off event. The portion of
the swing phase over the entire gait duration of both feet
are denoted as 74 s,y and 7y gqp-

In our experiments, different subjects are told to walk in
straight line into the tracking area covered by four Kinects one
by one. These terms will be calculated and observed using the
recorded frames with foot strike and toe off event detection
mechanisms.

IV. EXPERIMENT RESULTS

Two sets of experiments are performed to verify the asso-
ciation rules described in Section III-B and the gait analysis
method proposed in Section III-C.

A. Accuracy of the Skeletal Association Rule

In a common rehabilitation environment, there’s usually
a medical assistant moving beside the patient to prevent
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TABLE I
PERFORMANCE OF THE ASSOCIATION RULE.

same subject
19,703 (43.96%)
2,221 (4.96%)

different subjects
1,988 (4.44%)
20,905 (46.65%)

associated
not associated

accidents or provide medical care or suggestions. This implies
that our system may operate under the circumstances that there
are multiple people in the monitoring region. We simulate this
environment by ordering two subjects to move simultaneously
in the coverage area of the Kinect tracking system. The two
subjects are told to wear clothes with contrasting colors. In
our case, one is red and another is cyan.

To identily whether the associaled skeletons belong o the
same subject, the system will examine the hue value of the
majority color on the skeletal joints covered by clothes after a
pair of skeletons are associated as a single person. If the hue
of the majority joint color resides within 90° and 270°, the
system classifies the color as cyan, otherwise, as red.

We perform a set of experiments to observe the ratio of
correct associations. The Kinects are deployed in parallel,
ranging each other from 1.5m. Two subjects wearing clothes
in contrasting colors are told to move around in the coverage
area for about 1.5 hours. The system applies the association
rule to the tracked skeletons as described in Section III-B,
and we use the color as the ground truth of correctness. If the
skeletons of the same subject appears in both Kinect coverage
areas but no association is occurred for 500ms, we consider
the system fails to associate the skeletons.

We repeat the experiment trial ten times, where total 44, 817
usable trials which at least one skeleton is detected by the
Kinects are extracted. The results are shown in Table I, we
classify our association results into four cases:

o True positive (TP): the associated skeletons belong to the
same person in reality.

o True negative (TN): skeletons belong to different people
are not associated.

o False positive (FP): the associated skeletons belong to
different people in reality.

o False negative (FN): skeletons belong to the same person
are not associated.

The terms of accuracy and precision are defined as:

B ITPUTN] ©
AR = TP UTN UFP U FN)|
. |rP|
precision = TPUFP] (7N

Following the association rule, 90.61% accuracy and 96.89%
precision can be achieved via the developed multiple Kinects
tracking system.

B. Observation on Gait Parameters

In a 10m x 10m testing field, we deploy two pairs of
Kinect systems facing the opposite directions to create a
rectangular coverage area. The two Kinect systems in each

4
|
g { 5
|
L
1.2m
5.5m

(a) Deployment of Kinects

(b) One of the Kinect pairs

Fig. 9. The configuration of two Kinect system pairs for gait analysis.
TABLE II
GAIT ANALYSIS PARAMETERS OF SIX SUBJECTS.

\ | N1 [ N2 N3] RK4] LK5]| RA6 |
[Jvel| (m) 1.15 0.80 1.17 1.06 0.79 1.01
Hvr (m) 1.10 0.79 1.28 0.72 0.24 0.31

Ay (m2) | 0.147 | 0.086 | 0305 | 0.579 | 0.017 | 1.079
A, (m2) ] 0.153 [ 0.095 | 0.267 | 0.170 | 0.064 | 0.176
te (s) 1.86 1.80 1.73 2.26 2.47 1.94
tr (s) 1.81 1.67 1.67 2.87 1.90 2.73
re.sw (%) | 4140 | 44.00 | 43.99 | 20.72 [ 54.81 | 43.18
rrsw (%) | 3971 | 4553 | 4536 | 75.51 | 35.09 | 52.34
height (m) 1.80 1.65 1.74 1.73 1.70 1.75

pair are deployed in parallel, ranging each other from 1.5m,
and the distance between the opposite system is 5.5m. This
configuration creates a tracking area approximately 4m long
and 1.2m wide, which is illustrated in Fig. 9(a).

We recruit six subjects to take an 8m round trip within the
tracking area. In each recording session, a subject is told to
walk into the tracking area covered by four Kinects.

Among the six subjects, N1, N2 and N3 are healthy;
RK4, LK5 and RA6 have injures on their right knee, left knee
and right ankle, respectively. The results in Table II show that
the injured subjects possess obvious asymmetric gait parame-
,A.), and
the ratio of swing and stance phases (7¢, 5w, 7r sw) On the left
and right feet comparing to the healthy subjects. According to
our observation during the experiments, subjects RK4, LK5
and RA6 tend to put less pressure on their injured foot by
decreasing the time duration to support the body weight.
Such characteristic is reflected directly on the swing/stance
phase portion over the entire gait. The normal subjects have
approximately the same swing/stance phase portion on both
feet. However, among the injured subjects, the injured feet can
be identified easily as the injured foot has significantly larger
swing phase portion over 50% comparing to the healthy side
in the whole gait cycle.

V. CONCLUSIONS

In this research, we propose a non-contact tracking system
using multiple Kinects to continuously track human skeletons,
which diminishes the problem of the limited field of view of a
single Kinect. We devise a skeleton association rule and imple-
ment handover function to communicate the skeletons detected
by different Kinects to determine whether they belong to the
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same person. A set of experiment with different viewing angles
and inter-Kinect range are evaluated to help us design the pa-
rameters of the association rule. We perform experiments with
six subjects to check the successful rate of associations. The
configuration achieves about 90.61% in accuracy and 96.89%
in precision in 44,817 usable experiment trials. Finally, we
use two pairs of Kinect systems to perform gait analysis with
the continuous joint coordinates provided on both sides of the
tracking area, the injured subjects who possess asymmetric gait
parameters, especially with the swing/stance phase portion,
can be identified easily with our system.
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