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Abstract—With the growing number of research studies on
Vehicle-to-Vehicle (V2V) communication applications, situational
awareness becomes one of major challenges for autonomous
vehicles. Autonomous vehicle needs to predict the movement
and trajectories of surrounding vehicles accurately in order
to make a better decision making. The ability to recognize
vehicles’ surroundings has become important in order to enable
situational awareness and navigate the vehicle safely. In this
paper, we propose a neural network called Mapping Decision
Feedback Neural Network (MDFNN) to tackle the vehicle iden-
tification (VID) issue in V2V communication. According to the
MDFNN infrastructure, two types of MDFNN namely as Grid-
based MDFNN and Bounding box-based MDFNN are proposed.
The MDFNN fuses image, V2V interface, GPS, magnetometer,
and speedometer data (i.e., multi-sensor data and V2V commu-
nication) to enable situational awareness. MDFNN utilizes the
mapping decision feedback information in the proposed deep
learning neural network structure. With this improvement, a
greatly improved accuracy can help to resolve the VID issue.
Our experiment’s result shows 85% of accuracy for Grid-based
MDFNN.

Index Terms—automonous driving, vehicle identification
(VID), data fusion, deep learning, neural network, V2V com-
munication

I. INTRODUCTION

Recently, utilizing numerous sensors to provide a better in-

formation about vehicle’s surrounding on autonomous vehicles

has become an interesting research topic. The ability to un-

derstand the behavior of surrounding vehicles can be referred

as situational awareness [1]. To enable situational awareness,

an accurate vehicle’s status such as location and speed must

be able to be delivered properly [2]. While many researches

targeting on vehicle-to-vehicle (V2V) communication, it does

not imply that the vehicle can fully depend on this particular

system to have full perception of its surroundings [3] [4].

Data transmission between vehicles must be strengthen and

well integrated to make it more meaningful with the purpose

of making a better decision for autonomous driving vehicle.

On the other hand, although the idea of deep learning has

been appeared earlier than 1980 [5] [6], it has just become

popular at the past decades to provide a better decision maker

for autonomous driving vehicle. With the rapid advancing

technology development, Convolution Neural Network (CNN)

has been proved to be a powerful deep learning models,

therefore can help provide a more accurate decision-maker

on autonomous driving vehicle [7].

In this paper, our goal is to achieve a better situational

awareness by fusing multi-sensor data and benefiting from

V2V communication which allows information exchange be-

tween vehicles. However, a challenge occur on how to identify

which vehicle whose send the information. Therefore, in

this paper, we propose a neural network called Mapping

Decision Feedback Neural Network (MDFNN) infrastructure

to tackle VID issue. An example is shown in Fig. 1. In

Fig.1a, there are five vehicles surrounding the red vehicle. The

red vehicle receives broadcasts from those five vehicles via

V2V communications. However, a dash camera that has been

installed in the red vehicle can only detects four vehicles ahead

as shown in Fig. 1b. The goal of this paper is to correctly

identify each broadcast message’s sender to its corresponding

vehicle shown by the image in 1c. In the end, it will be

visualized in V2V interface as shown in Fig. 1d.

(a) A road scenario. (b) The result of vehicle locator.

(c) Final result of MDFNN. (d) Visualization.

Fig. 1. Vehicle identification (VID) problem
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The main contributions of this paper are described as

follows.

1) We propose a new deep learning neural network called

Mapping Decision Feedback Neural Network (MDFNN)

infrastructure that considers vehicles’ information and

V2V communication information and past decision map-

ping results as the input to tackle VID issue. To our

best knowledge, compared with other neural networks

like recurrent neural network (RNN) [8], the proposed

MDFNN infrastructure utilizes the previous iterative

mapping decision information in order to improve the

VID accuracy.

2) Based on MDFNN infrastructure, we propose two type

neural networks: Grid-based MDFNN and Bounding

box-based MDFNN. The Grid-based MDFNN divides

the image into several grids and estimates the probability

of which grid(s) covers the target surrounding vehicles.

Through the Grid-based MDFNN, the VID accuracy can

be improved by 35% compared with our baseline neural

network. On the other hand, the Bounding box-based

MDFNN estimates the position of the target surrounding

vehicles. Utilizing the Bounding box-based MDFNN,

the VID accuracy can be improved by 30% compared

with our baseline neural network. Accordingly, two loss

functions are provided.

3) The corresponding mapping decision score functions

are presented to evaluate the similarity of an estimated

vehicle position and a real vehicle position on the image.

The rest of this paper is organized as follows. Section II

reviews some related works. Section III introduces our system

model. Section IV shows the experiment results. Conclusion

are drawn in Section V.

II. RELATED WORK

To prevent accident and make better decisions for au-

tonomous vehicles, improving the accuracy of situational

awareness is important. While a radar technology has been

around and has a great value for obtaining distance and speed

[9], driving status is relatively hard to be collected from

this technology [10]. On the other hand, camera has gain

popularity to be utilized to acquire a situational awareness.

Benefiting from dash camera, [11] has already proposed a

system for distance estimation.

An improvement to measure the speed of the vehicle has

also been proposed in [12]. In [13], a monocular camera is

used for identifying and tracking preceding vehicles. However,

due to heavy traffic with many vehicles coming in a complex

direction, the accuracy on vehicle detection is not enough

efficient. V2V communication can be used for improving road

safety and efficiency [14]. In [15] has proposed a collision

warning system by using V2V technology. However, this

proposed solution still has a room to improve regarding the

information based on vehicle’s surrounding. The required data

rate on V2V is derived in [16] to ensure safe autonomous

driving in an overtaking driving situation.
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Fig. 2. System model of MDFNN.

Multiple technologies can be integrated to enable situational

awareness. For example, [17] has proposed a vehicle following

control system by integrating radar and V2V communication.

Nevertheless, to obtain an effective accuracy in the commu-

nication system using spectrum sharing, a robust interference

should be suppressed by a great amount. This solution relies

on two stereo cameras equipped on vehicle. Thus, it can easily

blocked by bus or truck. The data fusion technique improves

localization accuracy by adopting multiple sensory data of

mapping. In [18], a data fusion approach has been proposed

to match the image data captured by the camera and the

radio data received via V2V communication. In this paper,

we propose a deep learning neural network to tackle the VID

problem as detailed in Section III.

III. SYSTEM MODEL

The system model of MDFNN is shown in Fig. 2. Each

vehicle is equipped with a dash camera to continuously

records the view through a vehicle’s front windscreen. It also

embed an on-board units (OBU) which contains GPS, V2V

interface, magnetometer, and speedometer. Each vehicle will

periodically broadcast a message containing its profile and

driving status to surrounding vehicles. The broadcast message

contains following information:

• Vehicle profile: plate number and GPS information.

• Driving status: current speed, breaking status, and turning

status.

To prevent privacy concern, a vehicle may broadcast its

H(pn), where pn is its plate number and H() is a hash func-

tion. Therefore, the plate number can only be used to identify

whether two broadcasts are sent from the same vehicle. In this

case, we can consider pn = pn′ if H(pn) = H(pn′).
We define the VID problem as follows. Assuming a vehicle

is denoted by x. At each time t, x retrieves its location

x(t).loc, speed x(t).sp, and orientation x(t).ot from its GPS,

magnetometer and speedometer. In this case, we use discrete

time in our representation, so t means the t − th time
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Fig. 3. The neural network structure of the grid based MDFNN.

unit. x takes an image I(t) from camera and obtains n
vehicles’ bounding boxes V (t) = {vi(t)|1 ≤ i ≤ n}. x also

receives m broadcasts B(t) = {bj(t)|1 ≤ j ≤ m} by V2V

communication where each bj(t) contains location bj(t).loc,
speed bj(t).sp, and plate number bj(t).pn. Then our goal is

to find the correct matching pairs S(t), where:

S(t) = {(vi(t), bj(t))|vi(t) ∈ V (t) and bj(t) ∈ B(t)} (1)

A fusion between images and broadcasts data is needed in

order to recognize vehicles surrounding. This ability proven

useful to enable situational awareness in order to navigate

the vehicle safely. Each module in Fig. 2 is demonstrated as

follows:

A. Object Detection Service

The images captured by dash camera are the input of object

detection service module, which will generate n vehicles’

bounding boxes denoted by V (t). To identify the vehicles,

we use YOLO [19] to find the bounding boxes of vehicles on

the image. The bounding box is stored as the coordinate of

its top left corner and bottom right corner, with the format:

vi = [(xTopLeft, yTopLeft), (xBottomRight, yBottomRight)],
where vi means the bounding box of the i − th vehicle in

the image I .

B. GPS Translator

In this module, the broadcast data and x’s sensor data

is processed into the form we preferred. We calculate the

difference between GPS location obtained from the received

broadcast and x itself. For example, if a broadcast message

indicates a broadcast data at (2358.3327 N, 12058.26102 E)

and x is located at (2358.3234 N, 12058.25975 E), then the

difference is (0.0093, 0.00127). Finally, the GPS translator

module normalize all data’s value to be between 0 and 1 (both

inclusive).

C. Vehicle Locator (MDFNN)

In vehicle locator module, we propose the MDFNN in-

frastructure to estimate the position of the broadcast-sender

vehicles on the image. This module is typically inspired by

Recurrent Neural Network (RNN) [8]. While RNN directly

uses its result as an input, our proposed neural networks has

a main feature which utilize the previous iterative result for

its input.

We present two types of MDFNN on this module: Grid-

based MDFNN and Bounding box-based MDFNN. In Grid-

based method, we divide the image into many grids. Further-

more, the output of the neural network is the probabilities of

grids where the vehicle is detected. On the other hand, for

the Bounding box-based MDFNN, the output is the bounding

box’s itself.

1) Grid-based MDFNN: The neural network of the Grid-

based MDFNN is shown in Fig. 3. The input of neural network

includes: the longitude difference from k seconds ago until

now, the latitude difference from k seconds ago until now, the

speed of our vehicle x, the speed of broadcast-sender vehicle

obtained from the broadcast message, the orientation of x, and

the k seconds ago position of the broadcast-sender vehicle.

There are 10 middle layers with 50% dropout and a fully

connected layer before the output layer. The output will be an

array of n + 1 instances where n is the number of the grids

(e.g. if we partition the image into 5∗5 grids, then the output

will be an array with 26 instances).

To label a broadcast sent by broadcast-sender vehicle y, we

do the following:

• In the previous n instances if vehicle y is not in the i−th
grid, the value of the i− th instance = 0.

• If the intersection area of the y’s bounding box and grid

is greater than a threshold (threshold = 10%), the value

of the i− th instance = 1.

• If vehicle y is on the image, the value of the last instance

= 0.

• If vehicle y is not exist on the image, the value of the

last instance = 1.

An example is shown in Fig. 4, where we assume that

received broadcast is sent by the black vehicle on the image

and we divide the image into 5 ∗ 5 grids. Then the broadcast

is labeled as shown on the right hand side of Fig. 4.

The loss function of the Grid-based MDFNN is defined as

follows:

Lossg = − 1

m
Σm

j=1

Σn
i=1 log(yjipji)

Σn
i=1yji + yoj

+ α
−Σm

j=1 log |yoj − poj |
m

(2)

The first part of eq. 2 indicates the position of a vehicle on the

image. The second part of eq. 2 is defining that a broadcast is

exist on the image, where m is the number of data, n is the

(a) Initial state: Grid without label. (b) Final state: Grid with label.

Fig. 4. An example of the Grid-based MDFNN labeling.
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Fig. 5. The neural network structure of the Bounding box-based MDFNN.

number of grids, yji is the ground truth of the broadcast’s

position. Furthermore, pji is the output of the broadcast’s

position, while yoj is whether the ground truth of the broadcast

is inside the image. poj is define as the probability output of

the broadcast on the image, and α is the importance of the

second part of the loss function.

2) Bounding box-based MDFNN: The neural network

of the Bounding box-based MDFNN is shown in Fig. 5.

The input layer and the middle layers are similar to the

neural network of the Grid-based MDFNN, while the out-

put of this process has five instances: previous four in-

stances are the bounding box and the last instances is

the availability of the vehicle on the image. Fig. 6 is an

example for labeling a broadcast for the Bounding box-

based MDFNN. The label of bounding box is transformed

from [(xTopLeft, yTopLeft), (xBottomRight, yBottomRight)] to

[(xTopLeft/w, yTopLeft/h),
(xBottomRight/w, yBottomRight/h)] where w and h are the

width and height of the image, respectively.

The loss function of the Bounding box-based MDFNN is

defined as follows:

Lossbb =
Σm

j=1Σ
4
i=1(yji − pji)

2

m
+ α

−Σm
j=1 log |yoj − poj |

m
(3)

The first part is the loss for the bounding box and the second

part is the loss for whether the broadcast is in the image,

where m is the number of data, yij is the ground truth of the

broadcast’s bounding box, pji is the output of the broadcast’s

bounding box, yoj is the ground truth of the available broadcast

inside the image, poj is the output of the available broadcast

(a) Initial state: Bounding box
without label.

(b) Final state: Bounding box with
label.

Fig. 6. An example of the Bounding box-based MDFNN labeling.

TABLE I
AN EXAMPLE OF SCORE TABLE

Score v1 v2 v3

p1 0.85 0.88 0.5

p2 0.1 0.7 0.2

inside the image, and α is the importance of the second part

of the loss function.

D. Vehicle Mapping Decision Maker

After performing the vehicle locator module, we obtain

an estimated position for each broadcast. Since there might

be more than one vehicle in the image and/or more than

one broadcast, therefore the next step is to match the cor-

responding pair together. To determine the similarity of an

estimated position and a bounding box on the image, we define

a function to calculate the score of similarity for each network

of Vehicle Locator. The higher the score is, the higher chance

that estimated position is corresponding to that bounding box.

For the Grid-based MDFNN, the score function is defined

as follows:

Scoreg(pj , vl) =
Σn

i=1pji ∗ vli
Σn

i=1vli + vol
(4)

where pj is an estimated position and vl is a bounding box

on the image. In Fig. 7, the upper left image is the label

of the white vehicle next to the black vehicle, the lower left

image is the label of the black vehicle, and the right image is

an estimated position of a broadcast. The score of the white

vehicle and the estimated position is (0.52 + 0.89 + 0.48 +
0.78)/4 = 0.67 and the score of the black vehicle and the

estimated position is (0.89 + 0.72 + 0.78 + 0.85)/4 = 0.81.

Ultimately the broadcast is corresponding to the black vehicle.

For the Bounding box-based MDFNN, the score function

is defined as the intersection over union (IoU):

Scorebb(pj , vl) =
Area of Intersection(pj , vl)

Area of Union(pj , vl)
(5)

Taking from the same image as Fig. 7, by utilizing the

Bounding box-based MDFNN as shown in Fig. 8, it shows

Fig. 7. An example of calculating score of the Grid-based MDFNN.
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Fig. 8. An example of calculating score of the Bounding box-based MDFNN.

that the score for the white vehicle is 0.85, while the score

of black vehicle is 0.88. Therefore these similar score can be

assembled as shown in Table I.

The most straightforward method to select a corresponding

pair is to select the highest score. In Table I, although the

highest score is p1 and v2, the scores of p1 and others are

also high. On the other hand, the score of p2 and v2 is far

higher than p2 and others. Thus {(p1, v1), (p2, v2)} might be

a better choice. To solve this situation, we define a confidence

function to choose which pj should be select first:

Confidence(pj) =
maxnl=1{Score(pj , vl)}

Σn
l=1Score(pj , vl)

(6)

Intuitively, if the score of pj and vl is far higher than pj and

others, then the confidence of pj will be higher.

In summary, the Vehicle Mapping Decision Maker module

can be done by these following steps:

Step 1: Filter the instance for those estimated vehicle posi-

tions which available on the image (threshold = 0.5).

Step 2: Calculate the scores for estimated positions of the

filtering process and get the score table.

Step 3: Calculate the confidence function for each estimated

positions in the table.

Step 4: Analyzing the confidence score from the higher con-

fidence to the highest score

Step 5: Match the broadcast message and the vehicle respec-

tively as:

S(t) = {(vi(t), bj(t))|vi(t) ∈ V (t) and bjt ∈ B(t)} (7)

IV. EXPERIMENTAL RESULTS

In this project, we utilize CARLA [20] simulator to design

the experiment and evaluate the accuracy of the proposed

Grid-based MDFNN and the Bounding box-based MDFNN.

A. Simulation Environment

In this project, a deployed vehicle on the road called

x equipped with dash camera records the view through a

vehicle’s front windscreen periodically. Five more vehicles

with diverse velocity have been deployed as well. Therefore,

these five vehicles will not be able to move neither in front

Fig. 9. The road contour in our experiment.

of nor behind x. As the image from the camera has been

captured, orientation, speed and coordinate of each vehicles

is recorded at the same time. The simulated environment has

been arrange in order to allow the vehicles drive according to

the road contour as shown in Fig. 9.

In order to simulate V2V communication, a broadcast

messages are limited for vehicles in range of 30 meters from

x. During these experiments, some situations are likely to

happened as shown in Fig. 10. We utilize YOLO version

2 [21] to find the bounding boxes of each vehicle on the

image. Note that the model provided by YOLO is trained

by real vehicles. Since the vehicles in CARLA are a little

different from real vehicles, there are about 5% of vehicle

images cannot be detected by YOLO in the experiment.

The first situation as shown in Fig. 10a shows where

other vehicles are located on one side of the dash camera’s

point of view. The second situation as shown in Fig. 10b

shows other vehicles are spreading over the various side of

dash camera’s point of view. The third situation as shown

in Fig. 10c is showing other vehicles are affected by the

distance between the dash camera and its locations. While,

the broadcast message still be received, however the other

vehicles are not detected clearly by dash camera. All three

(a) Other vehicles are located on
one side of dash camera.

(b) Other vehicles are located on
various side of dash camera.

(c) Other vehicles are located on
various side of dash camera.

(d) All vehicles stopped by traffic
light.

Fig. 10. Probable situations during the experiment.
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situations are affecting on vehicle identification system. Lastly,

in the fourth situation as shown in Fig. 10d shows that all the

vehicles are not broadcasting any vehicle status due to traffic

light.

B. Evaluation

To evaluate the MDFNN performance, we define the accu-

racy as following:

Accuracy =
Σ∀t correct mapping broadcasts in t

Σ∀t all broadcasts in t
(8)

1) Grid-based MDFNN: Fig. 11 shows the accuracy with

different numbers of grids. We verify the proposed system

model through 5 ∗ 5 grids, 6 ∗ 6 grids, ..., and 12 ∗ 12 grids

simultaneously. We compare the accuracy’s result of using

MDFNN, RNN, and baseline. In this case, baseline is MDFNN

without mapping decision as input (i.e., no “past position”

layer in Fig. 3). The result shows that the accuracy of MDFNN

is about 85 % when the number of grids is more than 10∗10,

while the accuracy of RNN is about 80% and baseline is about

50%.

In this work, the model has been tested by assuming

the vehicle x only receives one broadcast. Consequently,

the Vehicle Mapping Decision Maker module are ultimately

executed. There is a possibility that the final result of MDFNN

are not sufficient. Therefore, the Vehicle Mapping Decision

Maker module verify the mapping result. Since vehicle x only

receive one broadcast, the result of MDFNN will affect the

final mapping result significantly which has been shown in

Fig. 12. Although the accuracy of MDFNN is rather low as

shown in Fig. 11 the RNN’s result has been proven worse.

2) Bounding box-based MDFNN: The results of the

Bounding box-based MDFNN is shown in Fig. 13. The VID

accuracy of MDFNN is about 80% and RNN is about 77%

which are both a little lower than the Grid-based MDFNN.

Fig. 11. VID accuracy of the Grid-based MDFNN.

Fig. 12. Accuracy of the system which receiving one broadcast at a time.

Fig. 13. VID accuracy of the Bounding box-based MDFNN.

V. CONCLUSION

For autonomous vehicle, a situational awareness is vital to

recognize vehicle’s surrounding. Therefore, situational aware-

ness is needed to provide a better decision making. To enable

the situational awareness, MDFNN is proposed. This method

allow us to estimate vehicle’s position from a broadcast

transmitted by surrounding vehicle via V2V communication

using the images captured by dash camera. Although this

proposed method is inspired by RNN, it has been proved that

the result has a better accuracy. We proposed two types of

neural networks namely Grid-based MDFNN and Bounding

box-based MDFNN. While Bounding box-based MDFNN is

simpler, the Grid-based MDFNN has a slightly higher VID

accuracy. Two score functions and a confidence function are

presented to identify which vehicle broadcast their status.

Finally, we utilize CARLA to simulate on-road vehicles and

compare the proposed two types of MDFNN, RNN, and

baseline neural networks.
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