
A Computation-Aware TPL Utilization Procedure for
Parallelizing the FastICA Algorithm on a Multi-Core CPU

Lan-Da Van, Tao-Jung Wang, Sing-Jia Tzeng Tzyy-Ping Jung, Fellow, IEEE
Department of Computer Science,

National Yang Ming Chiao Tung University, Taiwan.
ldvan@cs.nctu.edu.tw; tjwang.cs08@nycu.edu.tw;

tzengsj@gmail.com

Swartz Center for Computational Neuroscience,
University of California, San Diego (UCSD), USA.

tpjung@ucsd.edu

Abstract – Independent Component Analysis is a widely used
machine learning technique to separate mixed signals into
statistically independent components. This study proposes a
computation-aware (CA) Task Parallel Library (TPL) utilization
procedure to parallelize the Fast Independent Component
Analysis (FastICA) algorithm on a multi-core CPU. The proposed
CA method separates the complex from simple computations by
exploring their execution times on a multi-core CPU. TPL is used
for complex calculations, but not for simple ones. In comparison
to the program without the TPL, the proposed CA procedure
reduces the execution time of decomposing 8- and 32-channel
artificially mixed signals by 34.88% and 43.01%, respectively. The
proposed CA procedure reduces the execution time of
decomposing 8- and 32-channel artificially mixed signals by
10.04% and 0.93%, respectively, compared to the fully
parallelized program with TPL. Using CA TPL, the decomposition
of 12-channel electroencephalograms (EEG) signals take 48.27%
less time than without it. The proposed CA procedure reduces
execution time by 15.12% compared to the fully parallelized
program with TPL.

Keywords – Computation-aware, FastICA, multi-core, parallel, TPL.

I. INTRODUCTION

 Electroencephalography (EEG) has been widely used in
biomedical, clinical, medical, and science fields; however, the
EEG signals measured by the sensors are the mixture of various
sources within the brain. Among these sources, the artifacts
such as eyeblinks and heartbeats contaminate brain activities.
These artifacts pose great challenges to the interpretation of
brain activities.
 The independent component analysis (ICA) algorithm [1-
17], which belongs to the field of machine learning [18, 19], is
commonly used to separate mixed signals into independent
components. Through the ICA processing, the artifacts can be
separated from the EEG signals such that the pure brain
activities can be retrieved. In other words, the ICA algorithm
can estimate the original source signals by processing the mixed
signals from the scalp surface. Many ICA algorithms and
implementation are proposed in recent years [1-17]. In [5], a
comparative study of ICA algorithms for brain-computer
interface (BCI) is explored. According to [5], the FastICA
algorithm [2, 4] shows good separation quality as well as low
complexity among the ICA algorithms. On the other hand,
although the FastICA algorithm has relatively lower complexity
than other ICA algorithms, the computation of the FastICA
algorithm still not very efficient. Several speedup solutions
have been developed to reduce the calculation time of FastICA,

including application-specific hardware approaches in
ASIC/FPGA [6-9], general-purpose processor and parallel
processing software approaches in CPU/GPU/GPGPU [10-16],
and collaboration of application-specific hardware and general-
purpose processor approach [17]. Even hardware approaches
can speed up the FastICA processing in real-time but request
more hardware resources and show less flexibility. For the
general-purpose processor and parallel processing software
approaches, there are many possible choices for the
implementation. Many methods, libraries, and frameworks
were proposed for parallel programming such as Open Multi-
Processing (OpenMP) [20], Message Passing Interface (MPI)
[21], Compute Unified Device Architecture (CUDA) [22],
Open Computing Language (OpenCL) [23-24], and Task
Parallel Library (TPL) [25-26]. To our best knowledge, we are
the first to apply TPL to enhancing the FastICA algorithm [13].
This is because we observed that not all the codes are suitable
for parallelization via TPL. If the codes only contain a small
amount of computation, the overhead of parallelization will
increase instead of reducing the execution time. Thus, this study
aims to provide a computation-aware (CA) TPL mechanism to
optimize the FastICA processing time by exploring different
levels of computation loads. The article is organized as follows.
Section II briefly reviews the FastICA algorithm. Section III
proposes the CA TPL utilization procedure for the FastICA
algorithm. Section IV presents the simulation and comparison
results. Section V provides the concluding remarks.

II. REVIEW OF FASTICA ALGORITHM

 This section briefly reviews the FastICA algorithm [2, 4].
The FastICA algorithm has been widely used for the blind
source separation (BSS) problem as defined in (1) [6, 7]:

 (1)

where is an mixing matrix, X is a matrix with n
observed mixed signal vectors and S is a matrix with n blind
source signal vectors that are statistically independent and no
more than one signal is Gaussian distributed. X and S are
expressed as follows:

 . . . (2) . . . (3)
where xi and si are denoted as follows:

 1 2 . . . (4)

171

2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)

978-1-6654-3860-5/21/$31.00 ©2021 IEEE
DOI 10.1109/MCSoC51149.2021.00033

20
21

 IE
EE

 1
4t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Em
be

dd
ed

 M
ul

tic
or

e/
M

an
y-

co
re

 S
ys

te
m

s-
on

-C
hi

p
(M

CS
oC

) |
 9

78
-1

-6
65

4-
38

60
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
CS

O
C5

11
49

.2
02

1.
00

03
3

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on February 08,2022 at 07:40:12 UTC from IEEE Xplore. Restrictions apply.

 1 2 . . . (5)

where is a mixed signal at time j, is a source signal
at time j, and m is the sample number. The goal of ICA is to
recover the source signal S. In order to achieve the purpose, the
ICA algorithm estimates the matrix A by observing matrix X
and computes the weight matrix that is equal to the inverse
of matrix A. The FastICA algorithm contains the preprocessing
and fixed-point algorithm.

A. Centering and Whitening
 The preprocessing of FastICA algorithm includes two steps:
centering and whitening. Centering refers to subtracting the
mean value from the mixed signal such that the zero-mean
signal can be obtained. The centering process can be expressed
as follows:
 for i = 1, 2, 3, , n , (6)

where denotes the expected value of the random variable
. After the centering process, the centered matrix can be

obtained as

1 21 21 2 (7)

Next, the whitening process is required. The whitening step
transforms the vector x into uncorrelated with unit variance.
The eigenvalue decomposition (EVD) can be used to
decompose the covariance matrix of x and the corresponding
operation is expressed as follows:

 (8)

where , E and D denotes the random column vector in , the
eigenvector matrix, and the eigenvalue matrix, respectively. D
can be expressed as

 , , … , (9)

where , , … , denote the eigenvalues of . Finally, the
whitening process of is expressed below

 / (10)

where P equals / and denotes the whitening matrix of
. Through the above whitening process, we can obtain the

whitened matrix Z. The covariance matrix of is identity
matrix:

 (11)

B. Fixed-Point Algorithm
 After the preprocessing, the fixed-point algorithm is used to
train the weight matrix which maximizes the non-Gaussianity.
Non-Gaussianity is here measured by the approximation of
negentropy J(y) [2, 4, 6, 7]

 (12)

where G denoting a non-quadratic function is defined as
follows:
 log cosh (13)

where a denotes a constant parameter. Using the above
equations, the FastICA algorithm can find the maximum of the
non-Gaussianity by measuring the negentropy. For the fixed-
point algorithm, either deflation scheme or symmetric
orthogonolization can be used to estimate multiple independent
components [2, 4]. The deflation scheme estimates the
independent component one by one. The symmetric
orthogonolization estimates the independent components in
parallel. In this work, we adopt the fixed-point algorithm with
symmetric orthogonolization. The procedures of the fixed-point
algorithm with symmetric orthogonolization are addressed as
follows:

Step 1: Choose initial (e.g. random) vector with unit norm
for i=1, 2, 3, …, n.
Step 2: Calculate for
i=1, 2, 3, …, n.
Step 3: Calculate .
Step 4: If not converge, go back to Step 2

where g is the derivative of the non-quadratic function G and … . When the convergence is satisfied, we
can obtain the weight matrix W to estimate the source signals
as . However, the long execution time due to high
computation for the FastICA algorithm still exists. Therefore,
the parallelization is necessary for the FastICA algorithm in PC
to improve the speed. The details will be discussed in the next
section.

III. COMPUTATION-AWARE TPL UTILIZATION PROCEDURE FOR
FASTICA ALGORITHM

A. Tested Matrix Operations
 Because the FastICA algorithm mainly utilizes matrix
operations, we focus on how to improve the performance of the
matrix operations. To demonstrate the capability and limitation
of TPL, we test the execution times of the matrix operations
with different matrix dimensions. The matrix operation is coded
in a for loop way with TPL and without TPL in C# [27]. We
divide the matrix operation into two types: simple computation
and complex computation. The matrix operation is considered
as a simple computation when the execution time of the matrix
operation without TPL is shorter than that with TPL. Otherwise,
the matrix operation is considered as a complex computation.
The tested matrix operations included matrix multiplication,
matrix addition, matrix divided by a constant, hyperbolic
tangent. We use the stopwatch class [28] to measure the
execution time on a PC featuring Intel Core 2 Quad Q8200 (4
physical cores). Tables 1~5 summarize the execution times.

 and denote two matrices and c denotes a
constant. Table 1 shows the execution times of the
multiplication of two square matrices. As can be seen, We set
the threshold of matrix multiplication at . In
other words, if two square matrices whose dimensions are equal

172

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on February 08,2022 at 07:40:12 UTC from IEEE Xplore. Restrictions apply.

to or higher than 16, their multiplication is regarded as a
complex computation. Otherwise, the matrix multiplication is
regarded as a simple computation. Table 2 shows the execution
times of the multiplication of a square matrix and a rectangular
matrix. When the matrices are equal to or larger than , the execution time with TPL will be shorter than
that without TPL. We thus set the threshold of the matrix
multiplication of a square matrix and a rectangular matrix at

. Similarly to the matrix multiplication, the
threshold of the other matrix operations can be set according to
the experimental results. The threshold of the matrix addition of
two square matrices in Table 3 is set to and
the threshold of the matrix subtraction of two square matrices is
the same as that of the matrix addition due to similar behavior;
the threshold of the matrix divided by a constant in Table 4 is
set to / ; the threshold of the matrix hyperbolic tangent
in Table 5 is set to . The determined thresholds
are used to decide whether the computation is complex or
simple for the proposed CA procedure as addressed in next
subsection.

Table 1: Execution time results of matrix multiplication

Matrix
Operation

×

×

×

×

With TPL 0.028 ms 0.055 ms 0.321 ms 2.499 ms
Without

TPL 0.016 ms 0.126 ms 0.975 ms 7.885 ms

Table 2: Execution time results of matrix multiplication

Matrix
Operation

×

×

×

×

With TPL 0.027 ms 0.039 ms 0.764 ms 2.847 ms
Without

TPL 0.035 ms 0.069 ms 2.267 ms 9.137 ms

Table 3: Execution time results of matrix addition
Matrix

Operation

+

+

+

+

With TPL 0.0089 ms 0.0133 ms 0.0231 ms 0.0491 ms
Without

TPL 0.0016 ms 0.0063 ms 0.0245 ms 0.0985 ms

Table 4: Execution time results of matrix divided by a constant
Matrix

Operation /c /c /c /c

With TPL 0.0089 ms 0.0125 ms 0.0210 ms 0.0426 ms
Without

TPL 0.0013 ms 0.0052 ms 0.0197 ms 0.0779 ms

Table 5: Execution time results of matrix hyperbolic tangent
Matrix

Operation
tanh

()
tanh

()
tanh

()
tanh

()

With TPL 0.0136 ms 0.0220 ms 0.0664 ms 0.1409 ms
Without

TPL 0.0092 ms 0.0303 ms 0.1144 ms 0.4342 ms

B. CA TPL Utilization Procedure for the FastICA Algorithm
 Although TPL can dynamically adjust the degree of
parallelism on all available cores, the TPL suffers from
overhead when low computations are involved. Based on the
threshold-testing results, the CA TPL utilization procedure [13]
can be designed to use TPL efficiently to reduce the execution
times of the FastICA algorithm. The proposed TPL utilization
procedure divides the matrix operations into simple
computation and complex computation. The complex
computation uses TPL, and the simple computation does not.
The overall goal is to reduce the execution time of complex
computation while avoiding the overhead of TPL for the
execution time of simple computation. To this end, we design a
CA TPL utilization procedure for the FastICA algorithm. The
CA TPL utilization procedure classifies each matrix operation
into a complex or simple computation and then decides whether
TPL is applied to the matrix operation. The FastICA algorithm
includes the steps of centering (abbreviated as C), whitening
(abbreviated as W), and the fixed-point algorithm (abbreviated
as F). In the FastICA algorithm, centering is the first step. The
centering step needs to calculate and subtract from to generate with zero mean. The flow chart of the
centering step using CA TPL is shown in Fig. 1. In Fig. 1, C.2,
C.5, C.9 are used to detect the matrix dimension size to
determine whether the TPL should be used.
 After the centering step, the whitening process is performed.
The whitening step needs to execute the eigenvalue
decomposition (EVD). In this work, the eigenvalue
decomposition is implemented with the cyclic Jacobi method
[29] to obtain the eigenvalues and eigenvectors of a symmetric
matrix. The cyclic Jacobi method applies a sequence of Jacobi
rotations to the right side and the left side of the symmetric
matrix. After obtaining the eigenvalue matrix, D, and
eigenvector matrix, E, we can use (10) to generate the
whitening signal matrix, Z, and finish the whitening step. Fig.
2 shows the flow chart of the whitening step using CA TPL. In
Fig. 2, W.2, W.5, W.9, W.13 are used to detect the matrix
dimension size to determine whether the TPL should be used.
For the fixed-point algorithm, we first initialize a vector
with a unit norm for i=1, 2, 3, …, n. Second, we compute

. In Step 3, /
can be obtained by / , where D and E are obtained by
the eigenvalue decomposition of . Once the weight
matrix is converged, the fixed-point algorithm will stop. The
flow chart of the fixed-point algorithm using CA TPL is shown
in Fig. 3. In Fig. 3, F.3, F.6, F.10 are used to detect the matrix
dimension size to determine whether the TPL should be used.

173

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on February 08,2022 at 07:40:12 UTC from IEEE Xplore. Restrictions apply.

Centering
Start

Detect sum
calculation of

Complex
computation?

Computation
without TPL

NO

Computation
with TPL

Obtain sum of

& detect
calculation of

YES

Complex
computation?

Computation
with TPL

YES

Computation
without TPL

NO

Obtain

& detect
calculation of

Complex
computation?

Computation
with TPL

Computation
without TPL

YES NO

Obtain matrix

Centering
End

C.1

C.2

C.3

C.4

C.5

C.6 C.7

C.8

C.9

C.10

C.11

C.12

C.13

C.14

C.15

Fig. 1: Flow chart of the centering step.

Whitening
Start

Complex
computation?

Computation
without TPL

NO

Computation
with TPL

YES
Obtain matrix D

and E, and
detect

computation of

Complex
computation?

Computation
with TPL

Computation
without TPL

YES

NO

Obtain matrix P
and detect

computation of
Z=PX

Complex
computation?

Computation
with TPL

Computation
without TPL

Obtain matrix
Z

Whitening
End

YES

NO

W.1

W.7

W.9

W.10

W.11

W.12

W.13

W.14

W.15

Detect
computation of

Cx

Complex
computation?

Detect EVD
computation of

Cx

Computation
with TPL

Computation
without TPL

YES

NO

W.5

W.6

W.2

W.4 W.8

W.16

W.18

W.17

W.19

W.3

/

Fig. 2: Flow chart of the whitening step.

Fixed point
Start

Initialize vectors

with unit norm

Complex
computation?

Computation
without TPL

Detect computation of

NO

Computation
with TPL

YES

Complex
computation?

Computation
with TPL

YES

Obtain

and detect EVD
computation of

Computation
without TPL

NO
Obtain matrix D and E

and detect
computation of

Complex
computation?

Computation
without TPL

Computation
with TPL

NO

YES

Obtain matrix
W

Coverage?NO
Generate the
independent
components

YES Fixed point
End

F.1

F.2

F.3

F.4 F.5

F.6

F.7

F.8

F.9

F.10
F.11

F.12
F.13

F.14 F.15

F.16 F.17

F.18

1 2

Fig. 3: Flow chart of the fixed-point algorithm.

174

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on February 08,2022 at 07:40:12 UTC from IEEE Xplore. Restrictions apply.

 In summary, the proposed computation-aware TPL
utilization procedure [13] for the FastICA processing is
composed of Fig. 1, Fig. 2, and Fig. 3. The next section presents
the results of decomposing simulated and actual signals.

IV. SIMULATION AND COMPARISON RESULTS

A. Functional Validation
 This subsection evaluates the proposed CA TPL utilization
procedure applied to the FastICA algorithm. The evaluation is
conducted on 8-channel artificially mixed source signals with a
data length of 1024 as shown in Fig. 4. The mixed signals are
processed by the proposed CA TPL utilization procedure of the
FastICA algorithm. Fig. 5 shows the separation results. As can
be seen, the mixed signals are well separated by the proposed
CA TPL utilization procedure. The average absolute correlation
coefficient between the separation results and the source signals
is 0.9975. Therefore, the function of the proposed CA TPL
utilization procedure can be validated.

Fig. 4: 8-channel mixed signals.

1.0000

0.9999

0.9998

0.9991

0.9984

0.9973

0.9944

0.9911

 (a) (b)

Fig. 5: Comparison results of (a) the source signals and (b) the separation results using the proposed CA TPL utilization
procedure.

B. Simulation Results
 In this subsection, we tested the proposed CA TPL utilization
procedure on three datasets on a PC featuring Intel Core 2 Quad
Q8200 to obtain the execution time of the FastICA algorithm.
Besides the proposed procedure program, two referenced
programs are implemented. One referenced program is
implemented without TPL. The other program parallelizes the
computation with TPL to all matrix operations without
distinguishing the simple computation and complex
computation. The same datasets are processed by three
programs. Therefore, we can do a fair comparison among the
three implementations.
 The first dataset contains 8-channel artificial mixed signals
with a data length of 921,600 samples. Table 6 shows the
execution times of each step of the FastICA algorithm. As can
be seen, the execution time is mainly contributed by the
processing of the fixed-point algorithm. This is because the

fixed-point algorithm dominates the computational complexity
of the FastICA algorithm. The similar effect can be observed in
the execution times of the other two datasets. For the first
dataset, the proposed CA TPL utilization procedure can reduce
34.88% execution times, compared to the program without
TPL. Compared to the fully parallelized program with TPL, the
proposed CA TPL utilization procedure can reduce the
execution time by 10.04%.
 The second dataset contains 32-channel artificial mixed
signals with a data length of 2,048 samples. Table 7 shows the
execution times. For the second dataset, the proposed CA TPL
utilization procedure can reduce the execution time by 43.01%,
compared to the program without TPL. However, compared to
the fully parallelized program with TPL, the execution time of
the proposed efficient TPL utilization procedure is only reduced
by 0.93%. This is because the most matrix operations are
classified as a complex computation since the channel of the
dataset is up to 32. Nevertheless, the proposed CA TPL

175

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on February 08,2022 at 07:40:12 UTC from IEEE Xplore. Restrictions apply.

utilization procedure can still achieve the goal of performance
improvement compared to the program without TPL.
 The third dataset contains 12-channel real EEG signals with
a data length of 276,360 samples. Table 8 shows the execution
time results. For the third dataset, the proposed CA TPL
utilization procedure can reduce the execution time by 48.27%,
compared to the program without TPL. Compared to the fully
parallelized program with TPL, the proposed CA TPL
utilization procedure can reduce the execution time by 15.12%.
 Tables 9, 10, and 11 show the number of TPL utilizations for
the above three datasets. Obviously, the program without TPL
has zero utilization, and the parallelized program with TPL has
the highest number of utilizations. The proposed CA TPL
utilization procedure for the FastICA algorithm will not use
TPL for the simple computation to avoid the overhead. Thus,
the number of TPL utilizations of the proposed CA TPL
utilization procedure is less than that with the fully parallelized
program with TPL and higher than that of the program without
TPL. According to the above experiment results, we can find
that the proposed CA TPL utilization procedure of the FastICA
algorithm can improve the execution time.

Table 6: Execution time results with the first dataset
FastICA

Steps C W F Total

Without
TPL 309 ms 4827 ms 68709 ms 73845 ms

(100%)

With TPL 307 ms 2784 ms 50365 ms 53456 ms
(72.39%)

This work
[13] 306 ms 2586 ms 45195 ms 48087 ms

(65.12%)

Table 7: Execution time results with the second dataset
FastICA

Steps C W F Total

Without
TPL 3 ms 8663 ms 234270

ms
242936 ms

(100%)

With TPL 8 ms 6899 ms 132836
ms

139743 ms
(57.52%)

This work
[13] 3 ms 6919 ms 131525

ms
138447 ms
(56.99%)

Table 8: Execution time results with the third dataset
FastICA

Steps C W F Total

Without
TPL 161 ms 3540 ms 117065

ms
120766 ms

(100%)

With TPL 171 ms 1504 ms 71921 ms 73599 ms
(60.94%)

This work
[13] 146 ms 1472 ms 60854 ms 62472 ms

(51.73%)

Table 9: Number of TPL utilizations of the first dataset
FastICA

Steps C W F Total

Without
TPL 0 0 0 0

(0%)

With TPL 2 6 254 262
(100%)

This work
[13] 2 2 67 71

(27.10%)

Table 10: Number of TPL utilizations of the second dataset
FastICA

Steps C W F Total

Without
TPL 0 0 0 0

(0%)

With TPL 2 6 312 320
(100%)

This work
[13] 2 3 144 149

(46.56%)

Table 11: Number of TPL utilizations of the third dataset
FastICA

Steps C W F Total

Without
TPL 0 0 0 0

(0%)

With TPL 2 6 599 607
(100%)

This work
[13] 2 2 157 161

(26.52%)

V. CONCLUSION

 This study proposed a computation-aware TPL utilization
procedure for the FastICA algorithm. The proposed TPL
utilization procedure applies TPL on complex computation but
not on simple computation. It can achieve less execution time
on a multi-core CPU. Compared to the program without TPL,
the study results showed that the execution time of the FastICA
decomposition applied to 8-channel artificial mixed signals
with a data length of 921,600 was reduced by 34.88%.
Compared to the fully parallelized program with TPL, the
proposed procedure could reduce the execution time by
10.04%. The execution time of the FastICA decomposition
applied to 32-channel artificial mixed signals with a data length
of 2,048 could be reduced by 43.01%, compared to the program
without TPL. Compared to the fully parallelized program with
TPL, the proposed procedure reduced the execution time by
0.93%. The execution time of the FastICA decomposition
applied to 12-channel EEG signals with a data length of 276,360
was reduced by 48.27% compared to the program without TPL.
Compared to the parallelized program with TPL, the proposed
procedure reduced the execution time by 15.12%. In the near
future, we plan to further improve the performance by
heterogeneous computing hardware resources.

176

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on February 08,2022 at 07:40:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] A. J. Bell and T. J. Sejnowski, “An information maximization approach

to blind separation and blind deconvolution,” Neural Computation, vol. 7,
pp. 1129-1159, 1995.

[2] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent
component analysis,” Neural Computation, vol. 9, pp. 1483–1492, 1997.

[3] S. Choi, A. Cichocki and S. Amari, “Flexible independent component
analysis,” J. VLSI Signal Process., vol. 26, nos. 1-2, pp. 25-38, 2000.

[4] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component
Analysis. New York: Wiley, 2001.

[5] A. Kachenoura , L. Albera , L. Senhadji and P. Comon “ICA: A potential
tool for BCI systems,” IEEE Signal Processing Magazine, vol. 25, no. 1,
pp. 57-68, Jan. 2008.

[6] L. D. Van, D. Y. Wu, and C. S. Chen, “Energy-efficient FastICA
Implementation for biomedical signal separation,” IEEE Transactions on
Neural Networks, vol. 22, no. 11, pp. 1809-1822, Nov. 2011.

[7] L. D. Van, P. Y. Huang, and T. C. Lu, “Cost-effective and variable-
channel FastICA hardware architecture and implementation for EEG
signal processing,” Journal of Signal Processing Systems, vol. 82, issue 1,
pp. 91-113, Jan. 2016.

[8] L. D. Van, T. C. Lu, T. P. Jung, and J. F. Wang, “Hardware-oriented
memory-limited online FastICA algorithm and hardware architecture for
signal separation,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2019, pp. 1438-1422,
Brighton, UK.

[9] M. Sajjad, M. Z. Yusoff, N. Yahya, and A. S. Haider, “An efficient VLSI
architecture for FastICA by using the algebraic Jacobi method for EVD,”
IEEE Access, vol. 9, pp. 58287-58305, 2021.

[10] D. B. Keith, C. C. Hoge, R. M. Frank, and A. D. Malony, “Parallel ICA
methods for EEG neuroimaging,” in Proc. 20th IEEE International
Parallel & Distributed Processing Symposium, Apr. 2006.

[11] R. Ramalho, P. Tomás, and L. Sousa, “Efficient independent component
analysis on a GPU,” in Proc. 10th IEEE International Conference on
Computer and Information Technology, Jun. 2010, pp. 1128-1133.

[12] D. Brandt, Investigation of GPGPU for Use in Processing of EEG in Real-
Time, Master Thesis, Rochester Institute of Technology, USA, 2010.

[13] Sing-Jia Tzeng, Efficient TPL Utilization Procedure for Paralleling
FastICA Algorithm on Multi-Core CPU, Master Thesis, National Chiao
Tung University, Taiwan, 2014. (Advisor: Lan-Da Van)

[14] M. Plauth, F. Feinbube, P. Tröger, and A. Polze, “FastICA on modern
GPU architectures,” in Proc. 15th IEEE International Conference on
Parallel and Distributed Computing, Applications and Technologies, Dec.
2014, pp. 69-75.

[15] M. Fang, J. Fang, and W. Zhang, “Efficient and portable parallel
framework for hyperspectral image dimensionality reduction on
heterogeneous platforms,” Journal of Applied Remote Sensing, vol. 11(1),
Jan.-Mar. 2017.

[16] G. Benko and Z. Juhasz, “GPU implementation of the FastICA
algorithm,” in Proc. 42nd IEEE International Convention on Information
and Communication Technology, Electronics and Microelectronics
(MIPRO), May 2019, pp. 196-199.

[17] F. Carrizosa Corral, A. Vazquez Cervantes, J. R. Montes, T. Hernandez
Diaz, J. C. Solano Vargas, L. Barriga Rodriguez, J. A. Soto-Cajiga, H.
Jimenez Hernandez, “FPGA SoC implementation of an ICA based
background subtraction method,” International Journal of Circuit Theory
and Applications, vol. 46, pp. 1703-1722, Apr. 2018.

[18] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT press,
2012.

[19] E. Bingham, S. Kaski, J. Laaksonen, and J. Lampinen, (Eds.), Advances
in independent component analysis and learning machines. Academic
Press, 2015.

[20] OpenMP.org. [Online] Available: http://www.openmp.org
[21] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel

Programming With Message-Passing Interface. MIT Press, 1994
[22] CUDA Zone. [Online] Available:

https://developer.nvidia.com/category/zone /cuda-zone
[23] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming

standard for heterogeneous computing systems,” Computing in Science &
Engineering, vol. 12, issue 3, pp. 66-72, May-Jun. 2010.

[24] Khronos OpenCL Working Group: OpenCL Speci cation. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

[25] D. Leijen, W. Schulte and S. Burckhardt “The design of a task parallel
library,” ACM SIGPLAN Notices, vol. 44, issue 10, pp 227–242, Oct.
2009.

[26] Microsoft: TPL. [Online] Available: https://docs.microsoft.com/en-
us/dotnet/standard/parallel-programming/task-parallel-library-tpl

[27] Microsoft: C# Programming. [Online] Available:
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/

[28] Microsoft: Stopwatch Class. [Online] Available:
http://msdn.microsoft.com/en-
us/library/system.diagnostics.stopwatch(v=vs.100).ASPX

[29] G. H. Golub and C. F. Van Loan, Matrix Computation. Johns Hopkins
University Press, 1996.

177

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on February 08,2022 at 07:40:12 UTC from IEEE Xplore. Restrictions apply.

