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Abstract—This paper considers the emergency behavior 

detection problem inside an elevator. As elevators come in 

different shapes and emergency behavior data are scarce, we 

propose a skeleton-based view-invariant framework to tackle 

the camera view angle variation issue and the data collection 

issue. The proposed emergency fall detection model only needs 

to be trained for a target camera, which is deployed in an 

elevator at a manufacture’s lab, from which a large amount of 

training data can be collected. The deployment of a source 

camera, which is in a customer-side elevator, hence can be 

customized and almost no training effort is needed. Our 

framework works in four stages. First, a 2D RGB input image is 

taken from the source camera and a 2D human skeleton is 

obtained by 2D pose estimation (AlphaPose). Second, the 2D 

skeleton is converted to a 3D human skeleton by 3D pose 

estimation (3D pose baseline). Third, a pre-trained rotation-

translation (RT) transform (Procrustes analysis (PA)) aligns the 

3D pose representations to the target camera view. Finally, a 

dual 3D pose baseline deep neural networks (D3PBDNN) model 

for human fall detection is proposed to perform the recognition 

task. We gather a human fall detection dataset inside different 

elevators from various view angles and validate our proposal. 

Experimental results successfully attain almost equivalent 

accuracy to that of a source camera-trained model.  

Keywords—view-invariant, fall detection, 2D/3D pose 

estimation, deep neural network, Procrustes analysis, skeleton 

I. INTRODUCTION  

Elevators have become a common mode of transportation 
because they provide convenience and speed in our daily lives. 
Since an elevator is a closed and unnoticed environment, any 
emergency, such as falling, may have dire consequences. An 
intuitive way to recognize emergency behaviors inside an 
elevator is by video human pose estimation. However, even in 
the same elevator, accuracy may vary a lot because in a limited 
space, camera viewing angle may not be able to capture whole 
human body skeleton. On the other hand, it is difficult to 
derive one generalized recognition model to fit all types of 
elevators because elevators come in different shapes and 
emergency datasets are scarce. Intuitively, to attain high 
accuracy, collecting huge training data from all viewing angles 
for all types of elevators seems to be inevitable.  

In reality, camera deployment can be highly customized by 
end elevator users. View angles of cameras are very likely to 
differ from one to the others. Training data for each specific 
environment is always scarce, especially for emergency 

behaviors. As a result, we are motivated to develop a general 
framework to attain single-view angle learning that can be 
transformed to different view angles. In this work, we propose 
a skeleton-based view-invariant framework that relies on 2D 
pose estimation, 3D pose estimation, rotation and translation 
(RT) transform, and fall detection model. 

In the literature, camera calibration [1-4] is a widely used 
to approach for our purpose. The works in [1, 2, 4] propose 
multi-camera calibration methods. However, the drawbacks 
include the need of calculating a world coordinate of these 
cameras, which is a tricky issue, and the difficulty in 
calibrating the surveillance cameras with a checkerboard 
inside an elevator, which is an uninterruptable environment. 
The work [3] exploits Procrustes analysis (PA) to calibrate the 
position of a camera in a pedestrian area based on the 3D 
positions of pedestrians’ heads and feet. These approaches 
require cameras and objects be close. Recently, several works 
[5-10] try to solve the view invariant problem via different 
approaches. It is noted that the pose estimation techniques [11-
14] play an important role to the above solutions. In our work, 
we also apply PA on 3D skeletons, but the two cameras to be 
calibrated do not need to stay in the same elevator, and the 
elevators are not necessarily of the same type. We only train 
fall detection for a target camera and all other source cameras 
only need to transform their recognized skeletons to the former 
camera. In this way, we only require collecting data and train 
our model from the target camera’s viewing angle, thus greatly 
accelerating industrial applications in elevator safety. The 
contributions of this work are as follows: 1) propose a 
skeleton-based view-invariant framework, 2) propose a dual 
3D pose baseline deep neural networks (D3PBDNN) for 
human fall detection, and 3) target the elevator safety 
application.  

II. PROPOSED FRAMEWORK 

We consider two cameras A and B such that A is the target 
camera and B is the source camera. A and B are deployed in 
target and source elevators, respectively (one may imagine 
common RGB camera, while B is another 2D camera. The 
whole proposed framework is shown in Fig. 1. that they are 
deployed in manufacturer and customer sides, respectively). 
All data collection and model training are done in the target 
elevator. Therefore, we assume that A is a common RGB 
camera, while B is another 2D camera. The whole proposed 
framework is shown in Fig. 1. 

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

du
st

ria
l T

ec
hn

ol
og

y 
(I

C
IT

) |
 9

78
-1

-7
28

1-
19

48
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
IT

48
60

3.
20

22
.1

00
02

82
3

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 10,2023 at 13:44:18 UTC from IEEE Xplore.  Restrictions apply. 



Fig.  1. The block diagram of the proposed skeleton-based view-invariant framework. 

 

A. 2D Pose Estimation   

Block A converts each RGB image taken by the source 
camera B to a 2D skeleton by AlphaPose [12]. We adopt 
AlphaPose because it is a top-down multi-person approach 
based on YOLO [15]. AlphaPose uses the COCO format with 
17 joints. 

B. 3D Pose Estiamtion   

Block B converts 2D skeleton from the COCO format to 
the Human3.6M format [11]. The Human3.6M format has 17 
joints locations per skeleton with a different indexing from the 
COCO format. Through use of index mapping, the 
Human3.6M model converts 2D skeleton to 3D skeleton by 
the multilayer neural network (called 3D pose baseline neural 
network [13]). The neural network is trained using the 
Human3.6M dataset that consists of both 2D and 3D skeleton 
ground truth in the Human3.6M skeleton format. We search 
for the best hyperparameters using the Optuna [16] and the 
results are shown in Table 1. 

C. Rotation and Translation (RT) Transform  

Fig. 2 elaborates how RT transform works to get the 
optimized mapping from source camera view to target camera 
view using PA. First, it takes two standing postures from target 
camera A and source camera B at once and then approximately 
matches the views of both cameras using PA. Next, the 
inference pipeline acquires rotation R and translation T values 
once the RT transform is learned. Finally, these values are 
applied to source camera view skeletons to match 

them with target camera view skeletons. The PA [17-19] that 

has been widely used in shape comparing and matching in [7, 

14, 20] uses singular value decomposition (SVD) to compare 

and match the shapes between the target and source objects by 

rotation and translation values. The details are elaborated as 

follows. First, we have two 3D skeletons from the target angle 

A and source angle B, and we find out the centers (centroidA 

and centroidB) of these two skeletons. Then, we re-center our 

skeletons and calculate covariance matrix � between them by 

(1), where ��  and ��are skeleton points. 

H= �  (PA
i - centroid A)(PB

i - centroid B)
n

i=1
 (1) 

 

Next, we decompose this covariance matrix H using SVD 

[21] to obtain the decomposition matrices U, S, and V in (2). 

 �U,S,V	=SVD(H)  (2) 

  
After obtaining �, , and �, we can find the rotation matrix, 
R, and the translation matrix, T, by (3) and (4), respectively. 

 R=V*U^T (3) 

 
                                                

T= –R* centroidA+ centroidB  (4) 

 

TABLE 1. HYPERPARAMETER SEARCH SCOPE AND RESULTS FOR 3D POSES 

BASELINE NEURAL NETWORK USING OPTUNA 

Param 

Name 

Search Scope Best 

Parameter Low High Step 

LR 1.0e − 5 1.0e − 1 Continuous 0.0006495 

LR Decay 50000 150000 50000 150000 

Gamma 0.8 1 0.05 0.9 

Linear Size 256 2048 256 1024 

Dropout 0.3 0.8 0.1 0.3 

Num Stage 1 6 1 5 

Optimizer Adam, RMSprop, SGD Adam 

Input Stream

(Source Camera B)

2D Pose 

Estimation

(AlphaPose)

3D Pose Estimation

(3D Pose Baseline)

2D Skeleton
A B

3D Skeleton 

(Source Camera B)

2D Skeleton with 

Approximate Desired 

View Angle

Apply RT 

Transform 

C

3D to 2D

3D Skeleton after 

Transform

Fall Detection 

Model 

(D3PBDNN) & Post 

Processing

Fall (0.8)

Stand (0.2)

D

 

Authorized licensed use limited to: National Yang Ming Chiao Tung University. Downloaded on January 10,2023 at 13:44:18 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

 

 

 

 

 

 

 

Fig.  2. The presented RT transform. 

 

 

 

 

 

 

 

 

 

Fig.  3. The proposed fall detection network architecture. 

 
Finally, once these transformation matrices are learned, Block 
C transforms the source camera skeleton B to target camera 
skeleton A as shown in Fig.1.  

D. Fall Detection Model and Post Processing 

    Block D contains our proposed fall detection neural 
network and post processing for emergency behavior 
detection. The proposed D3PBDNN based on [13] consists of 
two modality-specific subnetworks in Fig. 3. It can process 2D 
and 3D pose representations simultaneously. We exploit 2D 
and 3D pose representations to add more information and 
extract rich features. Each subnetwork [13] consists of two 
stacks of the linear layer with batch normalization (BN), 
ReLU, and dropout. For each subnetwork, we add the residual 
connection to avoid information loss. Then, we concatenate 
the 1024-dimensional 2D and 3D features and feed them to a 
linear and SoftMax layer for predicting class scores. To 
further improve our result, we adopt the majority voting for 
the post processing. In our work, we use 5-voting queues for 
majority voting. If the number of falling detection is more than 
or equal to 3, we determine the current frame as fall. Similarly, 
standing uses this concept.  

III. RESULTS 

    In this section, we evaluate our proposed framework 
employing quantitative analysis and qualitative comparison. 

A. 3D Pose Estimation Evaluation 

     During the training, we use a standard protocol of the 
Human3.6M dataset. Subjects 1, 5, 6, 7, and 8 are used for 
training, and on the other hand, Subjects 9 and 11 are used for 
evaluation [11]. We use the average error in millimeters 
between ground truth and prediction after central hip 
alignment. Through Table 1, we can reduce the millimeter 
error of 3D prediction from 45.5 mm to 40.3 mm using our 
optimized hyperparameters.  

B. Rotaton-Translation Transform Evaluation 

    The RT transform is evaluated by multi cameras falling 
dataset [22]. This dataset has 24 scenarios recorder with 8 
different camera views as shown in Fig. 4(a). The same action 
is recorded by 8 cameras from 8 different view angles. Hence, 
we can use this dataset to qualitatively evaluate the RT 
transform as shown in Fig. 4(b), where camera 7 is presumed  
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(a) 

(b) 

(c) 

Fig. 4. The qualitative evaluation of the proposed RT transform. 

 

TABLE 2. MEASUREMENT EVALUATION RESULTS OF FIG .4 

Evaluation 

Metrics 

RT 

Transform 

Average (All Cams) 

Cosine Similarity 

(Larger is better) 

Before 0.28 30.43% 

After 0.92 100% 

Euclidian Distance 

(Smaller is better) 

Before 1826.75 100% 

After 628.20 34.39% 

MJPE Error 

(Smaller is better) 

Before 386.21 100% 

After 123.99 32.10% 

 
as a target. In Fig. 4(c), we apply RT transform to match the 
angle of target camera 7 with other source cameras. The 
quantitative evaluation is measured by the average of cosine 
similarity, Euclidean distance, and mean per joint position 
error (MJPE) before and after RT transform as shown in Table 
2. The results show that the presented RT transform improves 
cosine similarity, Euclidean distance, and MJPE by 69.57%, 
65.61%, and 67.9%, respectively. That means the presented 
approach can successfully approximate the target view angle. 

C. Fall Detection Evaluation 

We train a fall detection model using the untransformed 
2D and 3D pose representations from the target camera angle 
A. The model takes both 2D and 3D pose representations as 

input. Then, we evaluate the model with 2D and 3D pose 
representations from different camera view angles B, C, D and 
E. We took angles A, B, and C from our custom dataset inside 
elevators. For angle D, we use footage from the Le2I dataset 
[23]. We use multiple cameras fall dataset [22] for angle E.  
For a fair comparison, we evaluate the fall detection model 
with untransformed and transformed pose representations in 
terms of accuracy, precision, recall, and F1-Score per image 
frame as shown in Table 3. The experimental result shows 
that, during the inference phase, through the RT transform, the 
D3PBDNN model can attain an accuracy by 0.83 at least in 
Table 3. 

D. Comparison 

Our qualitative comparison with the selected skeleton-
based view-invariant action recognition frameworks is shown 
in Table 4. Since each work uses a different approach and 
dataset and our work focuses on fall detection inside the 
elevator, it will not be fair if the proposed framework is 
compared by head-to-head. Thus, we qualitatively compare 
our proposed framework with the previous frameworks. The 
work [5] proposed VNect and alignment for view invariant 
and expansion plus LSTM for action recognition. The work 
[6] proposed a novel end-to-end view adaptive framework that 
automatically alters the camera angle at each frame to obtain 
the consistent skeleton representation under the new view. 
The work [7] proposed learning view-invariant probabilistic 
embedding for 2D joint keypoints and applied nearest 
neighbor search for action recognition. The work [8] used 
motion trajectories of the skeleton to accomplish view 
invariance across different viewpoints. The work [9] proposed 
viewpoint-aware action recognition using viewpoint 
categorization network, skeleton-based features from multi-
view image data and random forest. However, the above 
skeleton-based view-invariant action recognition works focus 
on human action rather than emergency human fall detection. 
In contrast to the above-mentioned approaches except [9], our 
framework trains the model with 2D and 3D pose 
representations from the target camera angle and uses RT 
transform to align pose representations of the source camera 
angle to the target camera angle. In other words, it does not 
require training data from different angles to achieve view 
invariance. 

IV. CONCLUSION 

In this paper, an effective skeleton-based view-invariant 
framework for human fall detection is proposed and evaluated 
using the datasets from different camera view angles. Our 
evaluation results show that the proposed framework with the 
modified D3PBDNN for source camera view angles can 
achieve equivalent accuracy of that of a trained target camera 
model. Through the experiments, the developed technology 
can largely save many times of training models and overcome 
the camera view variation issues inside elevators. In the near 
future, we can integrate this technology with the elevator 
scheduling [24, 25].  
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TABLE 3.  FALL DETECTION RESULTS OF OUR PROPOSED FRAMEWORK 

Training Testing 

 

Models Angle  F1-Score (Train) F1-Score (Valid) Angle  RT Transform Accuracy Precision  Recall  F1-Score  
 

 

Fig. 1 A 0.98 0.98 

A × 0.8 0.58 0.82 0.68  

B 
× 0.81 0.94 0.76 0.84  

 0.9 0.98 0.86 0.91  

C 
× 0.97 0.98 0.97 0.98  

 0.98 1.0 0.97 0.99  

D 
× 0.62 0.4 0.83 0.54  

 0.87 0.86 0.56 0.68  

E 
× 0.81 0.35 0.55 0.43  

 0.83 0.37 0.38 0.37  

 

TABLE 4. COMPARISON WITH THE SELECTED SKELETON-BASED VIEW-INVARIANT FRAMEWORKS 

References Baptista [5] Zhang [6] Sun [7] Rawat [8] Kim [9] This Work 

Target Application 
Human Action 

Recognition 

Human Action 

Recognition 

Human Action 

Recognition 
Human Action 

Recognition 

Human Action 

Recognition 

Human Fall 

Detection in an 

Elevator 

View Invariant 

Approach 

VNect + 

Alignment 

View Adaptive 

(VA) Neural 
Network via VA-

RNN, VA-CNN, 

VA-Fusion 

Probabilistic 

Embedding 
Motion Trajectory 

Matching 

Viewpoint  
Categorization 

Network 

2D Pose 

Estimation 
(AlphaPose) + 

3D Pose 

Estimation (3D 

Pose Baseline) + 

RT Transform 

(PA) 

Action Recognition 

Approach 

Expansion + 

LSTM 

Classification 

Network 

Nearest 

Neighbor 

Search 

2D to 3D Skeleton 

Lifting + Random 

Forest 

D3PBDNN + 

Post Processing 

Action Recognition 

Input Data Type 
3D Skeleton 3D Skeleton 2D Skeleton 3D Skeleton 

2D and 3D 

Skeleton 

2D and 3D 

Skeleton 
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