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Abstract – Independent Component Analysis is a widely used 
machine learning technique to separate mixed signals into 
statistically independent components. This study proposes a 
computation-aware (CA) Task Parallel Library (TPL) utilization 
procedure to parallelize the Fast Independent Component 
Analysis (FastICA) algorithm on a multi-core CPU. The proposed 
CA method separates the complex from simple computations by 
exploring their execution times on a multi-core CPU. TPL is used 
for complex calculations, but not for simple ones. In comparison 
to the program without the TPL, the proposed CA procedure 
reduces the execution time of decomposing 8- and 32-channel 
artificially mixed signals by 34.88% and 43.01%, respectively. The 
proposed CA procedure reduces the execution time of 
decomposing 8- and 32-channel artificially mixed signals by 
10.04% and 0.93%, respectively, compared to the fully 
parallelized program with TPL. Using CA TPL, the decomposition 
of 12-channel electroencephalograms (EEG) signals take 48.27% 
less time than without it. The proposed CA procedure reduces 
execution time by 15.12% compared to the fully parallelized 
program with TPL.  
 
Keywords – Computation-aware, FastICA, multi-core, parallel, TPL. 

I.  INTRODUCTION 

    Electroencephalography (EEG) has been widely used in 
biomedical, clinical, medical, and science fields; however, the 
EEG signals measured by the sensors are the mixture of various 
sources within the brain. Among these sources, the artifacts 
such as eyeblinks and heartbeats contaminate brain activities. 
These artifacts pose great challenges to the interpretation of 
brain activities. 
     The independent component analysis (ICA) algorithm [1-
17], which belongs to the field of machine learning [18, 19], is 
commonly used to separate mixed signals into independent 
components. Through the ICA processing, the artifacts can be 
separated from the EEG signals such that the pure brain 
activities can be retrieved. In other words, the ICA algorithm 
can estimate the original source signals by processing the mixed 
signals from the scalp surface. Many ICA algorithms and 
implementation are proposed in recent years [1-17]. In [5], a 
comparative study of ICA algorithms for brain-computer 
interface (BCI) is explored. According to [5], the FastICA 
algorithm [2, 4] shows good separation quality as well as low 
complexity among the ICA algorithms. On the other hand, 
although the FastICA algorithm has relatively lower complexity 
than other ICA algorithms, the computation of the FastICA 
algorithm still not very efficient. Several speedup solutions 
have been developed to reduce the calculation time of FastICA, 

including application-specific hardware approaches in 
ASIC/FPGA [6-9], general-purpose processor and parallel 
processing software approaches in CPU/GPU/GPGPU [10-16], 
and collaboration of application-specific hardware and general-
purpose processor approach [17]. Even hardware approaches 
can speed up the FastICA processing in real-time but request 
more hardware resources and show less flexibility. For the 
general-purpose processor and parallel processing software 
approaches, there are many possible choices for the 
implementation. Many methods, libraries, and frameworks 
were proposed for parallel programming such as Open Multi-
Processing (OpenMP) [20], Message Passing Interface (MPI) 
[21], Compute Unified Device Architecture (CUDA) [22], 
Open Computing Language (OpenCL) [23-24], and Task 
Parallel Library (TPL) [25-26]. To our best knowledge, we are 
the first to apply TPL to enhancing the FastICA algorithm [13]. 
This is because we observed that not all the codes are suitable 
for parallelization via TPL. If the codes only contain a small 
amount of computation, the overhead of parallelization will 
increase instead of reducing the execution time. Thus, this study 
aims to provide a computation-aware (CA) TPL mechanism to 
optimize the FastICA processing time by exploring different 
levels of computation loads. The article is organized as follows.  
Section II briefly reviews the FastICA algorithm. Section III 
proposes the CA TPL utilization procedure for the FastICA 
algorithm. Section IV presents the simulation and comparison 
results. Section V provides the concluding remarks. 

II.  REVIEW OF FASTICA ALGORITHM 

    This section briefly reviews the FastICA algorithm [2, 4]. 
The FastICA algorithm has been widely used for the blind 
source separation (BSS) problem as defined in (1) [6, 7]: 

                                                                                   (1) 

where  is an  mixing matrix, X is a matrix with n 
observed mixed signal vectors and S is a matrix with n blind 
source signal vectors that are statistically independent and no 
more than one signal is Gaussian distributed. X and S are 
expressed as follows:   

    . . .                                                (2)   . . .                                                 (3) 
where xi and si are denoted as follows: 

        1  2  . . .                                       (4) 
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        1  2  . . .                                         (5) 

where  is a mixed signal at time j,  is a source signal 
at time j, and m is the sample number. The goal of ICA is to 
recover the source signal S. In order to achieve the purpose, the 
ICA algorithm estimates the matrix A by observing matrix X 
and computes the weight matrix  that is equal to the inverse 
of matrix A. The FastICA algorithm contains the preprocessing 
and fixed-point algorithm. 
 
A. Centering and Whitening 
    The preprocessing of FastICA algorithm includes two steps: 
centering and whitening. Centering refers to subtracting the 
mean value from the mixed signal such that the zero-mean 
signal can be obtained. The centering process can be expressed 
as follows: 
              for  i = 1, 2, 3, , n  ,                    (6) 

where  denotes the expected value of the random variable 
. After the centering process, the centered matrix can be 

obtained as 

              

1 21 21 2                                 (7) 

Next, the whitening process is required. The whitening step 
transforms the vector x into uncorrelated with unit variance. 
The eigenvalue decomposition (EVD) can be used to 
decompose the covariance matrix of x and the corresponding 
operation is expressed as follows:  

                                                     (8) 

where  , E and D denotes the random column vector in  , the 
eigenvector matrix, and the eigenvalue matrix, respectively. D 
can be expressed as 

   , , … ,                                               (9) 

where , , … ,  denote the eigenvalues of . Finally, the 
whitening process of   is expressed below 

    /                                                (10)

where P equals /  and denotes the whitening matrix of  
. Through the above whitening process, we can obtain the 

whitened matrix Z. The covariance matrix of  is identity 
matrix: 

                                                                     (11) 

B. Fixed-Point Algorithm 
    After the preprocessing, the fixed-point algorithm is used to 
train the weight matrix which maximizes the non-Gaussianity. 
Non-Gaussianity is here measured by the approximation of 
negentropy J(y) [2, 4, 6, 7] 

                                                     (12)

where G denoting a non-quadratic function is defined as 
follows: 
              log cosh                                                      (13) 

where a denotes a constant parameter. Using the above 
equations, the FastICA algorithm can find the maximum of the 
non-Gaussianity by measuring the negentropy. For the fixed-
point algorithm, either deflation scheme or symmetric 
orthogonolization can be used to estimate multiple independent 
components [2, 4]. The deflation scheme estimates the 
independent component one by one. The symmetric 
orthogonolization estimates the independent components in 
parallel. In this work, we adopt the fixed-point algorithm with 
symmetric orthogonolization. The procedures of the fixed-point 
algorithm with symmetric orthogonolization are addressed as 
follows: 
 
Step 1: Choose initial (e.g. random) vector  with unit norm 
for i=1, 2, 3, …, n. 
Step 2: Calculate  for 
i=1, 2, 3, …, n. 
Step 3: Calculate .  
Step 4: If not converge, go back to Step 2 
 
where g is the derivative of the non-quadratic function G and   … . When the convergence is satisfied, we 
can obtain the weight matrix W to estimate the source signals 
as . However, the long execution time due to high 
computation for the FastICA algorithm still exists. Therefore, 
the parallelization is necessary for the FastICA algorithm in PC 
to improve the speed. The details will be discussed in the next 
section. 

III.  COMPUTATION-AWARE TPL UTILIZATION PROCEDURE FOR 
FASTICA ALGORITHM 

A. Tested Matrix Operations 
    Because the FastICA algorithm mainly utilizes matrix 
operations, we focus on how to improve the performance of the 
matrix operations. To demonstrate the capability and limitation 
of TPL, we test the execution times of the matrix operations 
with different matrix dimensions. The matrix operation is coded 
in a for loop way with TPL and without TPL in C# [27]. We 
divide the matrix operation into two types: simple computation 
and complex computation. The matrix operation is considered 
as a simple computation when the execution time of the matrix 
operation without TPL is shorter than that with TPL. Otherwise, 
the matrix operation is considered as a complex computation. 
The tested matrix operations included matrix multiplication, 
matrix addition, matrix divided by a constant, hyperbolic 
tangent. We use the stopwatch class [28] to measure the 
execution time on a PC featuring Intel Core 2 Quad Q8200 (4 
physical cores). Tables 1~5 summarize the execution times. 

 and  denote two  matrices and c denotes a 
constant. Table 1 shows the execution times of the 
multiplication of two square matrices. As can be seen, We set 
the threshold of matrix multiplication at . In 
other words, if two square matrices whose dimensions are equal 
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to or higher than 16, their multiplication is regarded as a 
complex computation. Otherwise, the matrix multiplication is 
regarded as a simple computation. Table 2 shows the execution 
times of the multiplication of a square matrix and a rectangular 
matrix. When the matrices are equal to or larger than , the execution time with TPL will be shorter than 
that without TPL. We thus set the threshold of the matrix 
multiplication of a square matrix and a rectangular matrix at 

. Similarly to the matrix multiplication, the 
threshold of the other matrix operations can be set according to 
the experimental results. The threshold of the matrix addition of 
two square matrices in Table 3 is set to   and 
the threshold of the matrix subtraction of two square matrices is 
the same as that of the matrix addition due to similar behavior; 
the threshold of the matrix divided by a constant in Table 4 is 
set to / ; the threshold of the matrix hyperbolic tangent 
in Table 5 is set to . The determined thresholds 
are used to decide whether the computation is complex or 
simple for the proposed CA procedure as addressed in next 
subsection. 
 
 

Table 1: Execution time results of matrix multiplication 

Matrix 
Operation 

 
×  

  
×  

 
×   

  
×  

With TPL 0.028 ms 0.055 ms 0.321 ms 2.499 ms 
Without 

TPL 0.016 ms 0.126 ms 0.975 ms 7.885 ms 

 
 

Table 2: Execution time results of matrix multiplication  

Matrix 
Operation 

 
×  

 
×  

 
×  

 
×  

With TPL 0.027 ms 0.039 ms 0.764 ms 2.847 ms 
Without 

TPL 0.035 ms 0.069 ms 2.267 ms 9.137 ms 

 
 

Table 3: Execution time results of matrix addition 
Matrix 

Operation 
 

+  
 

+  
 

+  
 

+  

With TPL 0.0089 ms 0.0133 ms 0.0231 ms 0.0491 ms 
Without 

TPL 0.0016 ms 0.0063 ms 0.0245 ms 0.0985 ms 

 
 

Table 4: Execution time results of matrix divided by a constant 
Matrix 

Operation  /c  /c  /c /c 

With TPL 0.0089 ms 0.0125 ms 0.0210 ms 0.0426 ms 
Without 

TPL 0.0013 ms 0.0052 ms 0.0197 ms 0.0779 ms 

 
 

Table 5: Execution time results of matrix hyperbolic tangent 
Matrix 

Operation 
tanh 

( ) 
tanh 

( ) 
tanh 

( ) 
tanh 

( ) 

With TPL 0.0136 ms 0.0220 ms 0.0664 ms 0.1409 ms 
Without 

TPL 0.0092 ms 0.0303 ms 0.1144 ms 0.4342 ms 

 
B. CA TPL Utilization Procedure for the FastICA Algorithm 
    Although TPL can dynamically adjust the degree of 
parallelism on all available cores, the TPL suffers from 
overhead when low computations are involved. Based on the 
threshold-testing results, the CA TPL utilization procedure [13] 
can be designed to use TPL efficiently to reduce the execution 
times of the FastICA algorithm. The proposed TPL utilization 
procedure divides the matrix operations into simple 
computation and complex computation. The complex 
computation uses TPL, and the simple computation does not. 
The overall goal is to reduce the execution time of complex 
computation while avoiding the overhead of TPL for the 
execution time of simple computation. To this end, we design a 
CA TPL utilization procedure for the FastICA algorithm. The 
CA TPL utilization procedure classifies each matrix operation 
into a complex or simple computation and then decides whether 
TPL is applied to the matrix operation. The FastICA algorithm 
includes the steps of centering (abbreviated as C), whitening 
(abbreviated as W), and the fixed-point algorithm (abbreviated 
as F). In the FastICA algorithm, centering is the first step. The 
centering step needs to calculate  and subtract  from  to generate  with zero mean. The flow chart of the 
centering step using CA TPL is shown in Fig. 1. In Fig. 1, C.2, 
C.5, C.9 are used to detect the matrix dimension size to 
determine whether the TPL should be used.    
    After the centering step, the whitening process is performed. 
The whitening step needs to execute the eigenvalue 
decomposition (EVD). In this work, the eigenvalue 
decomposition is implemented with the cyclic Jacobi method 
[29] to obtain the eigenvalues and eigenvectors of a symmetric 
matrix. The cyclic Jacobi method applies a sequence of Jacobi 
rotations to the right side and the left side of the symmetric 
matrix. After obtaining the eigenvalue matrix, D, and 
eigenvector matrix, E, we can use (10) to generate the 
whitening signal matrix, Z, and finish the whitening step. Fig. 
2 shows the flow chart of the whitening step using CA TPL. In 
Fig. 2, W.2, W.5, W.9, W.13 are used to detect the matrix 
dimension size to determine whether the TPL should be used. 
For the fixed-point algorithm, we first initialize a vector  
with a unit norm for i=1, 2, 3, …, n. Second, we compute 

. In Step 3, /  
can be obtained by / , where D and E are obtained by 
the eigenvalue decomposition of . Once the weight 
matrix is converged, the fixed-point algorithm will stop. The 
flow chart of the fixed-point algorithm using CA TPL is shown 
in Fig. 3. In Fig. 3, F.3, F.6, F.10 are used to detect the matrix 
dimension size to determine whether the TPL should be used.   
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Fig. 1: Flow chart of the centering step. 
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Fig. 2: Flow chart of the whitening step. 
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Fig. 3: Flow chart of the fixed-point algorithm.
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    In summary, the proposed computation-aware TPL 
utilization procedure [13] for the FastICA processing is 
composed of Fig. 1, Fig. 2, and Fig. 3. The next section presents 
the results of decomposing simulated and actual signals.  

IV.  SIMULATION AND COMPARISON RESULTS 

A. Functional Validation 
    This subsection evaluates the proposed CA TPL utilization 
procedure applied to the FastICA algorithm. The evaluation is 
conducted on 8-channel artificially mixed source signals with a 
data length of 1024 as shown in Fig. 4. The mixed signals are 
processed by the proposed CA TPL utilization procedure of the 
FastICA algorithm. Fig. 5 shows the separation results. As can 
be seen, the mixed signals are well separated by the proposed 
CA TPL utilization procedure. The average absolute correlation 
coefficient between the separation results and the source signals 
is 0.9975. Therefore, the function of the proposed CA TPL 
utilization procedure can be validated. 

 

      
Fig. 4: 8-channel mixed signals. 

1.0000

0.9999

0.9998

0.9991

0.9984

0.9973

0.9944

0.9911

 
                                   (a)                                                                                                      (b) 

Fig. 5: Comparison results of (a) the source signals and (b) the separation results using the proposed CA TPL utilization 
procedure. 

B. Simulation Results 
    In this subsection, we tested the proposed CA TPL utilization 
procedure on three datasets on a PC featuring Intel Core 2 Quad 
Q8200 to obtain the execution time of the FastICA algorithm. 
Besides the proposed procedure program, two referenced 
programs are implemented. One referenced program is 
implemented without TPL. The other program parallelizes the 
computation with TPL to all matrix operations without 
distinguishing the simple computation and complex 
computation. The same datasets are processed by three 
programs. Therefore, we can do a fair comparison among the 
three implementations. 
    The first dataset contains 8-channel artificial mixed signals 
with a data length of 921,600 samples. Table 6 shows the 
execution times of each step of the FastICA algorithm. As can 
be seen, the execution time is mainly contributed by the 
processing of the fixed-point algorithm. This is because the 

fixed-point algorithm dominates the computational complexity 
of the FastICA algorithm. The similar effect can be observed in 
the execution times of the other two datasets. For the first 
dataset, the proposed CA TPL utilization procedure can reduce 
34.88% execution times, compared to the program without 
TPL. Compared to the fully parallelized program with TPL, the 
proposed CA TPL utilization procedure can reduce the 
execution time by 10.04%. 
    The second dataset contains 32-channel artificial mixed 
signals with a data length of 2,048 samples. Table 7 shows the 
execution times. For the second dataset, the proposed CA TPL 
utilization procedure can reduce the execution time by 43.01%, 
compared to the program without TPL. However, compared to 
the fully parallelized program with TPL, the execution time of 
the proposed efficient TPL utilization procedure is only reduced 
by 0.93%. This is because the most matrix operations are 
classified as a complex computation since the channel of the 
dataset is up to 32. Nevertheless, the proposed CA TPL 
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utilization procedure can still achieve the goal of performance 
improvement compared to the program without TPL. 
    The third dataset contains 12-channel real EEG signals with 
a data length of 276,360 samples. Table 8 shows the execution 
time results. For the third dataset, the proposed CA TPL 
utilization procedure can reduce the execution time by 48.27%, 
compared to the program without TPL. Compared to the fully 
parallelized program with TPL, the proposed CA TPL 
utilization procedure can reduce the execution time by 15.12%. 
    Tables 9, 10, and 11 show the number of TPL utilizations for 
the above three datasets. Obviously, the program without TPL 
has zero utilization, and the parallelized program with TPL has 
the highest number of utilizations. The proposed CA TPL 
utilization procedure for the FastICA algorithm will not use 
TPL for the simple computation to avoid the overhead. Thus, 
the number of TPL utilizations of the proposed CA TPL 
utilization procedure is less than that with the fully parallelized 
program with TPL and higher than that of the program without 
TPL. According to the above experiment results, we can find 
that the proposed CA TPL utilization procedure of the FastICA 
algorithm can improve the execution time. 
 
 

Table 6: Execution time results with the first dataset 
FastICA 

Steps C W F Total 

Without 
TPL 309 ms 4827 ms 68709 ms 73845 ms 

(100%) 

With TPL 307 ms 2784 ms 50365 ms 53456 ms 
(72.39%) 

This work 
[13] 306 ms 2586 ms 45195 ms 48087 ms 

(65.12%) 
 
 

Table 7: Execution time results with the second dataset 
FastICA 

Steps C W F Total 

Without 
TPL 3 ms 8663 ms 234270 

ms 
242936 ms 

(100%) 

With TPL 8 ms 6899 ms 132836 
ms 

139743 ms 
(57.52%) 

This work 
[13] 3 ms 6919 ms 131525 

ms 
138447 ms 
(56.99%) 

 
 

Table 8: Execution time results with the third dataset 
FastICA 

Steps C W F Total 

Without 
TPL 161 ms 3540 ms 117065 

ms 
120766 ms 

(100%) 

With TPL 171 ms 1504 ms 71921 ms 73599 ms 
(60.94%) 

This work 
[13] 146 ms 1472 ms 60854 ms 62472 ms 

(51.73%) 
 

 
 
 

Table 9: Number of TPL utilizations of the first dataset 
FastICA 

Steps C W F Total 

Without 
TPL 0 0 0 0 

(0%) 

With TPL 2 6 254 262 
(100%) 

This work 
[13] 2 2 67 71 

(27.10%) 
 
 

Table 10: Number of TPL utilizations of the second dataset 
FastICA 

Steps C W F Total 

Without 
TPL 0 0 0 0 

(0%) 

With TPL 2 6 312 320 
(100%) 

This work 
[13] 2 3 144 149 

(46.56%) 
 
 

Table 11: Number of TPL utilizations of the third dataset 
FastICA 

Steps C W F Total 

Without 
TPL 0 0 0 0 

(0%) 

With TPL 2 6 599 607 
(100%) 

This work 
[13] 2 2 157 161 

(26.52%) 

V.  CONCLUSION 

    This study proposed a computation-aware TPL utilization 
procedure for the FastICA algorithm. The proposed TPL 
utilization procedure applies TPL on complex computation but 
not on simple computation. It can achieve less execution time 
on a multi-core CPU. Compared to the program without TPL, 
the study results showed that the execution time of the FastICA 
decomposition applied to 8-channel artificial mixed signals 
with a data length of 921,600 was reduced by 34.88%. 
Compared to the fully parallelized program with TPL, the 
proposed procedure could reduce the execution time by 
10.04%. The execution time of the FastICA decomposition 
applied to 32-channel artificial mixed signals with a data length 
of 2,048 could be reduced by 43.01%, compared to the program 
without TPL. Compared to the fully parallelized program with 
TPL, the proposed procedure reduced the execution time by 
0.93%. The execution time of the FastICA decomposition 
applied to 12-channel EEG signals with a data length of 276,360 
was reduced by 48.27% compared to the program without TPL. 
Compared to the parallelized program with TPL, the proposed 
procedure reduced the execution time by 15.12%. In the near 
future, we plan to further improve the performance by 
heterogeneous computing hardware resources. 
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