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Abstract—Detecting students’ attention in class provides key 

information to teachers to capture and retain students’ attention. 

Traditionally, such information is collected manually by human 

observers. Wearable devices, which have received a lot of 

attention recently, are rarely discussed in this field. In view of 

this, we propose a multimodal system which integrates a head-

motion module, a pen-motion module, and a visual-focus module 

to accurately analyze students’ attention levels in class. These 

modules collect information via cameras, accelerometers, and 

gyroscopes integrated in wearable devices to recognize students’ 

behaviors. From these behaviors, attention levels are inferred for 

various time periods using a rule-based approach and a data-

driven approach. The former infers a student’s attention states 

using user-defined rules, while the latter relies on hidden 

relationships in the data. Extensive experimental results show 

that the proposed system has excellent performance and high 

accuracy. To the best of our knowledge, this is the first study on 

attention level inference in class using wearable devices. The 

outcome of this research has the potential of greatly increasing 

teaching and learning efficiency in class. 

Keywords—Activity Recognition; Attention Sensing; Body-Area 

Network; Machine Learning; Wearable Computing 

I.  INTRODUCTION

The Internet of Things (IoT) [2] and wearable technologies 
[16] have rapidly become key research areas in computer
sciences, as they have multiple real-life applications in a wide
range of domains. A wearable device is a microelectronic
computing and sensing system that can be comfortably worn
by its users. Its embedded software and sensors allow
measuring users’ vital signs and ambient conditions. In contrast
to traditional computers, wearable devices are lightweight,
small, generally inexpensive, and close to the wearer’s bodies.
They are thus highly promising for collecting and analyzing
human behavioral data.

In the technology industry, many of the largest companies 
such as Google, Apple, and Microsoft have recently designed 
wearable devices. Numerous traditional accessories have been 
transformed into wearable devices [16], including glasses, 
watches, clothes and even diapers. As pointed out in a report 
by the International Data Corporation [10], the worldwide 
shipment of wearable devices is expected to reach 173.4 
million units by 2019. Numerous research studies have been 
devoted to wearable applications, such as detecting users’ 
activities [5], social actions [8], falls [24], and users’ browsing 
behaviors in retails [21]. 

Although wearable technology has been applied in several 
domains, it is rarely considered for measuring students’ 
attention levels in class. Attention can be defined as the 
behavioral and cognitive process of selectively concentrating 
on certain pieces of information [1]. In a previous study [23], it 
was found that selective and sustained attention has a 
significant impact on learning. Learners’ attention is closely 
related to their learning efficiency and learning outcomes. 
Knowing the attention levels of students in class would thus 
greatly benefit both students and teachers. This information can 
help students better understand their learning processes and 
adapt their learning strategy, while teachers can use this 
feedback to gauge students’ interest and adjust teaching 
strategies to capture and maintain students’ attention. 

Traditional ways of measuring students’ attention levels 
include filling questionnaires [22], performing experimental 
tests [13], and direct observation [14]. Although these methods 
are suitable in some scenarios, they are time-consuming, 
require human intervention, and most of them cannot be 
applied in real-time, or to a large group of students. Some 
studies [3] have used surveillance cameras and face recognition 
models to automatically measure students’ attention levels. 
However, the accuracy of these approaches is substantially 
influenced by factors such as lighting, camera positions, and 
background interference. Some studies [30] used eye trackers 
to detect visual attention. However, these devices are quite 
expensive and prolonged use may cause eye injury [19]. 

To address these drawbacks of current approaches, this 
study designs an approach for measuring students’ attention 
levels in class using low-cost wearable devices. Achieving this 
goal is however challenging since attention is an internal 
cognitive process that can only be indirectly observed through 
its effects on external actions, such as motion changes, visual 
focus, and physical behaviors. To tackle this challenge, this 
paper proposes a novel system that captures head-motion, pen-
motion, and visual-focus data for attention inference. The 
major challenges of this research are listed below. 

1. Recognizing users’ different activities requires the use of
multiple sensors, which generate heterogeneous data. As
more types of sensors are used, it becomes increasingly
difficult to jointly analyze the heterogeneous data that they
generate to build an inference model

2. Identifying the features to be used to build an inference
model is also challenging. Human activities are usually
complex and can be described using numerous features.
When both physical and psychological data are collected,
feature selection becomes even more difficult.978-1-5386-2723-5/17/$31.00 ©2017 IEEE 



 

3. Collecting accurate and reliable data is often difficult in 
real-world applications. Data can be noisy. Moreover, in 
many situations, data are streaming at various speeds and 
are unbounded. Also, real-time applications require fast 
processing time. 

4. Another challenge is that personal differences may 
influence the success of attention detection, as different 
persons may behave differently in the same situation. 
Moreover, some participants in the experimental evaluation 
may lie by pretending to have been focused when they were 
distracted. 

To address the above issues, we propose a new system that 
integrates a Head-Motion module, a Pen-Motion module, a 
Visual-Focus module, and an Active-App module for attention 
inference. These modules run on inexpensive hardware, and 
rely on machine learning techniques to select appropriate 
features to recognize attention-related activities, such as head 
motions, hand motions, and visual behaviors. These modules 
are implemented on the Raspberry Pi [20] platform. In 
particular, the J48 decision tree learning algorithm [27][28] is 
used to train the motion classification models using 
discriminative features of sensor data. The behaviors 
recognized by these models are then fed to an attention 
inference engine, which consists of two different attention 
inference algorithms. One applies a rule-based approach, and 
the other employs a data-driven approach. Finally, visual 
reports are generated and presented to the users. Extensive 
experimental results show that the proposed system is efficient 
and accurate. The outcome of this research has the potential of 
greatly increasing teaching and learning efficiency in class. 

The remainder of this paper is organized as follows. 
Related work is reviewed in Section II. Section III presents the 
proposed system. Section IV evaluates the performance of the 
proposed system. Finally, Section V draws the conclusion and 
discusses future work. 

II. RELATED WORK 

This section first reviews the main studies on attention 
detection. Then, it takes a broader perspective to review other 
models of human activity recognition. Traditional methods for 
measuring attention levels can be generally categorized into 
three types. The first type consists of asking learners to fill 
questionnaires [22]. The second type is physiological 
experiments [13], where experts observe the reactions of 
learners when performing tasks, to infer their attention levels. 
The third type is direct observation [14], where experts 
evaluate the thought process of learners based on data recorded 
during a set period of time using devices like video and voice 
recorders. Although traditional methods are commonly used, a 
major drawback is that they require human intervention. 

Various devices have been used for attention inference: 

1. Electroencephalography devices [15][17] record the 
electrical activity of human brains. Although they can 
measure brain waves of a person, they ignore other aspects 
such as body movements and visual focus. 

2. Eye trackers [29][30] detect eye movement trajectories. 
However, they can be quite expensive and long term use 
may cause eye injuries [19]. 

3. Video cameras [3] have been used to detect facial 
expressions and body movements. However, their use 
raises privacy issues, requires more computing power, and 
their accuracy is influenced by factors such as lighting 
conditions, camera positions, and background interference. 

In terms of human activity recognition, solutions can be 
categorized into sensor-based and vision-based approaches. 
Sensor-based approaches rely on body-worn inertial sensors to 
infer physical activities and lifestyles [11]. Daily routines of 
wearers have been detected using topic models [9]. In another 
study, single body-worn accelerometers were utilized to 
recognize social actions, including speaking, laughing, 
gesturing, drinking, and stepping [8]. Body-worn 
accelerometers have also been considered to recognize 
household activities for context-aware computing [5]. 
 A lot of vision-based solutions have been proposed. A 
camera-based surveillance system was designed for detecting 
human movements [18]. Other researchers [3] have explored 
the relation between head rotation, eye gaze direction and 
facial features to infer human attention. To reduce the 
computational cost for image processing, a collaborative model 
using a depth camera and an inertial measurement sensor was 
proposed [6]. The model uses ensemble classifiers at both the 
feature levels and decision levels. 

III. ATTENTION INFERENCE SYSTEM 

A. Classroom Scenario 

This study considers the following scenario (Fig. 1): (1) A 
teacher shows slides for teaching using a projector. Each slide 
contains a special mark, such as a school logo, used by our 
system to check if each student is paying attention to the slides. 
(2) The teacher has a computer in front of him/her, which acts 
as a server. It collects sensor data and infers students’ attention 
levels. (3) Each participating student sits at a desk and wears 
smart glasses or a smart cap. The wearable device is in either 
case equipped with a camera, an accelerometer and a 
gyroscope. (4) Each student uses a smart pen to take notes as 
usual. A SensorTag [26] embedded with an accelerometer and 
a gyroscope is attached to each pen. (5) Alternatively, a student 
may also take notes on his/her notebook. It is then assumed that 
notes are inserted in a PowerPoint file or using a PDF editor. 

 

 

Fig. 1. The classroom scenario considered in this work. 
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Fig. 2. Hardware components of our prototype system. 

B. Prototype Design 

This section presents the design of our prototype system, 
based on commodity hardware and a client-server architecture. 
On the client side, a wearable device implemented on a 
Raspberry Pi Model B+ [20] has been designed for sensing 
motion and the visual focus of users. It integrates a camera and 
a sensor board MPU 6050 containing a 3-axis accelerometer 
and a 3-axis gyroscope. The accelerometer and gyroscope of 
MPU 6050 are used to recognize head motions (e.g. 
raising/lowering the head), while the camera is used to capture 
the focused field of the wearer for visual-focus detection. 
These components can be easily integrated into a cap or glasses 
(see Fig. 2). A SensorTag is attached to each smart pen, and 
contains a 3-axis accelerometer and a 3-axis gyroscope. The 
SensorTag on the smart pen is used to detect hand motions (e.g. 
writing/still) of the user. The communication between 
SensorTag and Raspberry Pi relies on Bluetooth Low Energy 
(BLE) protocol. On the server side, Wi-Fi protocols and 
Apache Http Server Version 2.4 [25] are used to collect data 
sent from client side. Then, the pen-motion, head-motion and 
visual-focus modules are run on server to recognize behaviors 
of users. The recognized behaviors are then fed to an attention 
inference engine to calculate users’ attention levels. Finally, 
visualized reports are generated by the engine to indicate each 
user’s attention levels for different time periods. 

C. Overview of the System Architecture 

Fig. 3 shows the Input-Processing-Output (IPO) model of 
the proposed system for a single user. It handles streaming data 
using a batch model. During each iteration, it receives a batch 
of data, which includes: (1) The image of the special logo on 
slides. (2) The image data captured by the user’s smart 
glasses/cap. (3) 3-axis accelerometer (abbr. ACC) and 3-axis 
gyroscope (abbr. GYRO) data generated from MPU 6050 of 
smart cap. (4) 3-axis ACC and 3-axis GYRO data generated 
from SensorTag of smart pen. (5) The logs of Apps used by the 
users. The system outputs an attention level report and an 
activity report, which indicate the attention level of the user 
and his/her recognized behavior during each time period, 
respectively. The “processing” part of the system consists of 
five modules, namely the Head-Motion, Pen-Motion, Visual-
Focus, Active-App and Attention Inference Engine modules. 
These modules communicate based on a client-server 
architecture, as depicted in Fig. 4. These modules are explained 
in the following subsections. 

 
Fig. 3. The IPO model of the proposed system for a single user. 

 
Fig. 4. The architecture of the proposed attention inference system. 

D. Head-Motion Module 

Head motion is an external behavior that may serve as an 
important indicator of student attention. During the data 
preprocessing stage, raw sensor data are sampled and 
segmented. There are six sensor signal sources (received from 
a 3-axis ACC and a 3-axis GYRO). The sampling rate is 50Hz. 
Data are partitioned into uniform non-overlapping three-second 
segments. Segmented data are sent to the server.  

Let S = ás1, s2, ..., snñ be one of the sensor signal sources, 

where si (1 £ i £ n) is the i-th sample in S. The proposed system 
extracts the following six time-domain features related to 
energy or magnitude from S. 

· Mean is a measure of central tendency, which is defined as  

 !"#$(%) = &' != * &+$+=1
$ . (1) 

· Variance represents the expected squared deviation from 
the mean, which is defined as  

  ,#-(%) = * (&+.&'!)2$+=1
$  . (2) 
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· Root Mean Square (RMS) is the square root of the 
arithmetic mean of the squares of the values in S, which is 
defined as 

  /!%(%) = 0* 1&+22$+=1
$  . (3) 

· Average Absolute Difference (AAD) measures the 
statistical dispersion of consecutive samples in S, which is 
defined as  

  334(%) =  
* |&+.&+.1|$+=2

$.1  . (4) 

· Zero Crossing Rate (ZCR) measures the number of sign 
changes in S, which is defined as  

 56/(%) = * |&+7$ (&+).&+7$ (&+.1)|$+=2
2

 , (5) 

where sign(x) is a function which returns -1/+1 if the sign 
of x is negative/positive (0 is regarded as positive).  

· Mean Crossing Rate (MCR) measures the number of sign 
changes using the mean as baseline, which is defined as  

  !6/(%) = * |&+7$ (&+.&').&+7$ (&+.1.&')|$+=2
2

 . (6) 

Since there are two types of sensors (i.e., ACC and GYRO) 
and each sensor has three axes, calculating the above features 

results in (2´3´6)=36 features. Moreover, for each type of 
sensor, the system also measures the covariance and 
correlation between each pair of its two sensor signal sources. 

Let A = áa1, a2, ..., anñ and B = áb1, b2, ..., bnñ be two sensor 
signal sources in a segment. The covariance and correlation 
between A and B are measured using the following two 
formalizations. 

· Covariance measures how much A and B change together, 
which is defined as 

 689(3,:) = * |(#+.#;)(<+.<;)|$+=1
$  .! (7)!

· Correlation measures the strength and the direction of the 
relationship between A and B, which is defined as 

! !68--(3,:) = =89 (3,:)
>3>: !, (8) 

where >3!and >:  are the standard deviations of A and B, 
respectively. 

Since there are two types of sensors and each sensor has 
three axes, measuring the covariance and correlation between 
each pair of axes results in 12 features. Therefore, the system 
totally extracts (36+12) = 48 features. Then, the 48 defined 
features are taken as input by the head-motion module to train 
a classifier offline, which is then used for online recognition of 
head motions. Three head motions are considered: {Still, Up 
(raising the head), Down (lowering the head)}. The J48 
decision tree learning algorithm offered in Weka [27] is used 
for training phase. The training phase is performed in three 
steps. 

Step 1: Head-motion training data are collected and each data 
is labeled with its class. Let C be the set of classes 
{Still, Up, Down}. The result is a training set TrainDS 

= {(d1, g1), (d2, g2), ..., (dm, gm)}, where di (1 £ i £ m) 

is the i-th data instance and giÎC (1 £ i £ m) is the 
label of di. 

Step 2: Each training instance di is transformed into a feature 
vector fi described by the 48 defined features. This 
results in a transformed dataset FDS = {(f1, g1), (f2, 
g2), ...., (fm, gm)}. 

Step 3: This dataset FDS is fed to the J48 decision tree 
learning algorithm to train the head-motion classifier, 
called HM-Classifier(.). 

The trained classifier is then used for online recognition. 
As the server continuously receives segmented head-motion 
data from clients, it applies the HM-Classifier(.) to recognize 
the head-motion type of each segment. This is performed in 
two steps. 

Step 1: For each received segment, the 48 features are 
extracted, denoted as fSD. 

Step 2: HM-Classifier(.) is then applied to classify fSD. The 
output is its class label, denoted as HM-Classifier(fSD). 

Note that the number of features can be reduced by using 
the gain ratio goodness function [27][28] of the J48 classifier 
while preserving a high accuracy. 

E. Pen-Motion Module 

Pen motion is another external behavior that can help 
measure student’s attention. The pen-motion module is 
designed to detect if a student is writing on a piece of paper. 
The SensorTag on the smart pen sends raw 3-axis ACC and 3-
axis GYRO data at a sampling rate of 50Hz to the smart cap. 
The smart cap collects and segments the received data and 
then sends segmented data to the server every three seconds.  

The server then extracts the 48 features defined in Section 
III.D from the sensor data and classifies the student’s pen- 
motion data using a classifier. This classifier is trained once 
offline. Three types of pen motions are considered: {Still, 
Writing, Other}. For the training phase, segments of raw 
sensor data are manually labeled with these three classes. The 
training phase is done using the J48 classifier from Weka. The 
trained classifier is applied to online recognition every three 
seconds to detect student’s pen motions. As previously 
explained, the number of classifier’s features can be reduced 
using the gain ratio goodness function [28]. By applying this 
technique, the decision tree learning algorithm selects only the 
most discriminative features for motion recognition. In our 
implementation, this technique considerably reduces execution 
time for recognition, while preserving a high accuracy.  

F. Visual-Focus Module 

The visual focus of a human is also an important 
indicator of the attention, as humans tend to pay attention to 
objects appearing in the center of their visual field. In our 
implementation, a camera is attached to the smart cap. The 
assumption is that the camera captures what the student sees, 
and the images can thus reveal what is currently drawing the 
student’s attention. In our design, the camera is programmed 
to record image data only when the user’s head is in motion.  



 

 

Fig. 5. The system architecture of the visual-focus module. 

   

Fig. 6. Examples of slide detection using the SURF algorithm. 

 
Fig. 7. An example of feature point detection using the SURF algorithm. 

Considering the size of image data and transmission rate, 
the Visual-Focus module is run on the Raspberry Pi on the 
client side’s smart cap. Fig. 5 shows the workflow of this 
module, which consists of two sub-modules: Slide Detection 
and Hand Detection. 

(a) Slide Detection 

If the head-motion type recognized by the Head-Motion 
module is {Up} (i.e., raising the head), the Slide Detection 
module will be triggered to identify whether the user is paying 
attention to the slides. Our system assumes that a school logo is 
shown on each slide. If the logo is found in an image captured 
by the camera, it is very likely that the slide is within the 
student’s field of vision, and that the student is paying attention 
to its content. To find the logo from the captured image, we use 
the Speed-Up Robust Feature (SURF) algorithm [4] offered in 
the OpenCV library. Fig. 6 shows two examples of recognition 
results using SURF. As depicted in Fig. 7, SURF extracts 
feature points from the logo image and tries to match these 
points with the captured image. If the number of matched 

points is greater than a minimum matching number threshold d, 
the system assumes that the slide is within the student’s field of 
vision. Moreover, the system also verifies whether the slide is 
centered in the student’s field of vision. If the slide is off-center 

by a distance greater than a minimum off-center threshold q, 
the system assumes that the student is not looking at the slide. 

 
Fig. 8. An example of skin color mask for hand recognition. 

(b) Hand Detection 

If the head-motion type recognized by the Head-Motion 
module is {Down} (i.e., the head is lowered), the Hand 
Detection module will be triggered to check if the user’s hand 
appears in the captured image. This information will be further 
integrated with the recognition results of the pen-motion 
module to determine if the user is taking notes. The 
assumption is that a student’s hand should be visible in the 
images captured by the camera if he/she is taking notes, and 
that it should not be visible if the student is looking at the 
slides. To check if a hand appears in a captured image, we 
apply a method based on skin color masks using the YCbCr 
color space [7]. This method extracts all the potentially skin-
colored pixels from a captured image. If the Cb or Cr values 
of a pixel are in the [98, 142] or [133, 177] intervals, 
respectively, the pixel is considered as skin-colored [12]. For 
example, consider the left part of Fig. 8, which shows an 
image captured by the camera. The right part of Fig. 8 
illustrates the detected skin-colored pixels (represented as 
white pixels). If the number of skin-colored pixels is no less 

than a minimum pixel threshold s, the system assumes that the 
hand of the user is visible in the captured image. 

G. Active-App Module 

Considering that more and more students take notes on 
their notebooks and tablets during lectures, we found that 
identifying active Apps that are currently being used by the 
students is an efficient way to infer their attention level. In this 
work, it is assumed that notes are taken on PowerPoint, Word 
or PDF files. The Active-App module logs the Apps and files 
currently used on a student’s notebook or tablet, and sends this 
information to the server. The server uses this data to check if a 
student is paying attention to the course’s slides. 

H. Attention Inference Engine 

When user’s behaviors are detected (i.e., head motion, pen-
motion, visual focus, and Apps used by user), the proposed 
attention inference engine will infer the user’s attention level 
based on these behaviors. Two attention inference algorithms 
are proposed, called the rule-based approach and the data-
driven approach, respectively. 

(a) Rule-based Approach 

The main characteristic of the rule-based approach is that it 
infers student’s attention levels based on user-defined decision 
rules. These rules have the merit of being intuitive, 
interpretable and to allow fast recognition. Fig. 9 shows the 
workflow of the rule-based approach. The algorithm is an 
iterative method. In each iteration, it takes the recognition 
results of modules as inputs, and outputs an attention state. 
Two types of attention state are considered: {Focused, 
Unfocused}.  
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Fig. 9. Workflow of the rule-based approach. 

In an iteration, the algorithm proceeds as follows. At the 
beginning, the algorithm checks whether the user’s head-
motion type is {Still} or not. If it is true and the still duration is 
no less than a threshold, the user is likely in a daze and thus the 
algorithm outputs {Unfocused}. If the head-motion type is not 
{Still}, the algorithm then checks whether the user’s head-
motion type is {Up} or {Down}.  

If the head-motion type is {Up}, the algorithm uses the 
recognition result of the Slide Detection module to identify 
whether the slide appears in the user’s visual field. If the slide 
appears in the user’s visual field, the algorithm outputs 
{Focused}. On the contrary, it outputs {Unfocused} if the slide 
does not appear in the user’s visual field. If the head-motion 
type is {Down}, the algorithm uses the recognition result of 
hand detection to identify whether the user’s hand appears in 
the user’s visual field. If the hand appears in the user’s visual 
field, the algorithm uses the recognition result of the pen-
motion module to identify whether the user had written or not. 
If the recognition result of the pen-motion module is {Writing}, 
the algorithm outputs {Focused}. If the recognition result is not 
{Writing} or the hand does not appear in the user’s visual field, 
the algorithm uses the result of the Active-App module to 
check whether the user had used class-related Apps. If the 
result is true, the algorithm outputs {Focused}. Otherwise, 
{Unfocused} is outputted.  

 (b) Data-driven Approach 

A non-empirical approach is to use a data-driven solution. 
It uses machine learning methods to find hidden information in 
the collected data, and utilizes this information for building a 
decision model for attention inference. If there are more useful 
training data being used for model building, the inference 
results will be more accurate. Fig. 10 shows the workflow of 
the data-driven approach. The algorithm is an iterative method. 

In each iteration (also called window), it takes x-second 
recognition results of the Head-Motion, Pen-Motion, Visual-
Focus, and Active-App modules as inputs. In our 

implementation, x is set to 30. Then, the algorithm extracts 
high-level features from the input data and classifies the 
student’s attention state (i.e., Focused or Unfocused) using a 
classifier. The classifier is trained offline. For the training 
phase, the class of each training instance is manually labeled. 
The training phase is done using the J48 classifier from Weka. 

The trained classifier is applied to online recognition every x 
seconds to detect student’s attention state. 

 
Fig. 10. Workflow of the data-driven approach. 

 
Fig. 11. An example of the input of the data-driven approach. 

Next, we introduce the high-level features extracted by the 

data-driven approach. Let H1, H2, H3, and H4 denote the x-
second recognition results of the Head-Motion, Pen-Motion, 
Visual-Focus, and Active-App modules, respectively. Let Hi = 

áhi1, hi2, ..., hinñ, 1 £ i £ 4, where hij (1 £ j £ n) is the j-th data 
instance in Hi. Data instances in Hi are also called activities. 
For example, in Fig. 11, the 30-second recognition results from 

the head-motion module is H1 = áStill, Still, Down, Up, Down, 

Up, Still, Still, Down, Downñ. Let Ri = {ri1, ri2, ..., r|Ri |} be the 
set of activities in Hi. For example, H1 has three types of 

activities {Still, Up, Down}. Then, for each input Hi (1 £ i £ 4), 
the system extracts the following high-level features. 

l The number of two adjacent data instances in Hi that are 

different activities. For example, in the aforementioned H1, 

that number is 6. 

l The number of activities that are rik (1 £ k £ |Ri|) in Hi. For 

example, the number of activities that are {Down} in H1 is 

4. 

l The maximum duration of rik (1 £ k £ |Ri|) in Hi. For 

example, the maximum duration of {Down} in H1 is max{1, 

1, 2} = 2. 

l The minimum duration of rik (1 £ k £ |Ri|) in Hi. For 

example, the minimum duration of {Down} in H1 is min{1, 

1, 2} = 1. 

l The average duration of rik (1 £ k £ |Ri|) in Hi. For example, 

the average duration of {Down} in H1 is (1+1+2)/3 = 1.33. 

(c) Attention Scoring Function 

The attention scoring function is used to indicate the 
strength of the student’s attention level in a visual manner. 
Recall that in our proposed attention inference algorithms, in 
each iteration or window, they will output an attention state 

(i.e., {Focused} or {Unfocused}). Therefore, in the k-th 

iteration, k attention states are obtained. Let ST = ást1, st2, ..., 

stkñ be the ordered set of these k attention states. The attention 
score of ST is defined as 

Score(ST) = 
1

k
* 7(&?+)k+=1 ,                         (9) 

where 7(si) returns a value 71 (71 can be defined as a positive 
value) if sti is {Focused}, and returns 72 (72 can be defined as 
a negative value or zero) if sti is {Unfocused}. 

In addition to the above attention scoring function, 
teachers can design other interesting scoring functions 
depending on the requirements of the applications.  
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IV. EXPERIMENTS AND PERFORMANCE EVALUATION 

Experiments were conducted to assess the performance of 
the proposed Head-Motion module, Pen-Motion module, Slide 
Detection module, and the two attention inference algorithms. 

A. Performance of Head-Motion Module 

To assess the Head-Motion module’s ability at recognizing 
head motions, an experimental study with five participants was 
performed in a classroom environment. Three head motions 
were considered: {Still, Up (raising the head), Down (lowering 
the head)}. To simulate a real classroom environment, 
participants were asked to sit at a desk and wear the designed 
head-mounted wearable device, which contains a 3-axis 
accelerometer and a 3-axis gyroscope. A video camera was 
used to record the session for ground truth labeling. Totally, 
250 data instances were collected. Among those, 150 data 
instances were used for the training phase and the other 100 for 
the testing phase. Characteristics of the training and testing 
datasets are presented in Table I. In Table I, the training and 
testing datasets are denoted as HM_TrainDS and HM_TestDS, 
respectively. The number of data instances that are labeled as 
{Still}, {Up}, and {Down} are denoted as #Still, #Up, and 
#Down, respectively. 

To recognize head motions, the J48 decision tree learning 
algorithm offered in Weka [27] was used. The classifier was 
trained using the 48 features of the 3-axis accelerometer and 3-
axis gyroscope data, presented in Section III.D. Fig. 12 shows 
the recognition results of the constructed classifier for each 
head-motion type on the HM_TestDS dataset. As shown in Fig. 
12, the classifier achieves a high recognition rate, with an 
average precision of 89.1%, an average recall of 88%, and an 
average F-measure of 87.8%.  

B. Performance of Pen-Motion Module 

The performance of the Pen-Motion module was assessed 
in the same classroom environment. Three pen motions were 
considered: {Still, Write, Other}.  The participants were asked 
to use the designed smart pen, equipped with a 3-axis 
accelerometer and a 3-axis gyroscope. A video camera was 
used to record the session for ground truth labeling. Totally, 
200 data instances were collected, where 100 data instances 
were used for the training phase and the other 100 for the 
testing phase. Characteristics of the collected training and 
testing datasets for pen-motion recognition are shown in Table 
II. In Table II, the training and testing datasets are denoted as 
PM_TrainDS and PM_TestDS, respectively. The number of 
data instances that are labeled as {Still}, {Write}, and {Other} 
are denoted as #Still, #Write, and #Other, respectively. 

A J48 classifier was trained using the 48 features presented 
in section III.D. The precision, recall and F-Measure were used 
to assess the recognition rate of the pen-motion module. Fig. 13 
shows the recognition results of the constructed pen-motion 
classifier for each pen-motion type on the PM_TestDS dataset. 
As shown in Fig. 13, the constructed classifier achieves 
remarkable recognition rate with an average precision of 
97.27%, an average recall of 97.6%, and an average F-
measure of 97.6%. 

 

TABLE I.  CHARATERISTICS OF TRANING AND TESTING DATASETS FOR 

THE HEAD-MOTION MODULE. 

Dataset #Instance #Sill #Up #Down 

HM_TrainDS 150 50 50 50 

HM_TestDS 100 30 35 35 

TABLE II.  CHARATERISTICS OF TRANING AND TESTING DATASETS FOR 

THE PEN-MOTION MODULE. 

Dataset #Instance #Sill #Write #Other 

PM_TrainDS 100 35 35 30 

PM_TestDS 100 35 35 30 

 
Fig. 12. Effectiveness of the head-motion module on the HM_TestDS dataset. 

 
Fig. 13. Effectiveness of the pen-motion module on the PM_TestDS dataset. 

 

Fig. 14. Accuracy of the slide detection module for room EC500B when the 

matching number threshold is varied. 

 
Fig. 15. Accuracy of the slide detection module for room EC543 when the 

matching number threshold is varied. 
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C. Performance of Slide Detection Module 

The performance of the Slide Detection module was 
assessed in an experiment conducted in two different locations: 
a 10-person room (EC500B) and a 20-person room (EC543) at 
National Chiao Tung University. In this experiment, five 
participants were asked to attend a lecture and press a button 
when they were looking at the slides, to collect ground truth 
labels for the recorded data. The wearable device cameras 
captured images with a 800×600 resolution. The minimum off-
center threshold was set to 300. We evaluated the accuracy of 
the Slide Detection module under the following three factors: 
(1) the minimum matching number threshold, (2) the distance 
between the user and projection screen, and (3) the viewing 
angle (i.e., oblique or front facing) of the user. Fig. 14 and Fig. 
15 show the results. Based on Fig. 14 and 15, we make the 
following observations. First, we observe that if the minimum 
matching number threshold is increased, the accuracy increases 
until it reaches a peak, and then the accuracy decreases 
afterwards. This is reasonable since a higher threshold means a 
stricter requirement for image recognition. When the threshold 
is set too low, noise images may be considered as matching 
with the slide logo. Second, the accuracy decreases as the 
distance between the user and the projection screen increases. 
This is because as the distance increases, the captured image of 
the logo become smaller and less clear. As a result, the 
recognition rate of the system decreases. Third, the system is 
more accurate for front facing participants that for those 
viewing the projection screen from an oblique perspective.  

D. Performance of Attention Inference Engine 

The performance of the proposed attention inference 

engine, using the rule-based approach or the data-driven 

approach, was also evaluated. The experiment was conducted 

with ten participants. Each participant attended a distinct 50-

minute lecture in a classroom, seated front facing, at a 2m 

distance from the projection screen. A video camera was used 

for ground truth labeling. The head-motion and pen-motion 

classifiers, introduced in Section IV.A and Section IV.B, were 

used for head-motion and pen-motion recognitions, 

respectively. For the Slide Detection module, the minimum 

matching number threshold d and the minimum off-center 

threshold θ were set to 18 and 300, respectively. For the Hand 

Detection module, the minimum pixel threshold s was set to 

80,000. Fig. 16 shows results obtained by the rule-based 

approach. It was able to correctly identify the attention state of 

being focused and unfocused with an average 

precision of 78.1%, an average recall of 61%, and an average 

F-measure of 69.2%. Fig. 17 shows the accuracy of the data-

driven approach using various machine learning algorithms, 

including J48 decision tree, Random Forest [28], and Support 

Vector Machine (SVM) [28]. As shown in this figure, different 

classifiers have similar accuracy, but the J48 decision tree 

achieves the highest accuracy. Fig. 18 shows the performance 

of the data-driven approach using J48 in terms of precision, 

recall, and F-measure. The proposed data-driven approach 

achieves around 80% F-measure values for both the Focused 

and Unfocused attention states, which demonstrates that it is 

effective at identifying the attention states of students in class.  

 
Fig. 16. The performance of rule-based approach in terms of precision, recall 

and F-measure. 

 

Fig. 17. The performance comparision of the data-driven approach using 

different classifiers. 

 
Fig. 18. The performance of data-driven approach in terms of precision, recall 

and F-measure. 

 

Fig. 19. The performance comparison of two attention inference approaches. 

Fig. 19 compares the accuracy of the rule-based approach 

and the data-driven approach. It is found that the data-driven 

approach is the most accurate. This is because the data-driven 

approach uses machine learning methods to find hidden 

relationships between extracted high-level features and 

attention states for attention inference, while the rule-based 

approach uses intuitive decision rules for inference. However, 

the rule-based approach can output the recognition result 

every three seconds, while the data-driven approach needs to 

collect thirty seconds of data to produce a result.  

0

20

40

60

80

100

Focused Unfocused

0

20

40

60

80

100

J.48 RandomForest SVM

J.48 RandomForest SVM

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

Focused Unfocused

0

20

40

60

80

100

Rule-based Approach Data-driven Approach

A
cc

u
ra

cy
 (

%
)



 

V. CONCLUSIONS AND FUTURE WORKS 

Assessing attention levels of students is highly desirable. It 
can let students understand their own learning behavior so that 
they can learn more efficiently. For teachers, this information is 
also very important as it indicates how students react to their 
teaching. This information is thus crucial for the design of 
strategies for capturing and maintaining student’s attention.  

In this work, we have demonstrated that it is possible to 
accurately infer the attention levels of students in a classroom 
based on their external behaviors, using various types of 
wearable sensors. A new wearable system was designed, 
consisting of four modules, named the Head-Motion, Pen-
Motion, Visual-Focus, and Active-App modules. These 
modules recognize and track different activities of users, to 
provide behavioral data to the designed attention inference 
engine, which calculates users’ attention levels. This engine is 
equipped with two novel attention inference algorithms, named 
the rule-based approach and the data-driven approach. The 
former uses intuitive decision rules to infer the attention state 
of a student, while the latter relies on machine learning 
methods. The engine can generate visual reports to indicate 
each student’s attention levels and class-related activities. 
Extensive experiments were conducted to evaluate the 
proposed system. Results have shown that it is highly accurate 
in various real-life settings. The proposed methodology thus 
has the potential of greatly increasing learning and teaching 
efficiency in the classroom.  

For future work, other types of activities and sensors will 
be considered to further refine the attention inference methods 
presented in this paper. Moreover, a larger scale evaluation of 
the system is also planned, where full classrooms of students 
will be equipped with the designed wearable modules. 
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