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Abstract— In this paper, an edge-computed and controlled 
outdoor autonomous UAV system is proposed to monitor the 
safety helmet wearing of workers in construction sites. Detection 
and counting of the workers with safety helmets of specified 
colors and those without safety helmets is the main focus of this 
work. Five standard safety helmet colors including blue, orange, 
red, white, and yellow are considered. The novelties of the work 
are 1) the design of a modularized software architecture running 
on an Android smartphone as an edge device for outdoor 
autonomous UAV navigation, 2) the implementation of real-
time colorwise detection and counting of workers with and 
without safety helmets from UAV’s first-person view (FPV), 3) 
the implementation of a simple upper-side cropping and hue, 
saturation, value (HSV) filtering method for color decision. The 
resulting average safety helmet detection accuracy for 10 
different cases is 81.02%. 

Keywords— Autonomous flying, computer vision, deep learning, 
edge computing, UAV (Unmanned Arial Vehicle) 

I. INTRODUCTION 

In construction sites, there exist many potential hazards 
and accidents if workers do not closely follow the regulations. 
It can be seen from [1] that brain injury is one of the major 
accidents. Therefore, it is mandatory for workers to wear 
safety helmets (also called hardhats) [2] in construction sites. 
On the other hand, administrative staffs would prefer to use 
lightweight devices to monitor workers’ status. Thus, it is our 
motivation to develop a deep learning-assisted model running 
on an edge device like a smartphone to enable UAV 
navigation and inspection. The challenges are as follows: 1) 
How to merge the software modules to perform worker 
detection, helmet color detection, GPS waypoint 
management, and UAV flight control instruction generation 
from SDK, together into one edge device to achieve real-time 
autonomous UAV navigation and inspection? 2) How to 
count the colorwise safety helmets of workers in a given 
construction site?   

A lot of previous work [3-12] has addressed construction 
site safety. Rubaiyat et al. [3] employed computer vision 
techniques for automatic detection of safety helmets for 
construction safety. The proposed method includes two 
recognition steps: histogram of oriented gradient (HOG) and 
combination of color based and circle Hough transform 
(CHT) for feature extraction. Park et al. [4] proposed a 
detection and tracking based hybrid method via a fixed 
camera to continuously track workers and solve occlusion 
problems. Yang et al. [5] proposed using gait patterns of 
construction workers to detect falls. Fang et al. [6] proposed 
a faster R-CNN based method to detect non-hardhat users 
from far-field surveillance cameras. Kai et al. [7] proposed a 
method to determine safety helmet wearing by TensorFlow 
models to detect pedestrians and human head-to-body ratio 

calculation of a full human body view. The safety helmet 
colors are detected using a HSV filter. Kang et al. [8] 
developed a small camera along with a GPS tracker for safety 
helmets to collect geotagged images. Wu et al. [9] employed 
reverse progressive attention (RPA) to extract new features 
to detect hardhat colors of workers. Mneymneh et al. [10] 
proposed vision-based motion detection based on standard 
deviation matrix (SDM), vision-based human detection and 
vision-based hardhat detection based on cascade classifier 
and color classification to verify the colors of the hardhats 
wearing. Asadzadeh et al. [11] reviewed and discussed the 
integration of sensor-based systems and building information 
modeling (BIM) for safety management in construction sites. 
Zhang et al. [12] reviewed the vision-based technologies for 
occupational health and safety monitoring of workers in 
construction sites. 

The other detection and counting researches [13-16] are 
summarized below. Lee et al. [13] applied NVIDIA Tegra 
TX1 to speed up object detection and counting. When an 
object is counted repeatedly, the time difference is calculated 
to eliminate repetitions. Saxena et al. [14] applied a deep 
learning algorithm and proposed counting algorithms to 
detect and count moving vehicles. Yang et al. [15] proposed 
a vision-based mobile people counting system in a given area 
using a smartphone, where the non-maxima suppression 
(NMS) algorithm is used to reduce redundant bounding boxes. 
Farjon et al. [16] proposed real-time flower detection and 
counting using faster R-CNN for apple trees. Vehicle 
counting at road intersections via time-spatial images and 
dangerous driving behavior detection via road-side cameras 
are discussed in [17, 18]. 

However, the above works did not focus on edge-guided 
autonomous flying for color counting of safety helmets of 
workers under different illumination levels. This motivates us 
to develop an edge-controlled outdoor autonomous UAV for 
colorwise safety helmet detection and counting of workers in 
construction sites. The novelties of the work are 1) the design 
of a modularized software architecture running on an Android 
smartphone as an edge for outdoor autonomous UAV 
navigation, 2) the implementation of real-time colorwise 
safety helmet and without-safety-helmet workers detection 
and counting from UAV’s FPV, and 3) the implementation of 
a simple upper-side cropping and HSV filtering method for 
color decision. 

II. SYSTEM ARCHITECTURE AND METHOD 

To design a real-time construction site monitoring 
system, we propose a system architecture as shown in Fig. 1. 
The off-the-shelf UAV (DJI Matrice 210 V2) is used to 
capture on-site videos. In this process, GPS waypoints are set 
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Fig 1. Proposed outdoor autonomous flying control and computation system architecture. 

according to the construction site of interest. Through RF 
channel, the captured video is sent to the edge (smartphone)-
oriented autonomous outdoor flight control system to 
perform real-time detection and counting. In the proposed 
outdoor flight system, a software system with DJI SDK is 
integrated in an Android smartphone for video streams 
processing as well as GPS waypoint data processing of flying 
mission, tiny YOLOv3 for safety helmet detection, and a 
HSV filter for safety helmet color analysis. 

A. Software System Integration on Android Studio 

The architecture of the software system and the workflow 
of our app are shown in Fig. 2 and Fig. 3, respectively. It is a 
practical challenge to integrate DJI SDK, GPS waypoint data, 
tiny YOLOv3, OpenCV into an Android smartphone to 
develop a fully functional app. The integration is challenging 
due to its parallel processing, computation management, real-
time drone control as well as display the data on the APP 
GUI. DJI SDK is used to access the drone camera view and 
issue movement control instructions. Tiny YOLOv3 model is 

used for the object detection, and HSV filter is used to 
analyze the safety helmets of workers.  

 
Fig 2. Software system structure. 

  
Fig 3. System workflow. 
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Fig 4. The UI for GPS waypoint of autonomous flying app. 

 
Fig. 5. The detection result of the app in an outdoor 

environment (UAV on GPS waypoint flight). 
 

DJI provides the corresponding SDK, which includes some 
“Android widgets” and services. As shown in Fig. 4 and Fig. 
5, our app UI provides multifunctional dropdown items and 
widgets to switch between FPV and Zenmuse camera views. 
We provide a “fragment” map view to customize the 
waypoint flight mission. The buttons in the view are used for 
waypoint selection, altitude setting, post-mission UAV path 
setting, and mission emergency abortion. 

For better visualization experience, the real-time flight 
path, map and waypoints can be shown or hidden with a 

single soft button click while working in the background. The 
map view is a hybrid Google map view. This allows users to 
see the buildings and other constructions on the waypoint’s 
flight path. Map can be accessed via the Internet by the 
mobile phone or the current location of the UAV’s GPS. The 
waypoints, which consist of specific latitude and longitude, 
guide the UAV while flying. The UAV control option is 
synchronized with the UAV GPS and waypoints. Since safety 
is a major concern, there are one-touch widgets for return to 
home (RTH) and confirmation of the emergency landing 
option. Our app provides real-time display of safety helmet 
detection results along with video and image recording 
options. 

B. Simple Upper-Side Cropping and HSV Filtering Method 
for Colorwise Safety Helmet Detection  

There is a universal color code for safety helmets [19]. 

For example, white is for construction supervisors and blue 

is for electricians. The captured construction site 

videos/images for evaluation are in the RGB space. However, 

it is not easy to correctly determine the colors by RGB values 

because there are different shades, lighting and weather 

conditions. This motivates us to implement a simple and 

effective cropping and HSV filtering method [7, 10, 21] to 

determine safety helmets color in the HSV space, where the 

copping concept is the same as mentioned in [10]. In the HSV 

space, hue determines the desired color, saturation 

determines the intensity, and value determines the brightness. 

The detailed transformation from RGB to HSV [20] is 

formulated as follows. 

� �
⎩⎪
⎨
⎪⎧

0°                              , �� ∆� 0
  60° � ������

∆ ���6� , �� ���� � �′
60° � ���� ��

∆  2� , �� ���� � "# ,
60° � ������

∆  4� , �� ���� � %′
                                          (1) 

  & � ' 0 , �� ���� � 0∆()*+ , �� ���� , 0                                                                        (2) 

- � ����                                                                                                  (3) 

where Cmax = max(R', G', B'), Cmin = min(R', G', B') and Δ 

= Cmax – Cmin, where R' = R/255, G' = G/255, and B' = B/255. 

In this work, R, G, and B values are normalized from [0, 255] 

to [0, 1]. This color space is particularly useful in predicting 

colors in continuous videos under different illumination and 

shading conditions. Tybusch et al. [21] also used HSV ranges 

to robustly determine pixel colors for a sampled image area. 

In this paper, our targets include five colors: blue, orange, red, 

white and yellow. Herein, we apply the same HSV filtering 

concept [7, 10, 21] to design the five-color HSV ranges to 

determine the color for each pixel, where users can set their 

own low and high HSV ranges. The simple and effective 

HSV filtering is shown in Fig. 3 and is described as follows. 

1) Crop the upper-side of each bounding box detected by 

YOLOv3 and consider it as the region of interest (ROI) for 

each image, 2) transform the cropped ROI image to HSV 

color space using equations (1), (2), (3), 3) set the low and 

the high HSV ranges of each of the five colors, 4) use these 

HSV ranges to filter out the pixels that do not match the HSV 

ranges and then obtain its scores through a threshold function, 

5) determine the safety helmet color by the highest score. 

Finally, we can count different helmet colors per input frame.   
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III. EVALUATION RESULTS 

 To evaluate the system performance of our detection and 

counting model, we use the accuracy defined below as the 

performance metric. 

.//012/3 � 4564745685647687 .                                                   (4) 

Similarly, to evaluate color detection, we use precision as our 

performance metric as defined below: 

91:/�;��< � 4545685 ,                                                                    (5) 

where TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. Since we would like to 

target safety-helmet and without-safety-helmet workers’ 

detection and counting, we modify Eq. (4) as follows. 

Safety_Helmet_Detection_Accuracy � 4O647O4O68O647O687O ,         (6) 

 

where TH denotes true safety-helmet prediction, TNH 

denotes true no-safety-helmet prediction, FH denotes false 

safety-helmet prediction and true no-safety-helmet detection 

miss, and FNH denotes false no-safety-helmet prediction and 

true safety-helmet detection miss. 

Similarly, we modify Eq. (5) as follows. 

True Color Precesion � 4(4(68( ,                                            (7) 

where TC denotes true positive safety-helmet color 

prediction and FC denotes false positive safety-helmet color 

prediction. Eq. (6) and Eq. (7) are important to evaluate the 

real-time performance of our deep learning model and our 

cropping and filtering method on an edge device. We have 

considered 10 standard test cases. Among them, 3 cases are 

shown in Fig. 6. Our evaluation was performed in two 

different scenarios: 1) we use DJI Matrice 210 V2 for real 

outdoor testing at a maximum height of 50 m with a 30x zoom 

camera, as shown in Fig. 5 and Fig. 6(b), 2) we hold a DJI 

Mavic AIR in front of a PC screen with different YouTube 

videos and use the same software to check the detection 

performance, as shown in Fig. 6(a) and 6(c). Table 1 shows 

the detailed statistics for each case by randomly selecting two 

frames, denoted as SF1 and SF2. When checking the images 

from PC, it is worth noting that our simple cropping and HSV 

filtering method performs worse on poor video quality and 

almost washes out helmet colors, while it performs very well 

on real outdoor tests. We use both good and bad data to 

compute and assess safety helmet detection accuracy and true 

color precision through the developed system. In summary, 

the average safety helmet detection accuracy is 81.02% and 

the average true color precision is 80.86%. The performance 

evaluation also includes a comparison with other existing 

works as shown in Table 2. Our proposed system can achieve 

edge-controlled autonomous UAV navigation for outdoor 

construction sites with satisfactory accuracy and precision. 

IV. CONCLUSIONS 

In this paper, we have successfully developed 1) an edge-

device-oriented outdoor autonomous flying control and 

computation system for off-the-shelf DJI Matrice 210 v2, 2) 

an outdoor modularized software system architecture 

framework integrating the DJI SDK, tiny YOLOv3, OpenCV 

and GPS waypoints, 3) a simple upper-side cropping and 

HSV filtering method for detecting and counting colorwise 

safety helmets and without-safety-helmet workers. As to 

future work, we will explore more complicated scenarios in 

construction sites. 

 
(a) 

 
(b) 

 
(c) 

Fig 6. Three case scenarios for safety-helmet observation (a) 

Case 2, (b) Case 9, and (c) Case 10. 
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Table 1. Detection results per frame in the outdoor environment 
 Case 1 Case 2 Case 3 Case 4 Case 5 

Body Posture Full Body Half Body Bend Stand Sit 

SF1 SF2 SF1 SF2 SF1 SF2 SF1 SF2 SF1 SF2 

Total People 12 12 11 11 9 9 6 6 9 9 

Real Safety Helmet 1 1 10 10 5 5 6 6 0 0 

Safety_Helmet_Detection_Accuracy 

(%) 

83.3 91.7 63.6 63.6 77.8 77.8 85.7 85.7 88.9 77.8 

True_Color_Precision (%) 100 100 100 100 33.3 25 100 100 N/A N/A 

 Case 6 Case 7 Case 8 Case 9 Case 10 

Types of View/ Weather Front view Back view Top view Sunny Cloudy 

SF1 SF2 SF1 SF2 SF1 SF2 SF1 SF2 SF1 SF2 

Total People 10 10 10 10 4 4 2 2 9 9 

Real Safety Helmet 10 10 10 10 3 3 1 1 9 9 

Safety_Helmet_Detection_Accuracy 

(%) 

80 80 60 60 100 100 100 100 66.7 77.8 

True_Color_Precision (%) 33.3 40 100 100 100 100 100 100 66.7 57.1 

 

Table 2. Comparison results 
 

Methodology 

 

UAV 

Surveillance 

 

Edge-

Computing 

Accuracy 

Safety Helmet / 

without Safety 

Helmet Detection 

(%) 

Color Detection Worker with 

Safety Helmet / 

without Safety 

Helmet Counting 

Faster R-CNN for non-hardhat-use [6] No No 98.4 (Precision) No No 

TensorFlow+HSV filter [7] No No 89 (Accuracy) (Red, Blue, Yellow, 

White) 

No 

RPA+SSD [9] No No 83.89 (mAP) 

90.86 (Precision) 

(Red, Blue, Yellow, 

White) 

No 

Cascade classifier+color classification 

[10] 

No No 94.65 (Precision) (Blue, Yellow, 

White, Orange) 

No 

DJI SDK+ tiny YOLOv3+OpenCV+GPS 

waypoints in Android phone [Our work] 

Yes Yes 81.02 (Accuracy) (Red, Blue, Yellow, 

White, Orange) 

Yes 
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