
IEEE SYSTEMS JOURNAL, VOL. 14, NO. 2, JUNE 2020 3015

An Intelligent Elevator Development
and Management System

Lan-Da Van , Senior Member, IEEE, Yi-Bing Lin , Fellow, IEEE, Tsung-Han Wu , and Yu-Chi Lin

Abstract—This paper proposes ElevatorTalk, an elevator devel-
opment and management system based on the Internet of Things
(IoT) approach called IoTtalk. This system modularizes the soft-
ware into elevator components so that we can develop flexible and
scalable car scheduling algorithms. ElevatorTalk consists of three
subsystems: cars, scheduler, and the elevator car operating (ECO)
panel. The first two subsystems are used to develop the elevator sys-
tems, and the third subsystem is used to receive requests issued by
the passengers. These three subsystems work in parallel, and com-
municate with each other through sending and receiving messages.
ElevatorTalk can connect to a real elevator system to serve as the el-
evator management center. It can also emulate the existing elevator
systems with different car scheduling algorithms. We propose an
intelligent aggressive car scheduling with initial car distribution
(ACSICD) algorithm in ElevatorTalk. Our paper indicates that
ACSICD has better waiting/travel/journey time performance
and/or accuracy than the previous proposed algorithms. We also
show that in our approach, the car scheduling decision can be
quickly made with 0.2010 ms, and therefore good performance in
the time complexity is achieved.

Index Terms—Car scheduling, elevator car operating (ECO)
Panel, elevator system, emulator, intelligent, internet of things
(IoT), sensor, waiting/travel/journey time.

I. INTRODUCTION

A S POPULATION increases, high-rise buildings have
mushroomed around the world. Since Werner von Siemens

[1] presented the world’s first electric elevator in 1880, this in-
vention has played an indispensable role in tall buildings to carry
the passengers and goods. From the viewpoint of a passenger in
a tall building, waiting for the elevator car during peak hours
is frustrating experience. Therefore, it is essential that elevator
scheduling optimizes the waiting/travel/journey times of the pas-
sengers. The elevator group control systems including single-car
elevator [8], multicar elevator [3], [4], [6], [7], [9], [10], [12]–
[20], [23], [24], and double-decker elevator [20] have been ex-
tensively explored in this field [2]–[24]. In [10], a simulator was
developed to study the multicar elevator that consists of more
than one car (cabin) in one shaft. Many researchers have applied

Manuscript received January 8, 2019; revised May 24, 2019; accepted May
25, 2019. Date of publication June 21, 2019; date of current version June 3, 2020.
This work was supported in part by the Ministry of Science and Technology un-
der Grant MOST 107-2218-E-009-020 and Grant MOST 106-2221-E-009-028-
MY3 and in part by National Chiao Tung University PAIR Lab. (Corresponding
author: Lan-Da Van.)

The authors are with the Department of Computer Science, National Chiao
Tung University, Hsinchu 300, Taiwan, Republic of China (R.O.C.) (e-mail:
ldvan@cs.nctu.edu.tw; liny@cs.nctu.edu.tw; stevensuperboy@gmail.com;
geniusdavid869@gmail.com).

Digital Object Identifier 10.1109/JSYST.2019.2919967

neural network [2], [5], [16], fuzzy [4], [17], genetic methods
[3], [6], [9], [13], [18], and reinforcement learning [15], [16],
[21] to optimize elevator car scheduling. A good survey of el-
evator group control can be found in [20]. Some works have
proposed solutions to resolve the elevator car scheduling prob-
lems [2]–[10], [12]–[20], [23]. Most recent results have been
summarized and compared in [18], [20] and [21]. In this paper,
we propose the ElevatorTalk system and compare our approach
with the previous studies. The originality/contributions of this
paper are described as follows.

1) The ElevatorTalk system is proposed to modularize the
software into elevator components such that the flexi-
ble and scalable car scheduling algorithms can be easily
developed.

2) The ElevatorTalk can connect to a real elevator system to
serve as the elevator management center and can emulate
the existing elevator systems with different car scheduling
algorithms.

3) An intelligent aggressive car scheduling with initial
car distribution (ACSICD) algorithm is proposed to re-
duce the waiting/travel/journey time compared with other
algorithms.

4) The effects of the variable measured door open delay and
fixed door open delay are discussed for accuracy.

The paper is organized as follows. Section II describes the
ElevatorTalk architecture. Section III develops a parallel AC-
SICD implemented in the ElevatorTalk. Section IV compares the
ACSICD with the previously proposed approaches. Section V
summarizes our findings.

II. ELEVATORTALK ARCHITECTURE

Fig. 1(a) shows a four-car elevator model we built. A rasp-
berry PI board [Fig. 1(b)] [25] is used to control the motors and
doors of the elevator cars. This control board is connected to
the car server [Fig. 1(c)]. The cars in the elevator system are
driven by the cars subsystem implemented in the car server. The
cars subsystem is instructed by the scheduler subsystem imple-
mented in the scheduler server [Fig. 1(d)]. The scheduler sub-
system reads the requests issued from the elevator car operating
(ECO) panels [Fig. 1(e)]. An ECO panel can be a traditional
panel mounted on the wall or a smartphone with the ECO panel
app. The cars, the scheduler, and the ECO panel subsystems are
implemented as cyber IoT devices in an application-layer IoT
device management platform called IoTtalk [26]–[29] adopt-
ing the skills/resources [30]–[35]. Therefore, the car server, the

1937-9234 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5673-1193
https://orcid.org/0000-0001-6841-4718
https://orcid.org/0000-0001-9475-5524
https://orcid.org/0000-0001-6841-4718
mailto:ldvan@cs.nctu.edu.tw
mailto:liny@cs.nctu.edu.tw
mailto:stevensuperboy@gmail.com
mailto:geniusdavid869@gmail.com

3016 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 2, JUNE 2020

Fig. 1. ElevatorTalk hardware architecture.

scheduler server, and the ECO panel are connected to the IoTtalk
server [Fig. 1(f)]. IoTtalk allows the user to quickly establish
connections and meaningful interactions between IoT devices
without concerning the lower layer IoT platforms/protocols
(such as AllJoyn [36], oneM2M [37], and so on). IoTtalk man-
ages IoT devices based on a concept called “device feature”
(DF). A DF is a specific input or output “capability” of an IoT de-
vice. For example, an air quality monitoring device has an input
DF (IDF) called the PM2.5 sensor that produces the particulate
matter measuring 2.5 μg/m3. A pair of wearable glasses with the
optical head-mounted display has the output DF (ODF) called
“Display.” An IoT device is a collection of DFs. In IoTtalk, ev-
ery IoT device can be partitioned into one input and one output
devices. The input device is a subset of the IoT device con-
sisting of the IDFs of that device. Similarly, the output device
consists of the ODFs of that device. An IoT device is connected
to the IoTtalk server through wired or wireless communications
technologies, and network applications are automatically cre-
ated/reused at the IoTtalk server for the IoT devices. When the
IDFs of the IoT device produce new values, they are sent to the
server, and the corresponding network application is executed to
take actions, which may produce results to be sent to the ODFs
of the same or other IoT devices.

In ElevatorTalk, the cars, the scheduler, and the ECO panel
subsystems are cyber devices. In a typical elevator system, there
is a physical ECO panel for each floor and a panel inside every
car. In the elevator system, all physical panels are connected to
the IoTtalk server through the ECO panel subsystem. The ECO
panel subsystem represents both the floor panels and the car
panels pressed by the passengers to specify the source (the start
floors) and the destinations (the target floors). The scheduler
subsystem accepts and handles the requests from the ECO panel
subsystem, and schedules the movement of the cars. Following
the instructions of the scheduler subsystem, the cars subsystem
is in charge of the car operations, such as moving up or down the
cars, and opening or closing doors. The scheduler server, the car
server, the IoTtalk server, and the ECO panel subsystem can be
installed in a local server, a private or a public cloud. The physical
ECO panels and the cars/controllers are installed in the building.

IoTtalk provides a friendly graphical user interface (GUI)
to specify the ElevatorTalk devices and their connection
configurations. In this web-based GUI window, an input de-
vice is represented by an icon placed at the left-hand side of the

Fig. 2. Configuring ElevatorTalk through the IoTtalk GUI (N = 4).

window [Fig. 2(a), (c), (e)], which consists of smaller icons that
represent IDFs [Fig. 2 (1)–(4), (9)–(12), and (18)]. The IDFs are
appended with “-I.” Similarly, an output device is represented
by an icon placed at the right-hand side of the window [Fig. 2(b)
and (d)], which includes ODF icons [Fig. 2 (5)–(8) and (13)–
(17)]. The ODFs are appended with “-O.” By connecting the
IDFs to the ODFs in the GUI (joins 1–9), the devices interact
with each other without any programing effort. The cars sub-
system controlling N cars (N = 4 in this example) consists of
both input and output devices. The input device has N IDFs.
The IDF car-n-I [Fig. 2 (1)–(4)] provides the motion status of
the nth car, where 1 ≤ n ≤ N . The output device has N ODFs,
where the ODF car-n-O [Fig. 2 (5)–(8)] accepts the requests for
moving the nth car. Similarly, the scheduler subsystem consists
of both input and output devices. The input device has N IDFs,
where car-n-I [Fig. 2 (9)–(12)] instructs the nth car to move.
The output device has N + 1 ODFs. The ODF request-O [Fig.
2 (13)] receives the passenger requests from the ECO panel, and
the status ODF status-n-O [Fig. 2 (14)–(17)] receives the sta-
tus information of the nth car. The panel subsystem has one IDF
called request−I [Fig. 2 (18)] to send out the passenger requests.

III. ELEVATORTALK PROCEDURES AND THE

INTELLIGENT ALGORITHM

This section describes the procedures developed by the El-
evatorTalk subsystems. Then, we propose an intelligent AC-
SICD for the elevator system and show how the algorithm is
implemented in ElevatorTalk. Specifically, Section III-A imple-
ments procedure Panel for the ECO panel subsystem [Fig. 2(e)].
Sections III-B and III-D elaborate on four procedures Re-
qArrival, SchCar(n), UpTaskCar(n), and DownTaskCar(n) im-
plemented in the scheduler subsystem [Fig. 2(c) and (d)].
Section III-E describes Procedures Car(n) for the cars subsystem
[Fig. 2(a) and (b)].

In the current implementation, procedures Car(n) are imple-
mented as threads in the car server, which are run in parallel.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

VAN et al.: INTELLIGENT ELEVATOR DEVELOPMENT AND MANAGEMENT SYSTEM 3017

TABLE I
SYMBOLS USED IN THE ELEVATORTALK PROCEDURES

Similarly, the procedures for the scheduler subsystem are im-
plemented as independent threads. To describe the ElevatorTalk
procedures, the symbols defined in Table I are used in this paper.

A. Procedure Panel

The ECO panel subsystem implements procedure Panel as
a thread run on the IoTtalk server. Through the IoTtalk server,
the ECO panel subsystem connects to the physical ECO pan-
els. When a passenger presses a button of an ECO panel,
the instruction is captured by procedure Panel. Let rm be the
mth request issued from a panel, which has the format rm =
(fs(m), Dm, St,r(m)) where

1) fs(m) is the floor from which rm is issued,
2) Dm ∈ {Up, Down} is the moving direction of rm,
3) St,r(m) is the set of target floors in rm.
Both fs(m) and Dm are known before the passenger enters

the car, andSt,r(m) is determined after the passenger entered the
car. When rm arrives, procedure Panel sends rm to the scheduler
subsystem through join 9 in Fig. 2.

Fig. 3. Flowchart for procedure Panel.

In real world, an elevator system operates for a period of time
and then is shut down for maintenance. Without loss of gener-
ality, we assume that procedure Panel runs to serve M requests,
and then stops for system maintenance. The flowchart is illus-
trated in Fig. 3. At step P.1, there is no request, and m is set to 0
initially. Step P.2 checks if M requests have been served. If so,
the service is stopped for maintenance at step P.5. Otherwise,
wait for the next request at step P.3. At step P.4, request rm is
sent to the scheduler subsystem for service. We have also im-
plemented a panel emulator that can generate a sequence of M
requests to test the elevator system. The flowchart is the same
as that in Fig. 3 except for step P.3. In the emulator, step P.3.2 is
replaced by the following three substeps.

Step P.3.2: creates the interarrival time τm by a random
number generator RNG() following the Pois-
son process (note that an arbitrary interarrival
time distribution as well as trace-driven emula-
tion can be implemented).

Step P.3.3: invokes function sleep(τm) to wait for a time
period τm.

Step P.3.4: generates the next request rm.

B. Procedure ReqArrival

Procedure ReqArrival is implemented as the top priority
thread in the scheduler subsystem, which dispatches all tasks
for scheduling. Let Dm be the moving direction for rm. Sev-
eral data structures manipulated at the scheduler subsystem are
initialized by procedure ReqArrival (step R.1, Fig. 4), where up-
list Lu is the set of all unhandled fs(m) with Dm = Up, down-
list Ld is the set of all unhandled fs(m) with Dm = Down,
and CB is the set of busy cars. Since these data structures are
accessed by all threads in the scheduler subsystem, they must

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

3018 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 2, JUNE 2020

Fig. 4. Flowchart for procedure ReqArrival.

be locked to avoid multiple updates at the same time. At step
R.2, for 1 ≤ n ≤ N , the scheduler subsystem creates the thread
SchCar(n) to handle the request assignment for the nth car. Step
R.3 waits for the request (rm, m) issued from the ECO panel
subsystem. If the moving direction of rm is Up at step R.4, then
the request is included in Lu (see step R.5). Otherwise, the re-
quest is included in Ld (see step R.6). Then the flow goes to
step R.3 to wait for the arrival of the next request. When the el-
evator system is turned on, ReqArrival repeatedly executes the
loop (see steps R.3–R.6) until the system is shut down.

C. Procedure SchCar(n)

Procedure SchCar(n) is responsible for scheduling of the nth
car. Fig. 5 illustrates the flowchart with two local data struc-
tures. The first data structure dn ∈ {Up,Down, Idle} is the cur-
rent moving direction and the second data structure St,c(n) =
{ft,c (n, 1), ft,c (n, 2), . . . , ft,c (n, jn)} is the set of the target
floors to be stopped by the nth car in the current moving direc-
tion. In St,c(n), ft,c(n, j) is the jth target floor in St,c(n), where
1 ≤ j ≤ jn, and jn = |St,c(n)| is the number of target floors.
At step S.1, dn is set to idle, andSt,c(n) is empty. The SchCar(n)
thread of the scheduler subsystem and the Car(n) thread of the
cars subsystem must be synchronized. Specifically, steps S.1.3
waits for the current status (n, fn) of the nth car from Car(n), and
then step S.1.4 sends the acknowledgement (n, 0, Idle) to Car(n)
to make sure that the connection between these two threads is
established. After initialization, SchCar(n) enters a loop. Step
S.2 checks if the nth car is moving. If the car is idle, then step
S.7 checks if the nth car should serve incoming requests based
on the total number of unhandled requests. Before step S.7 is

Fig. 5. Flowchart for procedure SchCar(n).

executed, step S.3 locks CB , Lu, and Ld to ensure that other
threads will not modify these global data structures at the same
time. Step S.17 releases the lock and loops back to step S.2.
At step S.7, the positive value α ≤ 1 is the aggressive factor
that specifies how aggressive the elevator wants to serve the
passengers. A large α value means that the system aggressively
serves the requests with more cars. Specifically, if the number
|CB | of busy cars is larger than or equal to α(|Lu|+ |Ld|) then
the nth car will not handle any request and then the function of
initial car distribution (ICD) in step S.12 is executed. According
to observations of the traffic patterns in an elevator system, a
simple statistics method on big data [38] is used to determine

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

VAN et al.: INTELLIGENT ELEVATOR DEVELOPMENT AND MANAGEMENT SYSTEM 3019

Fig. 6. Four cases for the relationship between a car and a request at floors 3
and 5.

ICD function to control the nth car to park at the floor that has
the largest number of requests in certain periods. Specifically,
ACSICD collects the traffic patterns in an elevator system. We
used the statistics method to generate the histogram of the col-
lected big data. Then from the histogram we find the floor with
the highest probability for ICD. For example, in an office build-
ing, an idle car parks at the ground floor in the morning (when
people are coming to their office) and parks at the highest floor in
the evening (when people are leaving the building). After ICD,
the control flow loops back to step S.2. Otherwise, the car takes
care of an unhandled request in one of four cases illustrated in
Fig. 6.
Case 1: (steps S.8 and S.13). For a passenger at a floor above

the nth car, if he/she wants to go upward and the car is
idle or moving up, then the car moves up to handle the
request.

Case 2: (steps S.9 and S.14). If there is a passenger at a floor
below the nth car, and he/she wants to go downward
where the car is idle or moving down, then the car
moves down to handle the request.

Case 3: (steps S.10 and S.15). If there is a passenger at a floor
below the nth car who wants to go upward and the car
is idle, then the car moves down to handle the request.

Case 4: (steps S.11 and S.16). If there is a passenger at a floor
above the nth car, and he/she wants to go downward
and the car is idle, then the car moves up to handle the
request.

If dn is Down at step S.2, the flow proceeds to step S.4 that
invokes DownTaskCar(n) to handle all moving-down requests
(to be elaborated in Section III-D). After all requests for the nth
car have been served, step S.6 acquires the lock (just like step
S.3) and proceeds to step S.7 to see if there are new tasks for the
nth car. Similar to step S.4, if dn is Up at step S.2, then step S.5
is executed to handle the moving-up requests.

D. Procedure UpTaskCar(n)

Procedure UpTaskCar(n) illustrated in Fig. 7 handles the
moving-up requests. A flag on ∈ {0, 1} indicates if the nth car
should open the door or not when it arrives at the target floor

(on = 1 for door open and on = 0 for no action). Initially, step
U.1 assumes that the target floor should be opened in the com-
ing action. Step U.3 checks if the current floor fn of the nth
car is in the Lu list. If so, it is case 1 in Fig. 6. As we pointed
out in Section III-C, St,c(n) is the set of the target floors to
be stopped by the nth car in the current moving direction and
jn = |St,c(n)|. Then St,c(n) = {ft,c (n, j)|1 ≤ j ≤ jn} where
ft,c(n, j) is the jth target floor for the nth car. Let St,r(m) be the
set of target floors in rm and km = |St,r(m)|. Then St,r(m) =
{ft,r(m, k)|1 ≤ k ≤ km } where ft,r(m, k) is the kth target
floor in rm. Suppose that fn is the start floor fs(m

∗) of the
m∗th request. Step U.4 starts serving the m∗th request by re-
moving fn from Lu and adding St,r(m

∗) to St,c(n). Note that
step U.4.2 actually occurs after the car door has been opened in
a traditional elevator system. In a future elevator system, a pas-
senger can specify the target floor through his/her smartphone
before the car door opens. In this paper, we assume a traditional
elevator system, and St,c(n) is updated after the passenger has
entered the car. Step U.6 removes fn (i.e., fs(m∗)) fromSt,c(n).
Step U.7 checks if St,c(n) is empty after the m∗th request is
served. If so, the car is idle. Otherwise, the car keeps moving
up. Step U.8 instructs the nth car to take action based on flags
on and dn (to be elaborated). The message (n, on, dn) is sent
from car-n-I of the scheduler subsystem to car-n-O of the cars
subsystem in Fig. 2. Step U.9 waits for the message (n, f) to
be sent from car-n-I of the cars subsystem to status-n-O of the
scheduler subsystem. This message indicates that the nth car has
moved to floor f. If f is fn, then the on flag is set to 0 to indicate
that the door has already been opened at floor f and there is no
need to open the door before the car visits this floor again. Then
the current floor fn is set to f. The procedure loops back to step
U.2 to handle the next request in Lu.

If the current floor fn of the nth car is not found in the Lu list
at step U.3, then step U.5 checks if fn is in the St,c(n) list. If so,
some passengers will leave the nth car at floor fn, and steps U.6–
U.9 are executed to serve this request. If fn is not found in the
St,c(n) list at step U.5, it means that no passenger wants to enter
or leave floor fn. Step U.10 checks if there is a target floor that
can be assigned to the nth car (i.e., |St,c(n)| > 0) or a passenger,
at a floor above the nth car needs to move up (i.e., ∃f ∈ Lu such
that f > fn). If so, steps U.11 and U.8 are executed to instruct
the nth car to move up (dn is set to Up) without opening the door
at the current floor fn; i.e., on is set to 0. If the nth car does not
need to move up to serve any request at step U.10 (i.e., the nth
car is idle), then step U.13 checks if there is any passenger at a
floor above or at fn and needs to move down. If so (case 4 in
Fig. 6 occurs) and if the passenger resides at fn, then step U.15
serves this request by executing DownTaskCar(n) [i.e., Step S.4
of SchCar(n)]. If the passenger does not reside at fn, then step
U.11 sets the on flag to 0 (no need to open the door) and sets the
dn flag to Up (moving up the car to pick up the passenger). If
step U.13 finds no passenger to move down at a floor above or
at fn, then step U.16 sets the nth car idle to exit UpTaskCar(n)
and go back to step S.6 of SchCar(n).

The flowchart for DownTaskCar(n) is similar to that for Up-
TaskCar(n), which handles cases 2 and 3 in Fig. 6, and the details
are omitted.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

3020 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 2, JUNE 2020

Fig. 7. Flowchart for procedure UpTaskCar(n).

E. Procedure Car(n)

For1 ≤ n ≤ N , procedure Car(n) is run on a thread of the cars
subsystem. Therefore, there are N threads executed in parallel.
The flow chart of procedure Car(n) is shown in Fig. 8. When
the nth car is turned on at step C.1, Car(n) reports the floor
fn where it resides, and then tries to conduct handshake with
SchCar(n) to establish the communication path. Specifically, the
cars subsystem sends (n, fn) from car-n-I to status-n-O of the
scheduler subsystem through joins 5–8 in Fig. 2 (see also steps
S.1.3 and S.1.4 in Fig. 5), and waits for the response (n, 0, Idle)
from car-n-I of the scheduler subsystem. After handshaking, step
C.2 waits for the next message (n, on, dn) from car-n-I of the
scheduler subsystem (through joins 1–4 in Fig. 2).

If the on flag is 1 at step C.3, then the nth car opens the door,
waits for the passengers to pass through the car door, and closes
the door at step C.4. (In the emulation, this step executes the
sleep(td) function to emulate the delay of door opening/closing).
If dn is not idle, then the car moves down one floor at step C.6 or
moves up one floor at step C.7, and updates the current floor fn.
If dn is idle, then the car does nothing. In the emulation, both
steps C.6 and C.7 execute the sleep(tf) function to emulate the
delay of car movement. The flow proceeds to step C.8 to send
(n, fn) from car-n-I to status-n-O of the scheduler subsystem
through joins 5–8 in Fig. 2. Then the procedure loops back to
step C.2.

Fig. 8. Flowchart of procedure Car(n).

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

VAN et al.: INTELLIGENT ELEVATOR DEVELOPMENT AND MANAGEMENT SYSTEM 3021

TABLE II
COLLECTED ELEVATOR DATA IN 1 WEEK

Fig. 9. Number of door openings in one week.

IV. PERFORMANCE EVALUATION

Performance analysis of ACSICD in Section III is evaluated
and compared with the previous proposed algorithms in this sec-
tion. In Section IV-A, real data with time delays and the number
of door openings have been recorded since 2017. We particu-
larly analyze the collected data during the week of August 27,
2017. In Section IV-B, the simulated passenger requests of the
scenario in [18] are treated as the input of ACSICD to produce
the emulation results. Emulation with fixed and variable door
open delays is used to evaluate the performance of ACSICD
as well as the previous approaches. In Section IV-C, the sta-
bility margin and reliability of ElevatorTalk are addressed. In
Section IV-D, the limitation and possible usage variation are
briefly discussed.

A. Measurements of Door Open Delays

In [22], a sensor system is set up to monitor a six-floor eleva-
tor in the Department of Computer Science Building in National
Chiao Tung University (NCTU). The sensor system has col-
lected the data including the car status (idle/moving up/moving
down/door open/door close) and timestamps of door opening
and closing since 2017. In this paper, the data collected during
the week of August 27 in 2017 are used to investigate the door
open delays td and the delays tf of car moving up or down
one floor. Table II lists the numbers of door openings and the
expected value E[td] in the week. The table indicates that the
number of door openings in a week day is about three times of
that in a weekend, and E[td] ranges from 7.4 to 8.27 s. Fig. 9 il-
lustrates the one-week histograms of the numbers of door open-
ings occurring in 2-hour slots in a day. From the curves, we

Fig. 10. Expected door open delay E[td] in one week.

TABLE III
PERFORMANCE FOR VARIOUS SCHEDULING ALGORITHMS [18] WITH FIXED td

observe one major peak at the 12–14 slot and two small peaks
at the 8–10 and the 16–18 slots. Fig. 10 plots E[td] for every
2-h time slot in the week. The curves indicate that td may vary
significantly and using fixed td to estimate the behavior of the
elevator may not be practical (to be elaborated in Section IV-B).
For car movement, we found that the delay tf is roughly fixed
to 2 s.

B. Comparing ACSICD With the Previously
Proposed Algorithms

In Appendices A and B, we have described several previously
proposed algorithms. Emulation of the proposed ACSICD in
Section III is conducted with the same scenario as the simulation
experiment performed in Appendix A [18]. In our emulation
experiments, the actual delays are emulated through the sleep()
function. We measure the waiting time (when a passenger arrives
at the start floor and when a car door opens), the travel time (when
the passenger enters the car and when the car arrives at the target
floor), and the journey time (the waiting time + the travel time).

Based on the six-request scenario with fixed td in
[18], Table III lists the measured times for various algorithms.
Among them, the duplex algorithm [23] is a conventional ap-
proach that exercises full collective control of the cars. If the el-
evator system has completely served all incoming requests, then
before the next request arrives, the idle cars are moved evenly
among the floors. When the new requests arrive, the scheduler
dispatches the cars to serve the nearest requests with the same
moving direction. Details of other three genetic algorithms GA1,
GA3, and GA4 are given in Appendix A.

The measured times for the duplex, the GA1, the GA3, and the
GA4 algorithms are obtained directly from the results reported
in [9] and [18]. From Table III, it is clear that our solution has

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

3022 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 2, JUNE 2020

Fig. 11. Distribution of scheduling decision time delay ts.

improved the waiting times of the duplex and the GA1 algo-
rithms. Both GA3 and ACSICD have the same waiting time
performance. GA4 has best waiting time performance, but has
much longer travel time than ACSICD. Therefore, in terms of
the journey time, ACSICD is better than GA4.

The above results are obtained based on fixed td, which may
not reflect the real world. If we consider the td delays mea-
sured in Section IV-A, then the expected total waiting time for
ACSICD is 106.38 s in a weekday and 103.88 s in a weekend.
Clearly, using the measured td from a real elevator system, the
results are quite different. Therefore, simply assuming that td is
fixed to 7 s as did in [18] is not appropriate. We use the measured
data in Section IV-A to conduct ACSICD to select the cars, and
check if the selected cars are the same as GA3’s estimation using
fixed td. Our paper indicates that up to 49.2% of the prediction
made by GA3 with fixed td is different from prediction made
with the measured td. Therefore it is not appropriate to conduct
estimation using fixed td. Among the previous car scheduling ap-
proaches, GA3/GA4 has demonstrated very good performance.
Through ElevatorTalk, we pointed out the direction to enhance
the accuracy of GA3/GA4.

Note that GA1–GA4 have to handle a batch of requests at a
time, and the next batch of requests is ignored when the current
batch is handled. On the other hand, ACSICD proposed in this
paper is not restricted by the inflexibility of “batch handling.”

The time complexity of a car scheduling algorithm is defined
as the delay ts between when a request m is made and when
a car opens the door to handle the request. The schedule time
performance is not reported in [9] and [18]. However, it is well
known that the execution of the genetic algorithm is time con-
suming [11]. On the other hand, ACSICD can schedule a re-
quest in real time. We have conducted 4397 measurements, and
Fig. 11 shows the ts histogram where E[ts] = 0.201 ms. The
measurements indicate that ElevatorTalk can schedule a request
in real time.

We further compare the performance of ACSICD with RLS,
a machine learning scheduler implemented in reinforcement

TABLE IV
PERFORMANCE FOR VARIOUS SCHEDULING ALGORITHMS

Fig. 12. Impact of α (N = 4).

learning in [21]. The implementation details are described in
Appendix B. The traffic patterns for 100 days (from 7:00 AM

to 9:00 PM every day) [21] are used to show the performance
including the average waiting time, the average travel time, the
average journey time, and the average number of car move-
ments of the proposed approaches listed in Table IV. The ta-
ble indicates that, ACSICD (α = 2) has the best performance
in terms of average travel time and average journey time as
compared with the existing methods in [21]. ACSICD (α = 2)
also has smallest maximum waiting time, which means that this
algorithm is more stable (has small variance).

Table IV also shows that whenα is large, ACSICD dispatches
more cars at the same time (i.e., the algorithm is more aggres-
sive). In particular, when α = 2, ACSICD has the best expected
journey time performance of the compared algorithms. On the
other hand, when α is small (α = 1), the required number of
movement of the cars is less, which implies less energy con-
sumption. The car movement number is an important output
measure for energy consumption, but is not reported in the pre-
vious studies.

We use the same request traffic patterns in Table IV to inves-
tigate the impact of α on ACSICD with four cars (i.e., N = 4).
Fig. 12 plots the total waiting time and the total numbers of car
movement per day for differentα values. The figure indicates the
intuitive results that as α increases, the waiting time decreases
and the total number of car movement increases. Specifically,
by increasing α from 0.1 to 0.9, the waiting time is decreased
by 38% at the cost of increasing the number of movement by
20%. Therefore, the operator can trade off the user experience
(waiting) and energy consumption (car movement) by choosing
an appropriate α value.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

VAN et al.: INTELLIGENT ELEVATOR DEVELOPMENT AND MANAGEMENT SYSTEM 3023

Fig. 13. Effect of ts + ti on the average journey time.

C. Stability Margin and Reliability

The stability margin for communication is determined by the
processing/communication delays and the movement/door op-
eration delays of cars. The delays for ElevatorTalk decision is
E[ts] = 0.201 ms. We also measured the delays ti for com-
munications, where i = L represents the local scenario; i.e., the
servers [Fig. 1(c), (d), and (f)] are connected together in one hop.
For i = R, it is the remote scenario where the IoTtalk server is lo-
cated in a cloud. The expected values are E[tL] = 31.68 ms and
E[tR] = 59.14 ms. The variances are V [tL] = 0.0022E[tL]

2

and V [tR] = 0.0026E[tR]
2. On the other hand, the car move-

ment takes 2 s for one floor and a door operation takes even
much longer time. We have conducted experiments to see how
different ts + ti values affect the journey times in Fig. 13. The
figure indicates that for the local scenario, ts + ti ≈ 0.03 s, and
the journey time is affected by 0.43%. In the remote scenario
(where the IoTtalk server is located in the cloud), ts + ti ≈ 0.06
s, and the journey time is affected by 4.3%. The experiments in-
dicate that the car scheduling results are not affected in the local
scenario, and is not significantly affected in the remote scenario.

In terms of reliability, the two-way communication protocols
for the current ElevatorTalk version include https to ensure secu-
rity and message queuing telemetry transport (MQTT) to ensure
reliability. At the application level, IoTtalk is a commercial-
grade mechanism, which has been intensively tested by various
IoT applications in the past 5 years. These applications are not
for demo. Instead, they are sustainably operated for commercial
scenarios. For example, in AgriTalk [39], IoTtalk has been used
in the large-scale farms for smart control since 2016. Therefore,
reliability of IoTtalk has been strictly tested.

D. Limitation and Usage Variation

We are integrating ElevatorTalk with the elevator system in the
Student Dorm 3 of NCTU. This elevator system was constructed
by Yungtay Engineering Co., Ltd [40], the largest elevator com-
pany in Taiwan. All features described in this paper are being
integrated in Yungtay’s elevator system. Some features that col-
lect sensor data for car conditions (such as motor vibration) will
be integrated with ElevatorTalk in the future. Due to government
regulations, the features about failures and emergency must fol-
low the original Yungtay design, and will not be integrated with

ElevatorTalk. Examples include emergency power, emergency
exit, and so on. In the future, we will consider ElevatorTalk
version of failure and emergency scenarios to impact govern-
ment regulations. For variations of usage, we are planning to
integrate ElevatorTalk with other IoT applications through the
IoTtalk server. For example, in a hotel, a robot delivers a meal
order from the kitchen to a guest room in different floors. By
installing the ECO panel software in the robot, the routing algo-
rithm of the robot application instructs the elevator car to carry
the robot to the target floor through ElevatorTalk.

V. CONCLUSION

This paper proposed ElevatorTalk, an IoT-based elevator
scheduling system that allows the designer to develop a parallel
car scheduling algorithm for an elevator system with multiple
cars. We showed how to modularize the software for elevator
components so that flexible and scalable car scheduling algo-
rithms can be easily developed. ElevatorTalk consists of three
subsystems: the cars, the ECO panel, and the scheduler subsys-
tems. To create new car scheduling algorithms, the developer
only needs to modify the scheduler subsystem. The first two
subsystems are standard, and can be reused for all elevator sys-
tems. These three subsystems work in parallel, and communicate
with each other through sending and receiving messages. Eleva-
torTalk can connect to a real elevator system to serve as the eleva-
tor management center. We proposed ACSICD in ElevatorTalk
and compare it with the previous proposed algorithms. Our paper
indicated that the ACSICD has better performance than the pre-
vious solutions. Through this comparison, we pointed out where
the previous approaches can be improved. We also show that the
car scheduling decision can be quickly made in our approach
within 0.201 ms, and good performance in the time complexity
is achieved.

IoTtalk has been tested with various applications in several
years and is considered reliable. At present, the reliable com-
munication protocol MQTT is used in the current ElevatorTalk
version. The study in [41] pointed out that both MQTT and ad-
vanced message queuing protocol (AMQP) based architectures
ensure reliability for IoT applications. On the other hand, the
study in [42] used data distribution service (DDS) for reliable
IoT implementation. Besides MQTT, we will consider AMQP
and DDS in next ElevatorTalk version. In the future, we will also
conduct theoretical proof for ElevatorTalk reliability using bi-
graph, a universal computational model defined by Milner [43]
for modeling interacting systems that evolve in time and space.

APPENDIX A
THE GENETIC ALGORITHM-BASED SCHEDULING

Several genetic algorithms for car scheduling are proposed
in [18], and the experiments with six requests in a batch were
conducted to measure the waiting, the travel, and the journey
times. In the experiments, the door open delay td and the car
movement delay tf are fixed to be 7 and 2 s, respectively. From
the measurements in Section IV-A, it is reasonable to assume a
fixed tf of 2 s. On the other hand, it is misleading to assume
that td is fixed. However, to make a fair comparison with the

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

3024 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 2, JUNE 2020

Fig. 14. Chromosome representations in (a) GA1 [9] and (b) GA3 [18].

algorithms proposed in [18], we follow the fixed td assump-
tion. We relax this restriction by using the real data measured in
Section IV-A, and show that the fixed td assumption may be
misleading.

GA1 [9] and GA3 [18] are genetic algorithm-based ap-
proaches, where GA3 is an enhancement of GA1. As in a tradi-
tional elevator system, both GA1 and GA3 as well as ACSICD
assume that the target floors are determined after the passengers
have entered the car. In genetic algorithm-based car scheduling,
every request allocation assignment is represented by a chro-
mosome encoded as a binary string. For example, Fig. 14(a)
illustrates the chromosome of GA1. This chromosome is com-
posed of 20 genes, where every gene is represented by one bit.
For 1 ≤ i ≤ 20, the ith and the (i + 1) th bit (genes) are grouped
to represent the elevator car that serves the i+1

2 th request. There-
fore, GA1 is designed for a four-car system (every car is repre-
sented by two bits), and can handle at most ten requests at a time.
Denote a GA1 chromosome as a 20-bit string g1, where the car
that serves the mth request is represented by the (2m− 1)th
and (2m)th bits, which is denoted as g1(m). When the re-
quests arrive, the GA1 algorithm is executed with the following
steps.

Step GA1.1: Randomly generate six chromosomes with ten
requests.

Step GA1.2: Compute the fitness value of each chromosome
according to the fitness functionF (g1) for every
chromosome g1, which is the inverse of the total
waiting time for serving the ten requests based
on the car scheduling encoded in g1, that is,

1

F (g1)
=

(
1

10

) 10∑
m=1

Tm, g1(m)

where Tm, g1(m) is the waiting time for car g1(m) to serve the
request rm.; i.e., the delay between when the passenger makes
the request and when the car arrives at the floor to pick the
passenger. Tm, g1(m) for GA1 is similar to (A.1)–(A.6) for GA3
to be elaborated later. Clearly, the larger the F (g1) value, the
better the waiting time performance.

Step GA1.3: Rank the six chromosomes according to their
fitness values.

Step GA1.4: Replace the chromosome that has lowest fitness
value with the one that has maximum fitness
value.

Step GA1.5: Execute crossover process on chromosomes in
pairs with a given probability.

Step GA1.6: Execute mutation process to randomly change
the bit value of one gene in every chromosome.

Step GA1.7: Go to step GA1.2 if the newly produced gen-
eration of chromosomes does not meet the con-
verge condition. Otherwise, go to step GA1.8.

Step GA1.8: Choose the chromosome with the best fitness
value. Instruct the cars to serve the requests
based on this chromosome.

Step GA1.9: Go to step GA1.1. to handle next ten requests.
GA3 extends the GA1 chromosome to 152 bits [Fig. 14(b)]

to deal with more requests (at most 2× (F − 1)) within four
cars where F = 20. Since it is a four-car system, the 152-bit
chromosome g3 is divided into four parts, one for each car. For
1 ≤ n ≤ 4, the nth part ranges from bit 38n− 37 to bit 38n,
which indicates the floors to be stopped by the nth car. Be-
cause the elevator system has 20 floors, the nth part is further
partitioned into two 19-bit subparts. The first subpart (from bit
38n− 37 to bit 38n− 19) represents floors 1–19 and the value
of a bit indicates if the car will stop at this floor when it moves
up. On the other hand, the second subpart (from bit 38n− 18 to
bit 38n) represents floors 2–20 and the value of a bit indicates
if the car will stop at this floor when it moves down. The GA3
algorithm executes the following steps.

Step GA3.1: Generate 50 chromosomes randomly.
Step GA3.2: Compute the fitness value of each chromosome

according to the fitness function (g3), which is
the inverse of the total waiting for serving the
M requests based on the car scheduling encoded
in g3. This function is similar to (g1), and the
details are omitted.

Step GA3.3: Randomly select a pair of chromosomes (the
parents).

Step GA3.4: The selected parent chromosomes produce a
pair of offspring chromosomes (children) by
crossover and mutation.

Step GA3.5: Replace the parent chromosomes with offspring
chromosomes.

Step GA3.6: Go to step GA3.2 if the number of generations
is less than 100 (the converge criterion).

Step GA3.7: Choose the chromosome with the best fitness
value. Instruct the cars to serve the requests
based on this chromosome.

Step GA3.8: Go to step GA3.1 to handle the next batch of
requests.

To attain more precise waiting time estimation, GA3 uses
an argument xn that denotes the number of known stops on the
moving path of the nth car from fn to fs(m). Except for chromo-
some encoding and the definition of waiting time equations, GA1
and GA3 use similar processes to determine request assignment.
Specifically, both GA1 and GA3 assume that the target floors of

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

VAN et al.: INTELLIGENT ELEVATOR DEVELOPMENT AND MANAGEMENT SYSTEM 3025

the requests are unknown during scheduling. We elaborate more
on GA3 about the heuristics used in this algorithm.

If the nth car is assigned to serve rm, the waiting time Tm,n is
defined as the sum of delays for moving the nth car from fn to the
start floor fs(m) of rm and the door open delays of the known
stops within the movement path. In GA3, Tm,n is estimated by
one of the following equations [18]. For dn = Up,

Tm,n

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[fs(m)− fn]tf + xntd; fs(m) ≥ fn and Dm = Up (A.1)
[2F − fn − fs(m)]tf + xntd; Dm = Down (A.2)
[2F − fn + fs(m)− 2]tf + xntd; fs(m) < fn

and Dm = Up (A.3)

Symmetrical to (A.1)–(A.3), for dn = Down, we have

Tm,n

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[fn − fs(m)]tf + xntd;fs(m) ≤ fn and Dm = Down (A.4)
[fn + fs(m)− 2]tf + xntd; Dm = Up (A.5)
[2F + fn − fs(m)− 2]tf + xntd;fs(m) > fn

and Dm = Down (A.6)

Note that (A.1) estimates the waiting time for case 1 in
Fig. 6, (A.2) and (A.6) for case 4, (A.3) and (A.5) for case 3, and
(A.4) for case 2. Through (A.1)–(A.6), GA3 calculates the esti-
mated waiting time of rm according to the chromosome at each
iteration. Also note that computation for Tm,n of GA1 is similar
to that for GA3 except that the factor xn is not considered. GA4
is the same as GA3, except that it is used in a nontraditional
elevator system where the target floors are determined before
the passengers have entered the car.

APPENDIX B

REINFORCEMENT LEARNING-BASED SCHEDULING

Several scheduling algorithms are proposed in [21], including
dynamic load balancing, collective, longest queue first (LQF),
and AI methods based on reinforcement learning. Among the
three non-AI algorithms, LQF has the best performance, which
always serves the request with the longest waiting time. The rein-
forcement learning scheduling (RLS) algorithm is implemented
by extending LQF (Factor “a” to be elaborated later). Whenever
the RLS assigns a request to a car, a reward called priority value
is calculated. The assignment of the mth request to the nth car is
called an action. The history of the actions, the corresponding
priority values p and the current states of cars, and requests are
stored as records in a replay memory. After sufficient number of
records have been collected, RLS learns to decide the best action
in the current state. The priority value p is determined as [21]

p =

(
1 + a

14

)× c× (
1 + d

5

)× e

(2 + b)× f × g
(B.1)

In (B.1), the factors a to g are defined in Table V.
ACSICD captures factors a, b, f and g listed in Table V in

different ways. Factor a is basically the same as LQF where the
request with the longest waiting time is served first. This factor
is captured by ACSICD that serves requests in the FIFO order
in Lu and Ld. According to ACSICD simulation for 100 days,

TABLE V
FACTORS FOR RLS [21]

there are at most three target floors where the car has to stop in
the same direction (i.e., there are at most three requests in the
queue). Hence, this factor does not have significant impact on
performance. Table IV reports that ACSICD outperforms LQF.

Factor b is influenced by the percentage of the number of
requests at every floor in each hour according to previous-day
data. A request has higher priority to be assigned to a car by
RLS if it is at the floor that had higher number of requests in
previous days. This factor is captured by the ICD of ACSICD.
From the learning and big data analysis similar to [38] on the
request traffic of 100 days, when a car is idle and no request
comes, the car is parked at the ground floor during 7:00AM–
8:00AM. During 5:00PM–21:00PM, one idle car is parked at the
middle floor and the other idle car is parked at the highest floor
in the period.

Factors f and g ensure that the RLS do not assign a request to
multiple cars. ACSICD partially captures these factors through
the aggressive factor α to prevent multiple cars moving toward
a request simultaneously.

REFERENCES

[1] [Online]. Available: https://www.siemens.com/history/en/news/1043_
elevator.htm

[2] B. L. Whitehall, D. J. Sirag Jr., and B. A. Powell, “Elevator control neural
network,” U.S. Patent 5,672,853, Sep. 30, 1997.

[3] A. Fujino, T. Tobita, K. Segawa, K. Yoneda, and A. Togawa, “An elevator
group control system with floor-attribute control method and system op-
timization using genetic algorithms,” IEEE Trans. Ind. Electron., vol. 44,
no. 4, pp. 546–552, Aug. 1997.

[4] R. Gudwin, F. Gomide, and M. A. Netto, “A fuzzy elevator group controller
with linear context adaptation,” in Proc. IEEE World Congr. Comput. In-
tell., May. 1998, Vol. 1, pp. 481–486.

[5] B. L. Whitehall, T. M. Christy, and B. A. Powell, “Method for continuous
learning by a neural network used in an elevator dispatching system,” U.S.
Patent 5,923,004, Jul. 13, 1999.

[6] J. H. Kim and B. R. Moon, “Adaptive elevator group control with cameras,”
IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 377–382, Apr. 2001.

[7] A. Rong, H. Hakonen, and R. Lahdelma, “Estimated time of ar-
rival (ETA) based elevator group control algorithm with more
accurate estimation,” TUCS Tech. Rep. 584, 2003, Finland,
http://danielparejaortiz.es/ascensores/documentos/TR584.pdf.

[8] S. Tanaka, Y. Uraguchi, and M. Araki, “Dynamic optimization of the oper-
ation of single-car elevator systems with destination hall call registration:
Part I. Formulation and simulations,” Eur. J. Oper. Res., vol. 167, no. 2,
pp. 550–573, Dec. 2005.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

https://www.siemens.com/history/en/news/1043_elevator.htm
http://danielparejaortiz.es/ascensores/documentos/TR584.pdf

3026 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 2, JUNE 2020

[9] W. Ghareib, Optimal Elevator Group Control Using Genetic Algorithms.
Cairo, Egypt: Faculty of Engineering, Ain Shams Univ. 2005.

[10] T. Miyamoto and S. Yamaguchi, “MceSim: A multi-car elevator simula-
tor,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. E91-A,
no. 11, pp. 3207–3214, Nov. 2008.

[11] M. B. Nia and Y. Alipouri, “Speeding up the genetic algorithm convergence
using sequential mutation and circular gene methods,” in Proc. IEEE 9th
Int. Conf. Intell. Syst. Des. Appl., Pissa, Italy, Nov. 2009, pp. 31–36.

[12] J. Sun, Q. C. Zhao, and P. B. Luh, “Optimization of group elevator schedul-
ing with advance information,” IEEE Trans. Autom. Sci. Eng., vol. 7, no.
2, pp. 352–363, Apr. 2010.

[13] Z. Hu, Y. Liu, Q. Su, and J. Huo, “A multi-objective genetic algorithm
designed for energy saving of the elevator system with complete informa-
tion,” in Proc. IEEE Int. Energy Conf., 2010, pp. 126–130.

[14] A. Valdivielso, and T. Miyamoto, “Multicar-elevator group control algo-
rithm for interference prevention and optimal call allocation,” IEEE Trans.
Syst., Man, Cybern. A, Syst. Humans, vol. 41, no. 2, pp. 311–322, Mar.
2011.

[15] M. Ikuta, K. Takahashi, and M. Inaba, “Strategy selection by reinforcement
learning for multi-car elevator systems,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern., Oct. 2013, pp. 2479–2484.

[16] W. Liu, N. Liu, H. Sun, G. Xing, Y. Dong, and H. Chen, “Dispatching
algorithm design for elevator group control system with Q-Learning based
on a recurrent neural network,” in Proc. Chin. Control Decis. Conf., May
2013, pp. 3397–3402.

[17] J. Fernandez, P. Cortes, J. Muñuzuri, and J. Guadix, “Dynamic fuzzy logic
elevator group control system with relative waiting time consideration,”
IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4912–4919, Sep. 2014.

[18] E. O. Tartan, H. Erdem, and A. Berkol, “Optimization of waiting and
journey time in group elevator system using genetic algorithm,” in Proc.
IEEE Int. Symp. Innov. Intell. Syst. Appl., 2014, pp. 361–367.

[19] H. Ishihara and S. Kato, “The effectiveness of dynamic zoning in multi-
car elevator control,” in Proc. IEEE 3rd Global Conf. Consumer Electron.,
Oct. 2014, pp. 601–604.

[20] J. R. Fernandez and P. Cortes, “A survey of elevator group control systems
for vertical transportation,” IEEE Control Syst. Mag., vol. 35, no. 4, pp. 38–
55, Aug. 2015.

[21] A. Elias and L. Marcus, “Impact of machine learning on elevator control
strategies: A comparison of time efficiency for machine learning elevator
control strategies and static elevator control strategies in an office build-
ing,” Degree Project in Computer Science, DD143X, KTH Royal Inst.
Technol., Stockholm, Sweden, 2015.

[22] D.-H. Cheng, Low-cost and nonintrusive elevator operations detection ser-
vice, M.S. thesis, Dept. Comput. Sci., National Chiao Tung Univ., 2017.

[23] Passenger Lift Planning Guide, OTIS Elevator Company, pp. 15–16, USA.
[24] [Online]. Available:https://multi.thyssenkrupp-elevator.com/en/
[25] [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-

3-model-b/
[26] Y.-B. Lin et al., “EasyConnect: A management system for IoT devices

and its applications for interactive design and art,” IEEE Internet Things
J., vol. 2, no. 6, pp. 551–561, Dec. 2015.

[27] T. H. Wu, C. H. Chang, Y. W. Lin, L. D. Van, and Y.-B. Lin, “Intelligent
plant care hydroponic box using IoTtalk,” in Proc. IEEE Int. Conf. Internet
Things (iThings 2016), Chengdu, China, Dec. 2016, pp. 398–401.

[28] Y.-B. Lin, Y. W. Lin, C. M. Huang, C. Y. Chih, and P. Lin, “IoTtalk: A
management platform for reconfigurable sensor devices,” IEEE Internet
Things J., vol. 4, no. 5, pp. 1552–1562, Oct. 2017.

[29] Y. W. Lin, Y.-B. Lin, M. T. Yang, and J. H. Lin, “ArduTalk: An Arduino
network application development platform based on IoTtalk,” IEEE Syst.
J., vol. 13, no. 1, pp. 468–476, Mar. 2019.

[30] Representational state transfer (REST) 2016 [Online]. Available: https:
//en.wikipedia.org/wiki/Representational_state_transfer

[31] [Online]. Available:https://labs.mediatek.com/en/platform/overview
[32] [Online]. Available:https://openwrt.org/
[33] [Online]. Available:http://www.atmel.com/devices/atmega32u4.aspx
[34] [Online]. Available:https://www.python.org/
[35] [Online]. Available:http://scikit-learn.org/stable/modules/svm.html
[36] Open Connectivity Foundation. [Online]. Available: https://

openconnectivity.org. Accessed: May 2018.
[37] oneM2M. Standards for M2M and the Internet of Things. [Online]. Avail-

able: http://www.onem2m.org/
[38] Y.-T. Chen, E. W. Sun, and Y.-B. Lin, “Coherent quality management for

big data systems: A dynamic approach for stochastic time consistency,”
Annals Oper. Res., vol. 277, no. 1, pp. 3–32, Jun. 2019.

[39] W. L. Chen et al., “AgriTalk: IoT for precision soil farming of turmeric
cultivation”, IEEE Internet Things J., vol. 6, no. 3, pp. 5209–5223,
Jun. 2019.

[40] [Online]. Available: http://www.yungtay.com.tw/
[41] T. Sultana and K. A. Wahid, “Choice of application layer protocols for

next generation video surveillance using Internet of video Things,” IEEE
Access, vol. 7, pp. 41607–41624, 2019.

[42] A. A. Al-Roubaiey, T. R. Sheltami, A. S. H. Mahmoud, and K. Salah,
“Reliable middleware for wireless sensor-actuator networks,” IEEE Ac-
cess, vol. 7, pp. 14099–14111, 2019.

[43] R. Milner, The Space and Motion of Communicating Agents. Cambridge,
U.K.: Cambridge Univ. Press, 2009.

Lan-Da Van (S’98–M’02–SM16) received the Ph.D.
degree from National Taiwan University (NTU),
Taipei, Taiwan, in 2001.

In 2006, he joined the Faculty of the Department of
Computer Science, National Chiao Tung University
(NCTU), Hsinchu, Taiwan, R.O.C., where he is cur-
rently an Associate Professor. From 2015, he served
the Deputy Director of NCTU M2M/IoT R&D Cen-
ter. His research interests are in digital signal pro-
cessing and learning computation algorithms, archi-
tectures, chips, systems and applications.

Dr. Van was the recipient of the Best Poster Award in the iNEER Confer-
ence for Engineering Education and Research (iCEER) in 2005. In 2014, he
received the Best Paper Award in the IEEE International Conference on Internet
of Things (iThings2014). He served as the Chairman of the IEEE NTU Student
Branch in 2000. In 2001, he was the recipient of the IEEE Award for Outstand-
ing Leadership and Service to the IEEE NTU Student Branch. He has served as
an Associate Editor for the IEEE TRANSACTIONS ON COMPUTERS (2014–2018),
and has been serving as an Associate Editor for IEEE ACCESS (2018–present).

Yi-Bing Lin (M’96–SM’96–F’03) received the Ph.D.
degree from the University of Washington, Washing-
ton, DC, USA, in 1990.

From 1990 to 1995 he was a Research Scientist
with Bellcore. In 2010, he became a Lifetime Chair
Professor of National Chiao Tung University (NCTU)
Hsinchu, Taiwan, R.O.C., and in 2011, the Vice Presi-
dent of NCTU. During 2014–2016, he was the Deputy
Minister, Ministry of Science and Technology, Tai-
wan. He has coauthored several books, Wireless and
Mobile Network Architecture (Wiley, 2001), Wireless

and Mobile All-IP Networks (Wiley, 2005), and Charging for Mobile All-IP
Telecommunications (Wiley, 2008).

Dr. Lin is a Fellow of the AAAS, ACM, and IET.

Tsung-Han Wu received the B.S. and M.S. degrees
in computer science from National Chiao Tung Uni-
versity, Hsinchu, Taiwan, R.O.C., in 2012 and 2014.
He is currently working toward the Ph.D. degree with
National Chiao Tung University, Hsinchu, Taiwan
R.O.C.

His current research interests include Internet of
Things, machine learning, and elevator scheduling.

Yu-Chi Lin received the B.S. and M.S. degrees in
computer science from National Chiao Tung Uni-
versity, Hsinchu, Taiwan, R.O.C., in 2016 and 2019,
respectively.

His current research interests include neural net-
work and reinforcement learning.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 05,2020 at 00:49:05 UTC from IEEE Xplore. Restrictions apply.

https://multi.thyssenkrupp-elevator.com/en/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://labs.mediatek.com/en/platform/overview
https://openwrt.org/
http://www.atmel.com/devices/atmega32u4.aspx
https://www.python.org/
http://scikit-learn.org/stable/modules/svm.html
https://openconnectivity.org
http://www.onem2m.org/
http://www.yungtay.com.tw/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

