
Accuracy-Time Efficient Hyperparameter
Optimization Using Actor-Critic-based

Reinforcement Learning and Early Stopping in
OpenAI Gym Environment

Albert Budi Christian∗, Chih-Yu Lin†, Yu-Chee Tseng∗, Lan-Da Van∗, Wan-Hsun Hu‡, and Chia-Hsuan Yu‡
∗Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan

†Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan
‡Chunghwa Telecom Laboratories, Chunghwa Telecom, Taiwan

Email: albert.c@nycu.edu.tw, lincyu@mail.ntou.edu.tw, yctseng@cs.nycu.edu.tw,
ldvan@cs.nycu.edu.tw, ringo0601@cht.com.tw, tristan@cht.com.tw,

Abstract—In this paper, we present accuracy-time efficient
hyperparameter optimization (HPO) using advantage actor-
critic (A2C)-based reinforcement learning (RL) and early
stopping in OpenAI Gym environment. The A2C RL can
improve the hyperparameter selection such that the resulting
accuracy of machine learning (ML) algorithms including
XGBoost, support vector classifier (SVC), random forest
shows comparable. According to the specified accuracy of
the ML algorithms, the early stopping scheme can save the
computation cost. Ten standard datasets are used to valid
the accuracy-time efficient HPO. Experimental results show
that the presented accuracy-efficient HPO architecture can
improve 0.77% accuracy on average compared with default
hyperparameter for random forest. The early stopping can
save 64% computation cost on average compared to without
early stopping for random forest.

Index Terms—Actor-Critic, Hyperparameter optimization,
Reinforcement learning, Accuracy-time efficiency, early stop-
ping

I. INTRODUCTION

Machine learning (ML) [1] [2] is the core technology to
achieve artificial intelligence (AI) era. Due to wide atten-
tion and attraction of ML, many researches built different
ML frameworks such as Auto-Scikit-learn [3], Auto-Weka
[4], and SMAC [5]. The ML learning and inference
performance is driven by the data type and quality [6].
Specifically, these data evolve the ML model parameters
with frozen hyperparameters. During the process of data
training, model parameters can be modified. However, the
hyperparameters must be set before training and cannot
be changed during training [7]. As we know that the
values of hyperparameters significantly affect the ML
performance; thus, hyperparameter tuning [8] is necessary
for ML training. Traditionally, the manual hyperparameter
tuning is operated; however, this way costs efforts and
time without clear guidelines due to the huge number of
hyperparameters. Currently, the automatic hyperparameter
tuning or HPO [3] is the main research trend in this field.

There exist HPO systems such as Vizier [9], RayTune
[10], CHOPT [11] and Optuna [12], where most different

HPO methods are supported. The gird search method [13]
and random search method [14] are most well known
HPO methods. The former one uses all combinations
of hyperparameters to fully search the best candidate of
hyperparameters, but this method is time consuming. The
later one randomly selects the pre-defined hyperparameter;
thus, the searching speed is faster than the grid search
method, but local minimum issue exists.

In order to overcome small and low-dimensional
search space, the Bayesian optimization method [15] and
gradient-based method [16] are developed. However, these
methods still show intensive computations. RL technique
is commonly employed within HPO-related studies. In
[17], Zhao et al. applied RL to optimize searching strategy
in artificial bee colony algorithm. Zahavy et al. [18]
focused on meta gradient RL for off-policy corrections.
Liu et al. [19] proposed an LSTM network to decrease
the high computational cost in the HPO problem. Fairee et
al. [20] used RL based approaches for neural architecture
searching.

Early stopping has been studied in many different
HPO problems. Belakaria et al. [21] introduced an early
stopping mechanism in deep neural network scenario by
adopting the Bayesian optimization technique. Li et al.
[22] focused on accelerating random search through early
stopping. Muñoz et al. [23] introduced early stopping for
the HPO of ML algorithms. Gomez et al. [24] applied
early stopping in deep meta-RL to neural architecture
search.

A few existing works use actor critic network and early
stopping to solve HPO problem. In [25], Heinrich et al.
adopted GPU-based asynchronous advantage actor critic
network (GA3C) and early stopping for parallel issue in
deep RL. In this paper, we are applying the A2C-based RL
[26] and early stopping to perform HPO in ML algorithm.

The main contributions of this paper are described as
follows.

1) In this paper, we apply OpenAI Gym to build the RL
agent and environment. The agent issues an action

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

979-8-3503-9645-4/22/$31.00 ©2022 IEEE 230

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
rn

et
 o

f T
hi

ng
s a

nd
 In

te
lli

ge
nc

e
Sy

st
em

s (
Io

Ta
IS

) |
 9

79
-8

-3
50

3-
96

45
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

Io
Ta

IS
56

72
7.

20
22

.9
97

59
84

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 14,2022 at 06:30:50 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Hyperparameter domain [27]

No Domain Search Space Range
1 numerical {Ω,O}
2 categorical {”cat1”, ”cat2”,”...”, ”catn” }

to tune the hyperparameters of the environment. The
tuned hyperparameters are used for ML model train-
ing, validation and testing. The output the ML model
is used to decide whether to enable early stopping to
save the computation.

2) In our work, we explore performance using A2C
network and early stopping among 10 datasets, four
different search methods and three ML algorithms. To
the best of our knowledge, the A2C algorithm plus
early stopping haven’t been used to solve HPO in ML
algorithms yet.

The rest of this paper is organized as follows. Section II
discusses our proposed system architecture. Performance
evaluation results are shown in Section III. Finally, Section
IV remarks the conclusions and future works.

II. PROPOSED ACCURACY-TIME EFFICIENT
HPO SYSTEM ARCHITECTURE

In our research, we adopt the HPO’s scenario and
equations/notations presented in [28] as environment in
the RL system. The object function is shown in Eq.(1).

λ∗ = argmax
λ∈Λ

E(Dtrain,Dvalid)∽DA(Aλ,Dtrain,Dvalid)

(1)
where A denotes an ML algorithm with N hyperparam-
eters denoted by Aλ and λ ∈ Λ. Dtrain denotes the
training data, while Dvalid denotes the validation data.
The hyperparameter configuration space is denoted by
Λ = Λ1 × Λ2 × ...ΛN where Λi denotes the i−th hy-
perparameter’s search space and × represents the cartesian
product. In Table I [27], the hyperparameter has two types

Fig. 1: Presented an accuracy-time efficient system archi-
tecture

TABLE II: Model Search Space [29] [27]

Model Hyperparameter Type Search Space Scale Default

Random Forest

bootstrap boolean True, False - True
criterion category gini, entropy, log loss - gini
min samples split integer [2, 100] 4 4
n estimators integer [100, 1200] 100 100
max features category auto, sqrt, log2 - sqrt
min samples leaf integer [2,100] 4 4

SVC
C float [0.1, 2.0] 0.1 1
kernel category linear, poly, rbf - rbf
gamma category scale, auto - scale

XGBoost

colsample bylevel float [0.5,1.0] 0.1 0.5
colsample bytree float [0.5,1.0] 0.1 0.5
gamma float [0.05,1.0] 0.01 0.05
learning rate float [0.01,0.1] 0.01 0.01
max depth integer [3,25] 1 3
min child weight integer [1,9] 2 1
n estimators integer [100,1200] 10 100
reg alpha float [0.1,1.0] 0.1 0.1
reg lambda float [0.01,1.0] 0.01 0.01
subsample float [0.5,1.0] 0.1 0.5

of domain search spaces, numeric value (integer or float)
and category. Herein, the hyperparameter is classified into
two categories, the numeric type including integer and
float, and the category type including the binary and
category data. For the numeric type, the total action space
is 3n and the category type depends on the n possible
value in the certain hyperparameter.

Considering A2C RL and early stopping, we present our
proposed accuracy-time efficient HPO system architecture
as shown in Fig. 1. In Fig. 1, there are three main modules
including the RL agent module, environment module, and
memory module. Herein, we adopt the OpenAI Gym [30]
toolkit which is a Python-based environment to build and
train RL agents. In the RL agent module, we adopt the
A2C during the training phase. The testing data is used
to infer the results. Herein, the early stopping scheme is
used to save the computation according to the test result
accuracy. The outputs of the environment including states
(a list of hyperparameter values), action (hyperparameter
tuning), and reward (accuracy of the ML model) feed
into the memory unit module. The agent module interacts
with environment module iteratively until the performance
meets the early stopping criterion. In our system architec-
ture, we implement Cartesian product algorithm [31] to
generate the list of our actions. The list of action a from
the agent is processed based on the hyperparameter data
type. The overall operation steps in Fig. 1 are described
as follows:

Step 1: Sample (st, at) using the policy πθ from the
actor network.

Step 2: Train an ML model with the selected hyperpa-
rameters on the training data Dtrain.

Step 3: Verify the ML model on the validation data
Dval.

Step 4: Test the ML model to obtain the accuracy on the
testing data Dtest as a reward signal.

Step 5: If the accuracy meets the early stopping crite-
rion, the overal processes will be terminated. If
no, go to Step 6.

Step 6: Evaluate the advantage function At in the critic
network [32].

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

231

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 14,2022 at 06:30:50 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

100

No tuning Grid Search Random Search Our RL

A
cc
u
ra
c
y

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓 𝒅𝟔 𝒅𝟕 𝒅𝟖 𝒅𝟗 𝒅𝟏𝟎

(a) Random Forest

0

10

20

30

40

50

60

70

80

90

100

No tuning Grid Search Random Search Our RL

A
cc
u
ra
c
y

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓 𝒅𝟔 𝒅𝟕 𝒅𝟖 𝒅𝟗 𝒅𝟏𝟎

(b) XGBoost

0

10

20

30

40

50

60

70

80

90

100

No tuning Grid Search Random Search Our RL

A
cc
u
ra
c
y

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓 𝒅𝟔 𝒅𝟕 𝒅𝟖 𝒅𝟗 𝒅𝟏𝟎

(c) SVC

Fig. 2: HPO performance for 10 classification datasets using baseline, grid search, random search, and A2C-based RL
on three algorithms.

0

10

20

30

40

50

60

70

80

90

100

Without Early Stopping With Early Stopping

A
cc
u
ra
c
y

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓 𝒅𝟔 𝒅𝟕 𝒅𝟖 𝒅𝟗 𝒅𝟏𝟎

(a) Accuracy

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

With Early Stopping Without Early Stopping

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒 𝒅𝟓 𝒅𝟔 𝒅𝟕 𝒅𝟖 𝒅𝟗 𝒅𝟏𝟎

T
im

e
E

ff
ic

ie
n

cy

(b) Time efficient

Fig. 3: HPO performance of A2C-based RL for the random forest algorithm with and without early stopping.

0

1

2

3

4

5

6

7

8

9

10

RL-based Grid Search Random Search

N
u

m
b

er
 o

f
D

a
ta

se
ts

Top-1 Top-2 Top-3

(a) Time efficient: Random Forest

0

1

2

3

4

5

6

7

8

9

RL-based Grid Search Random Search

N
u

m
b

er
 o

f
D

a
ta

se
ts

Top-1 Top-2 Top-3

(b) Time efficient: XGB

0

1

2

3

4

5

6

7

8

RL-based Grid Search Random Search

N
u

m
b

er
 o

f
D

a
ta

se
ts

Top-1 Top-2 Top-3

(c) Time efficient: SVC

Fig. 4: Top 3 number of datasets ranked by time efficiency among three different searching methods and three ML
algorithms.

Step 7: Evaluate the gradient and update the policy
parameters in the actor network [32].

Step 8: Update the weights of the critic network [32].
Then go back to Step 1 until the optimal policy
πθ is obtained.

III. EXPERIMENTAL RESULTS

In this section, the experimental results are shown and
discussed to validate our proposed system architecture in
Fig. 1. We apply the proposed method to tune the hy-
perparameters in three well-known ML models including
Random Forest [27], XGBoost Classifier (XGB) [33] and
SVC [27]. We compared our method with the default
hyperparameters (no tuning), grid search and random
search methods. Table II shows the search space of each
algorithm. We set up the algorithms as our environment
and test on 10 different datasets, respectively. The datasets
are selected from Kaggle and UCI ML repository as
shown in Table III. These datasets focuses on classification
problems. In this experiment, the dataset D is splitted into

Dtrain,Dvalid, and Dtest with the following ratio 60%,
20%, 20% respectively.

As shown in Fig. 2, HPO results in terms of accuracy
can be improved compared with no-tuning and random
search methods or closed to that of grid search method
even though grid search uses all possibility of hyperpa-
rameter range. For random forest in Fig.2(a), XGBoost
in Fig.2(b), and SVC in Fig.2(c), the corresponding ac-
curacies can be improved by 0.77%, 0.69%, and 0.60%,
respectively. Next, we evaluate the accuracy performance
and time efficiency considering the early stopping scheme
and without early stopping scheme as a baseline. Herein,
we take the random forest algorithm for demonstration.
Fig. 3(a) shows even though there is an accuracy reduction
around 1.25% on average, the early stopping scheme can
save the computational cost around 64% as shown in
Fig. 3(b).

Finally, we evaluate the four methods in terms of top
3 ranking time efficiency by counting the number of
datasets as shown in Fig. 4. Obviously, the presented

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

232

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 14,2022 at 06:30:50 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Datasets Name

No Dataset Name Tasks
d1 Default of credit card clients [34] Classification
d2 Date Fruit Datasets [35] Classification
d3 Fashion MNIST [36] Multiclass Classification
d4 Taiwanese Bankruptcy Prediction Dataset [37] Classification
d5 Portuguese Bank Marketing Dataset [38] Classification
d6 UCI ML Drug Review dataset [39] Classification, Regression, Clustering
d7 UCI Adult Census Data Dataset [40] [41] Classification
d8 Census Income Data Set [41] Classification
d9 Diabetes Health Indicators Dataset [42] Classification
d10 Climate Model Simulation Crashes Dataset [43] Classification

A2C RL method can attain the rank 1 time efficiency
among three ML algorithms and 10 datasets. From Figs.
2, 3, 4, the grid search method can achieve the best
accuracy result but leads to the largest amount of time.
The random search is vice versa. Generally, the presented
HPO using A2C RL and early stopping scheme is able to
achieve better tradeoff performance considering accuracy
and time efficiency among 10 datasets and three machine
learning algorithms compared with other three methods.
This proves that A2C RL with early stopping can be a
good solution to develop the auto ML framework.

IV. CONCLUSION AND FUTURE WORKS

In this work, the following contributions are attained.
1) Present an accuracy-time efficient HPO using A2C-
based RL and early stopping. 2) Detailed evaluation and
simulation results are discussed within ten datasets for
three ML algorithms by four searching methods. Through
the system architecture and evaluation results, the better
tradeoff HPO can be achieved. In the near future, this
architecture and simulation can be explored further in
different ML algorithms, searching methods, early stop-
ping criterions, and more datasets for various intelligent
applications.

REFERENCES

[1] S. Mirjalili, H. Faris, and I. Aljarah, Evolutionary machine learning
techniques. Springer, 2019.

[2] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends,
perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–
260, 2015.

[3] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,”
Advances in neural information processing systems, vol. 28, 2015.

[4] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown,
“Auto-weka: Combined selection and hyperparameter optimization
of classification algorithms,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and
data mining, 2013, pp. 847–855.

[5] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in In-
ternational conference on learning and intelligent optimization.
Springer, 2011, pp. 507–523.

[6] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H.
Deng, “Hyperparameter optimization for machine learning models
based on bayesian optimization,” Journal of Electronic Science and
Technology, vol. 17, no. 1, pp. 26–40, 2019.

[7] M. Claesen and B. De Moor, “Hyperparameter search in machine
learning,” arXiv preprint arXiv:1502.02127, 2015.

[8] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: importance
of hyperparameters of machine learning algorithms,” The Journal of
Machine Learning Research, vol. 20, no. 1, pp. 1934–1965, 2019.

[9] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and
D. Sculley, “Google vizier: A service for black-box optimization,”
in Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, 2017, pp. 1487–1495.

[10] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and
I. Stoica, “Tune: A research platform for distributed model selection
and training,” arXiv preprint arXiv:1807.05118, 2018.

[11] J. Kim, M. Kim, H. Park, E. Kusdavletov, D. Lee, A. Kim, J.-
H. Kim, J.-W. Ha, and N. Sung, “Chopt: Automated hyperpa-
rameter optimization framework for cloud-based machine learning
platforms,” arXiv preprint arXiv:1810.03527, 2018.

[12] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,” in
Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, 2019, pp. 2623–2631.

[13] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” Advances in neural information
processing systems, vol. 24, 2011.

[14] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization.” Journal of machine learning research, vol. 13, no. 2,
2012.

[15] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” Advances in neural
information processing systems, vol. 25, 2012.

[16] S. Putatunda and K. Rama, “A modified bayesian optimization
based hyper-parameter tuning approach for extreme gradient boost-
ing,” in 2019 Fifteenth International Conference on Information
Processing (ICINPRO). IEEE, 2019, pp. 1–6.

[17] H. Zhao and C. Zhang, “A decomposition-based many-objective ar-
tificial bee colony algorithm with reinforcement learning,” Applied
Soft Computing, vol. 86, p. 105879, 2020.

[18] T. Zahavy, Z. Xu, V. Veeriah, M. Hessel, J. Oh, H. P. van Hasselt,
D. Silver, and S. Singh, “A self-tuning actor-critic algorithm,”
Advances in Neural Information Processing Systems, vol. 33, pp.
20 913–20 924, 2020.

[19] X. Liu, J. Wu, and S. Chen, “Efficient hyperparameters optimization
through model-based reinforcement learning and meta-learning,” in
2020 IEEE 22nd International Conference on High Performance
Computing and Communications; IEEE 18th International Confer-
ence on Smart City; IEEE 6th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS). IEEE, 2020, pp.
1036–1041.

[20] S. Fairee, C. Khompatraporn, S. Prom-on, and B. Sirinaovakul,
“Combinatorial artificial bee colony optimization with reinforce-
ment learning updating for travelling salesman problem,” in 2019
16th international conference on electrical engineering/electronics,
computer, telecommunications and information technology (ecti-
con). IEEE, 2019, pp. 93–96.

[21] S. Belakaria, R. Sheth, J. R. Doppa, and N. Fusi, “Bayesian opti-
mization over iterative learners with structured responses: A budget-
aware planning approach,” arXiv preprint arXiv:2206.12708, 2022.

[22] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal-
walkar, “Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 6765–6816, 2017.

[23] Á. L. Muñoz Castañeda, N. DeCastro-Garcı́a, and D. Escud-
ero Garcı́a, “Rhoaso: An early stop hyper-parameter optimization
algorithm,” Mathematics, vol. 9, no. 18, p. 2334, 2021.

[24] J. Gomez Robles and J. Vanschoren, “Learning to reinforcement
learn for neural architecture search,” arXiv e-prints, pp. arXiv–
1911, 2019.

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

233

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 14,2022 at 06:30:50 UTC from IEEE Xplore. Restrictions apply.

[25] G. Heinrich and I. Frosio, “Metaoptimization on a distributed
system for deep reinforcement learning,” in 2019 IEEE/ACM
Workshop on Machine Learning in High Performance Computing
Environments (MLHPC). IEEE, 2019, pp. 19–30.

[26] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging
the gap between value and policy based reinforcement learning,”
Advances in neural information processing systems, vol. 30, 2017.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[28] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Auto-
mated machine learning. Springer, Cham, 2019, pp. 3–33.

[29] W. Jia, C. SenPeng, and C. XiuYun, “Rpr-bp: A deep reinforcement
learning method for automatic hyperparameter optimization,” in
2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2019, pp. 1–8.

[30] G. B. et al., “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.
[31] O. Agesen, “The cartesian product algorithm,” European Confer-

ence on Object-Oriented Programming, 1995.
[32] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel,

“High-dimensional continuous control using generalized advantage
estimation,” arXiv preprint arXiv:1506.02438, 2015.

[33] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD
’16. New York, NY, USA: ACM, 2016, pp. 785–794. [Online].
Available: http://doi.acm.org/10.1145/2939672.2939785

[34] I.-C. Yeh and C.-h. Lien, “The comparisons of data mining tech-
niques for the predictive accuracy of probability of default of credit
card clients,” Expert systems with applications, vol. 36, no. 2, pp.
2473–2480, 2009.

[35] M. Koklu, R. Kursun, Y. S. Taspinar, and I. Cinar, “Classification
of date fruits into genetic varieties using image analysis,” Mathe-
matical Problems in Engineering, vol. 2021, 2021.

[36] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[37] D. Liang, C.-C. Lu, C.-F. Tsai, and G.-A. Shih, “Financial ratios
and corporate governance indicators in bankruptcy prediction: A
comprehensive study,” European Journal of Operational Research,
vol. 252, no. 2, pp. 561–572, 2016.

[38] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict
the success of bank telemarketing,” Decision Support Systems,
vol. 62, pp. 22–31, 2014.

[39] F. Gräßer, S. Kallumadi, H. Malberg, and S. Zaunseder, “Aspect-
based sentiment analysis of drug reviews applying cross-domain
and cross-data learning,” in Proceedings of the 2018 International
Conference on Digital Health, 2018, pp. 121–125.

[40] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[41] R. Kohavi et al., “Scaling up the accuracy of naive-bayes classifiers:
A decision-tree hybrid.” in Kdd, vol. 96, 1996, pp. 202–207.

[42] Z. Xie, O. Nikolayeva, J. Luo, and D. Li, “Peer reviewed: building
risk prediction models for type 2 diabetes using machine learning
techniques,” Preventing chronic disease, vol. 16, 2019.

[43] D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon,
D. Domyancic, and Y. Zhang, “Failure analysis of parameter-

induced simulation crashes in climate models,” Geoscientific Model
Development, vol. 6, no. 4, pp. 1157–1171, 2013.

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

234

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 14,2022 at 06:30:50 UTC from IEEE Xplore. Restrictions apply.

