
Reducing Circuit Soft Error Rate (SER): From Combinational to Sequential Circuits
Submitted to Track 4 as 1st choice, Track 6 as 2nd choice, and Track 2 as 3rd choice

(Work not presented at any Ph.D. forum)

Kai-Chiang Wu (Advisor: Prof. Diana Marculescu)
Department of Electrical and Computer Engineering, Carnegie Mellon University

kaichiaw@ece.cmu.edu

Expected Graduation: Summer 2011
Supporting Paper: K.-C. Wu and D. Marculescu, “Clock Skew Scheduling for Soft-Error-Tolerant Sequential Circuits,”

in Proc. of Design, Automation, and Test in Europe (DATE), pp. 717-722, March 2010.

I. INTRODUCTION
Soft errors, process variations, and device aging phenomena

are currently some of the main factors in reliability degradation.
With the continuous scaling of transistor dimensions, soft errors,
which cause unpredictable transient circuit failure, are becoming
increasingly dominant for functional reliability concerns [1]. A
radiation-induced charged particle passing through a microelec-
tronic device ionizes the material along its path and generates free
pairs of electrons and holes. The free (ionized) carriers deposited
around the particle track can be attracted or repelled by an internal
electric field of the device and lead to an electrical pulse, referred
to as a single-event transient (SET) or a glitch. A single-event
upset (SEU) or a soft error refers to transient bit corruption that
occurs when a single-event transient is large enough to flip the
state of a storage node. The rate at which soft errors occur is
called soft error rate (SER).

During SEU propagation in combinational logic, three mecha-
nisms used to provide logic circuits with effective protection
against soft errors: (i) logical masking, (ii) electrical masking, and
(iii) latching-window (timing) masking. However, as technology
scaling proceeds aggressively (e.g., decreasing node capacitance
and increasing clock frequency), the impact of these three mask-
ing mechanisms is lessened. On the other hand, error detecting
and correcting codes have been mature enough to successfully
mitigate soft error susceptibility of memory elements. A recent
study [2] showed that soft errors significantly degrade the robust-
ness of logic circuits, while the nominal SER of SRAMs tends to
be nearly constant from 130nm to 65nm technologies. As a result,
unless explicitly dealt with, the SER of logic will become as great
of a concern and is expected to be comparable to that of unpro-
tected memories by 2011 [3].

When the combinational block of a sequential circuit can
propagate SEUs freely, the sequential circuit may become very
sensitive to such events. This is because, once latched, soft errors
can circulate through the circuit in subsequent clock cycles and
affect more than one output, more than once. The untraceable
propagation of soft errors greatly affects the circuit operation for
consecutive cycles and thus, necessitates design methods for soft
error tolerance of sequential circuits, in a similar manner to classic
design constraints such as performance and power consumption.

Having demonstrated the importance of soft errors in both
combinational and sequential circuits which motivates our work,
the main goal of this dissertation research is to develop a low-cost,

integrated framework that can reduce the overall SER of a logic
circuit. Several approaches are included to target different parts of
logic circuits and poised to provide additive improvements in SER
when applied in a particular order.

II. PROPOSED FRAMEWORK
Intensive research has been done in the area of SER reduction

or soft error tolerance for logic circuits. The well-known triple
modular redundancy induces excessive overhead and is unneces-
sary for transient (soft) errors. To reduce the overall cost for
realizing soft error tolerance, partial duplication and gate resizing
strategies target only nodes with high error susceptibility and
ignore nodes with low error susceptibility. A potentially large
overhead in area and power is still needed for a higher degree of
soft error tolerance.

In this thesis, we propose three approaches for SER reduction
based on (A) redundancy addition and removal [4], (B) selective
voltage scaling [5], and (C) clock skew scheduling [6]. These
three approaches are described further described in the sequel.

A. Redundancy Addition and Removal (RAR)
Redundancy addition and removal has been presented as a

successful logic optimization technique which iteratively adds and
removes redundant wires to minimize a circuit in terms of literal
count. Since during each step of wire addition and removal the
soft error rate of a circuit may change, we rely on estimating the
effects of redundancy manipulations and accept only those with
positive impact on circuit SER. Several metrics and constraints
are introduced to guide the RAR algorithm toward SER reduction
in a systematic and cost-effective manner.

B. Selective Voltage Scaling (SVS)
Voltage scaling is also a possible solution for SER reduction

because it can mitigate SET generation. More specifically, the
same amount of charge disturbance produces a smaller (less
harmful) SET at gates with high supply voltage than at gates with
low supply voltage. Accordingly, we assign a higher supply
voltage (VDD

H) selectively to gates that have large error impact
and contribute most to the overall SER, and leave the remaining
gates with the nominal supply voltage (VDD

L). The number of
gates operating at the higher voltage level, positively correlated
with the power overhead, can be bounded by the appropriate use
of level converters on the connections from VDD

L-gates to
VDD

H-gates for preventing short-circuit leakage current.

C. Clock Skew Scheduling (CSS)
To address the issue of multiple-bit upsets (MBUs) in sequen-

tial circuits which manifest themselves as multiple errors during
multiple clock cycles, affecting more than one output, more than
once, we propose to exploit clock skew scheduling for
MBU-aware soft error tolerance. The CSS-based approach adjusts
the arrival times of clock signals to memory elements (latches or
flip-flops) such that the probability of capturing unwanted tran-
sient pulses is significantly decreased, as a result of more latch-
ing-window masking. For our concern of MBU awareness, instead
of using all flip-flops in a sequential circuit as candidates for CSS,
flip-flops that are capable of mitigating potential MBU effects
need to be extracted before applying CSS.

III. THESIS CONTRIBUTION
These three techniques (RAR, SVS, and CSS) target different

parts of logic circuits. Given a logic circuit, the RAR-based
approach focuses on restructuring its combinational block, while
the approaches using SVS and CSS involve modifications on the
power distribution and clock network, respectively. All of these
proposed approaches, when integrated and applied in a particular
order (i.e., RAR SVS CSS), can thus provide additive
improvements in SER. In addition, our framework as a whole has
the following major and unique contributions:

 Symbolic unified treatment: The proposed framework relies
on a symbolic SER analyzer [7] which provides a unified
treatment of three masking mechanisms through decision dia-
grams. Therefore, all masking mechanisms, rather than one or
two of them, are considered jointly as criteria for our objective
of SER reduction. To the best of our knowledge, this is the first
work reducing circuit SER with all three masking mechanisms
jointly considered. Also, two novel metrics are introduced for
characterizing each gate/wire in terms of masking impact and
error impact. Using these two metrics, we can precisely esti-
mate the impact on SER of a redundancy manipulation or a
voltage assignment (scaling in supply voltage from VDD

L to
VDD

H), and then decide whether to accept the given optimiza-
tion step for SER reduction.

 Insignificant area overhead: Unlike some of existing SER
reduction techniques based on duplication or resizing, which
monotonically increase hardware resources without eliminat-
ing any, our RAR-based approach incurs very little area over-
head since there usually exists one or more redundant remov-
able wires after a redundant wire is added into a circuit. On
average, only 4% area overhead can be observed in order for a
SER reduction of about 23%.

 Favorable power overhead: The proposed approach using
SVS minimizes SER while keeping the power overhead below
a specified limit. To this end, level converters (LCs) are placed
such that the number of up-scaled gates is bounded. It has been
verified by our experiments that the appropriate use of LCs is
beneficial for power-aware SER reduction. On average, cir-
cuit SER can be reduced by 33% with less than 12% energy
increase, which is much smaller than those induced by other
existing frameworks applying voltage scaling/assignment
where LCs are avoided. Moreover, we optimize the number
and distribution of required LCs for minimal design penalty

and error impact due to inserted LCs. At the same time, the
nets with terminal nodes operating at different voltages implic-
itly become fewer, which can alleviate the common layout
issues coming with dual-VDD or multiple-VDD design style. As
a fraction of total gate count, less than 4% LCs are inserted
across all benchmarks considered.

 Minor modification on clock network: The overall methodol-
ogy using CSS for MBU-aware soft error tolerance is formu-
lated as a piecewise linear programming problem and its opti-
mal solution can be found by any mixed integer linear pro-
gramming solver. CSS itself involves only modifications of
clock tree synthesis during the physical design stage. In other
words, the difference between original and optimized designs
lies in their clock trees, whereas the combinational network
remains identical. Hence, our CSS-based approach, when ap-
plied as a post-processing procedure, can provide additive SER
reduction without destroying existing SER improvements. On
average, an extra 30-40% reduction in SER can be achieved
with a drastic decline of MBU effects, while the clock network
suffers a minor degree of modification ranging from 1% up to
7%.

IV. SUMMARY AND FUTURE WORK

In this thesis, we present three SER reduction approaches
based on RAR, SVS, and CSS. All of them rely on the symbolic
SER analyzer which provides a unified treatment of three masking
mechanisms. However, each of them targets a different part of
logic circuits, leading to orthogonal relationships and compound-
ing results. Various experiments on a set of standard benchmarks
reveal the effectiveness of our framework and demonstrate that
the normalized joint cost per unit of SER reduction is relatively
low when compared to other state-of-the-art techniques.

As a future direction, we plan to consider the impact of process
variability on clock skew scheduling for soft error tolerance. In
the presence of process variations where the analyses of masking
impact and error impact are no longer fixed values but distribu-
tions (Gaussian or non-Gaussian), probability density functions
are required to be modeled and the problem will be formulated in
a more complex mathematical form.

REFERENCE
[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE

Design and Test of Computers, May 2005.
[2] S. Mitra et al., “Robust system design with built-in soft-error resil-

ience,” IEEE Computer Magazine, Feb. 2005.
[3] P. Shivakumar et al., “Modeling the effect of technology trends on the

soft error rate of combinational logic,” in Proc. of Int’l Conf. on De-
pendable Systems and Networks, June 2002.

[4] K.-C. Wu and D. Marculescu, “Soft error rate reduction using redun-
dancy addition and removal,” in Proc. of ASP-DAC, Jan. 2008.

[5] K.-C. Wu and D. Marculescu, “Power-aware soft error hardening via
selective voltage scaling,” in Proc. of ICCD, Oct. 2008.

[6] K.-C. Wu and D. Marculescu, “Clock skew scheduling for
soft-error-tolerant sequential circuits,” in Proc. of DATE, March 2010.

[7] N. Miskov-Zivanov, K.-C. Wu, and D. Marculescu, “Process variabil-
ity-aware transient fault modeling and analysis,” in Proc. of ICCAD,
Nov. 2008.

Clock Skew Scheduling for Soft-Error-Tolerant Sequential Circuits*

Kai-Chiang Wu and Diana Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University
{kaichiaw, dianam}@ece.cmu.edu

Abstract

Soft errors have been a critical reliability concern in nano-
scale integrated circuits, especially in sequential circuits where a
latched error can be propagated for multiple clock cycles and
affect more than one output, more than once. This paper presents
an analytical methodology for enhancing the soft error tolerance
of sequential circuits. By using clock skew scheduling, we propose
to minimize the probability of unwanted transient pulses being
latched and also prevent latched errors from propagating through
sequential circuits repeatedly. The overall methodology is formu-
lated as a piecewise linear programming problem whose optimal
solution can be found by existing mixed integer linear program-
ming solvers. Experiments reveal that 30-40% reduction in the
soft error rate for a wide range of benchmarks can be achieved.

1. Introduction
Soft errors, process variations, and device aging phenomena

are currently some of the main factors in reliability degradation.
With the continuous scaling of transistor dimensions, soft errors,
which cause unpredictable transient circuit failure, are becoming
increasingly dominant for functional reliability concerns [1]. A
radiation-induced charged particle passing through a microelec-
tronic device ionizes the material along its path and generates free
pairs of electrons and holes. The free (ionized) carriers deposited
around the particle track can be attracted or repelled by an internal
electric field of the device and lead to an electrical pulse, referred
to as a single-event transient (SET) or a glitch. A single-event
upset (SEU) or a soft error refers to transient bit corruption that
occurs when a single-event transient is large enough to flip the
state of a storage node. The rate at which soft errors occur is
called soft error rate (SER).

During SEU propagation in logic, three mechanisms used to
provide logic circuits with effective protection against soft errors:
(i) logical masking, (ii) electrical masking, and (iii) latch-
ing-window (timing) masking [2]. However, as technology scaling
proceeds aggressively (e.g., decreasing node capacitance and
increasing clock frequency), the impact of these three masking
mechanisms is lessened. On the other hand, error detecting and
correcting codes have been mature enough to successfully miti-
gate soft error susceptibility of memory elements. A recent study
[3] showed that soft errors significantly degrade the robustness of
logic circuits, while the nominal SER of SRAMs tends to be
nearly constant from 130nm to 65nm technologies. As a result,
unless explicitly dealt with, the SER of logic will become as great
of a concern and is expected to be comparable to that of unpro-
tected memories by 2011 [4].

When the combinational block of a sequential circuit can
propagate SETs freely, the sequential circuit may become very

* This research was supported in part by NSF Grant CNS-07020653.

sensitive to such events. This is because, once latched, soft errors
can circulate through the circuit in subsequent clock cycles and
affect more than one output, more than once. The untraceable
propagation of soft errors greatly affects the circuit operation for
consecutive cycles and thus, necessitates design methods for soft
error tolerance of sequential circuits, in a similar manner to classic
design constraints such as performance and power consumption.

In this paper, we present an analytical methodology for soft
error tolerance of sequential circuits. Our work proposes to adjust
the arrival times of clock signals to memory elements (latches or
flip-flops) such that the probability of capturing unwanted tran-
sient pulses is significantly decreased. The technique, called clock
skew scheduling (CSS), is formulated in our methodology as a
piecewise linear programming (PLP) problem, and its optimal
solution can be found by existing mixed integer linear program-
ming (MILP) solvers. The proposed framework involves only
minor modifications of the clock tree synthesis step and does not
touch the combinational logic of sequential circuits. Hence, this
CSS-based approach can also act as a post-processing procedure
for additional SER improvement on top of techniques targeting
only combinational logic, which typically change the circuit
timing and topology (e.g., resizing [5] and rewiring [6]).

The rest of this paper is organized as follows: Section 2 gives
an overview of related work and outlines the contribution of our
paper. In Section 3, we illustrate an example motivating clock
skew scheduling for soft error tolerance. Section 4 introduces
several metrics associated with SER analysis. In Section 5, our
proposed framework, using clock skew scheduling and based on a
piecewise linear programming formulation, is presented. Section 6
reports the experimental results for a set of standard benchmarks.
Finally, we conclude our work in Section 7.

2. Related Work and Paper Contribution
2.1. Previous Work on Soft Error Tolerance

Intensive research has been done in the area of soft error tol-
erance for combinational circuits. To reduce the overall cost for
realizing soft error tolerance, gate resizing [5] and partial duplica-
tion [7] strategies target only nodes with high error susceptibility
and ignore nodes with low error susceptibility. A potentially large
overhead in area and power is still needed for a higher degree of
soft error tolerance. In [8] and [9], voltage scaling/assignment is
used to enhance the circuit robustness to soft errors. These
methods trade power penalty for SER reduction by applying
higher supply voltage(s) to a certain portion of gates. Approaches
based on rewiring or resynthesis [6][10] can achieve relatively
smaller SER improvement while incurring little overhead.

Sequential circuits, as opposed to combinational circuits, have
received less attention in terms of soft error tolerance. Since a
sequential circuit has a feedback loop leading back to state inputs
of the circuit, it is possible that errors latched at state lines propa-

978-3-9810801-6-2/DATE10 © 2010 EDAA

gate through the circuit for multiple clock cycles. The intuitive
way to address this problem is by replacing sequential elements
with hardened latches or flop-flips that are less sensitive to soft
errors, as developed in [11]. A flip-flop sizing scheme [12]
increases the probability of timing masking by lengthening the
latching window intervals of vulnerable flip-flops. Nevertheless,
this scheme does not take into account logical masking and
electrical masking, which are also important factors in determin-
ing circuit SER. In [13], gates are locally relocated such that, for
each gate, delays to different outputs are balanced as much as
possible. In effect, this strategy minimizes the probability that an
error originating at a gate is registered by any of the flip-flops.
The error, however, may reach more than one output simultane-
ously due to balanced path delays and be registered by multiple
flip-flops, resulting in so-called multiple-bit upsets (MBUs). For
sequential circuits, MBUs imply that there will be multiple errors
propagating in subsequent cycles, further degrading circuit
reliability. This is a crucial reliability concern in sequential
circuits that has not been addressed so far.

2.2. Paper Contribution
This paper presents a SER mitigation framework where the

MBU impact is explicitly considered and alleviated. To the best of
our knowledge, this is the first work addressing MBU-aware soft
error tolerance in sequential circuits. On one hand, for an original
error (SEU) in the clock cycle when a particle strikes, we maxi-
mize the probability of timing masking via clock skew scheduling
(CSS). On the other hand, during clock cycles following the
particle hit, we avoid multiple errors (MBU) from propagating
repeatedly by exploring the effects of (i) implication-based
masking and (ii) mutually-exclusive propagation, as explained
later in Section 3.1 and Section 3.2, respectively. In this paper, we
take advantage of intentionally induced skews to increase the
probability of timing masking via CSS, while accounting for the
MBU impact to further enhance soft error robustness. The contri-
butions and advantages of our framework are twofold:

 Optimality/Complexity: The overall methodology for
MBU-aware soft error tolerance is formulated as a piecewise
linear programming (PLP) problem and its optimal solution
can be found by existing mixed integer linear programming
solvers. The worst-case problem size of our PLP formulation is
O(n2) where n is the number of flip-flops in a sequential cir-
cuit. Therefore, the runtime spent on solving the PLP-based
SER mitigation problem is quite reasonable.

 Compounding results: CSS itself involves only modifications
of clock tree synthesis during the physical design stage. In
other words, the difference between original and optimized
designs lies in their clock trees, whereas the combinational
network remains identical. Hence, our CSS-based framework,
when applied as a post-processing procedure, can provide ad-
ditive SER reduction without destroying existing SER im-
provements. On average, an extra 30-40% reduction in SER
can be achieved with a drastic decline of MBU effects.

3. A Motivating Example
To motivate the use of clock skew scheduling for soft error

tolerance, we use benchmark s27 (see Figure 1) from the
ISCAS’89 suite, where flip-flops (FFs) are posi-
tive-edge-triggered. Without loss of generality, we assume that the

delay of each gate is 1 (unit delay model) and wires do not
contribute to the circuit delay. The assumption can be relaxed for
a non-uniform delay model, with consideration of wire loads. In
this example, we focus on a SEU which occurs at gate G8 and may
be captured by flip-flops FF2 and/or FF3.

Definition 1 (error-latching window): The error-latching window
[13] of a flip-flop is a time interval, [t–tsu, t+th], where t is the
moment when a clock edge happens, tsu and th are the setup and
hold times of the flip-flop. An error must be present during this
interval to be latched; otherwise, it is filtered by latching-window
(timing) masking. The error-latching window associated with a
flip-flop can be backward propagated to internal gates (according
to respective propagation delays) to determine when an error has
to occur to be latched by that flip-flop.

Under unit delay model, the delays from G8 to FF2 and to FF3
are 0 and 1, respectively. Our goal is to overlap the error-latching
windows of FF2 and FF3 at G8 by adjusting the arrival times of
clock signals to FF2 and/or FF3, which in effect decreases the
probability that an error at G8 is latched with increased impact of
timing masking. The idea of overlapping error-latching windows,
first proposed in [13], is based on the fact that the probability of
timing masking is inversely proportional to the sum of sizes of
disjointed error-latching windows. For example, in Figure 2(a),
there are two separate error-latching windows at G8 (one at time
t-1 and the other at t) before skewing any flip-flop. If we lengthen
the arrival time of clock signals to FF3 by 1 and its new er-
ror-latching window is shown as the upper right diagram in Figure
2(b), there will be only one joint error-latching window at G8 (at
time t) due to complete overlapping. This implies that, after
skewing FF3, only errors occurring at G8 during the error-latching
window at time t will be latched, while errors occurring during the
already-non-existing window at time t-1 will be filtered by timing
masking, leading to a significant reduction in SER. Since the
overlapped error-latching window (at time t) can be backward
propagated to primary inputs, the positive impact on circuit SER
is also valid for those gates in G8’s fanin cone.

However, in the case where FF3 has been skewed, MBUs may
become more frequent because an error occurring at G8 during the
joint error-latching window at time t will be latched by both FF2
and FF3 simultaneously. Instead of using all flip-flops in a
sequential circuit as candidates for clock skew scheduling, we
carefully pick pairs of flip-flops that are beneficial for MBU
elimination. In the sequel, we demonstrate how to identify pairs of
flip-flops that are capable of alleviating MBU effects (during
clock cycles subsequent to particle hits) and suitable to be man-
aged by CSS for MBU-aware soft error tolerance.

Figure 1. Example circuit s27

3.1. Implication-Based Masking
We consider the following example to illustrate the concept of

implication-based masking required for our methodology. The
function of primary output O of circuit s27 is:

O = (a + f ’ + g)(c + d’ + e + g) (1)

The complement of Boolean difference of O with respect to
(w.r.t.) FF2’s present-state line f is:

F = (∂O/∂f)’ = a + c’de’ + g (2)
Equation (2) represents the Boolean expression of logical

masking patterns for errors propagated from f to O.

Similarly, the complement of Boolean difference of O w.r.t.
FF3’s present-state line g is:

G = (∂O/∂g)’ = (a + f ’)(c + d’ + e) (3)

Note that F is a function of g and G is a function of f, where f
and g are present-state lines of FF2 and FF3 and may be corrupt
due to the presumed SEU at G8. To remove f and g while keeping
the logical masking patterns, we apply universal quantification.

The universal quantification of F w.r.t. g is:
edcaFFF ggg ′′+=⋅=∀ == 01

 (4)

Equation (4) describes the patterns for logical masking of er-
rors from f to O, for all possible values of g (0 and 1). Since we do
not know whether g is corrupt, applying universal quantification
makes sense and will correctly reflect logical masking of errors
from f to O, irrespective of g.

Similarly, the universal quantification of G w.r.t. f is:
)(01 edcaGGG fff +′+⋅=⋅=∀ ==

 (5)

Up to now, (4) and (5), which no longer include f or g, have
been functions of inputs a, c, d, and e. In addition, one can find
that (5) is a subset of (4); that is to say, with respect to O, the
logical masking of an error on g implies the logical masking of an
error on f. More precisely in this case, both errors on f and g will
be masked when (5) is satisfied.

Definition 2 (implication-based masking): A pair of flip-flops X
and Y is called an implication-based masking (IM) pair if, with
respect to all outputs and flip-flops:
(i) the set of logical masking patterns for errors propagated from

X (denoted by LM(X)) contains the one for errors from Y (de-
noted by LM(Y)), i.e., LM(X) ⊇ LM(Y), or

(ii) the set of logical masking patterns for errors propagated from
Y (LM(Y)) contains the one for errors from X (LM(X)), i.e.,
LM(Y) ⊇ LM(X).

Based on Definition 2, the first category of candidates for CSS
can be identified. In circuit s27, as shown in Figure 1, (FF2 and
FF3) is a pair of candidates falling into this category. By overlap-
ping the error-latching windows of these two flip-flops via CSS
(see Figure 2(b)), not only can SER be reduced, but also
CSS-induced MBUs will be eliminated by implication with a
certain probability. This will be demonstrated in Section 6.

3.2. Mutually-Exclusive Propagation
The second type of candidate flip-flops, mutually-exclusive

propagation pair, in s27 can be identified by a single side-input

assignment, where a side input is a wire along which no error is
propagated. Again, we focus on a SEU which occurs at G8 and
may be captured by FF2 and/or FF3.

To propagate errors from FF3’s present-state line g to R, G10
needs a non-controlling value “0” on its side input G1 G10. As
seen in Figure 1, the value assignment at the output of G1 is a
controlling value for G2, at which errors from FF2’s present-state
line f are thus logically masked. Therefore, with respect to R, the
propagation of an error on g implies that an error propagated from
f is logically masked. In other words, errors on f and g cannot be
observable at R simultaneously.

Definition 3 (mutually-exclusive propagation): A pair of flip-flops
X and Y is called a mutually-exclusive propagation (MEP) pair if,
with respect to all outputs and flip-flops, the set of logical mask-
ing patterns for errors propagated from X (LM(X)) contains the
complement of the one for errors from Y (LM(Y)’), i.e., LM(X) ⊇
LM(Y)’. Intuitively, the sets of patterns for propagating errors
from X and Y (LM(X)’ and LM(Y)’) are disjoint.

Based on Definition 3, the second category of candidates for
CSS can be identified. Similar to IM pairs, we can overlap the
error-latching windows of two flip-flops falling into this category
(e.g., FF2 and FF3 in s27) to achieve MBU-aware soft error
tolerance because, due to the property of mutually-exclusive
propagation, at least one of the two errors propagated from this
pair of flip-flops will be logically masked before reaching a
primary output or a flip-flop. The mutually-exclusive property
guarantees that the MBU impact after applying CSS is at most
equivalent to the case of not applying CSS, whereas circuit SER
can be significantly reduced as a result of increased timing
masking. It is also probable that two errors from a MEP pair are
both masked and consequently less MBU impact is expected.

Any two flip-flops are regarded as candidates and will be

Figure 2. Overlapping of error-latching windows

(a) Before skewing: two separate error-latching windows at G8

(b) After skewing: one joint error-latching window at G8

beneficial for SER reduction as long as they are either IM or MEP
pairs. These two properties are the major motivation for our
framework aiming at soft error tolerance, and both address the
MBU issue by mitigating the occurrence of multiple-bit upsets.
More precisely, as mentioned earlier, overlapping the er-
ror-latching windows of flip-flops increases the probability of
timing masking and in turn decreases the soft error rate of a circuit.
Furthermore, overlapping the error-latching windows of a candi-
date pair of flip-flops, which meet the IBM or MEP condition, can
not only reduce circuit SER but also alleviate potential MBU
effects. Hence, for our objective of MBU-aware soft error toler-
ance, we check all possible pairs of flip-flops and extract as
candidates for the proposed CSS-based framework those satisfy-
ing the IM or MEP property.

4. Analysis of Soft Error Susceptibility
Before presenting the overall methodology for MBU-aware

soft error tolerance, we briefly introduce two metrics associated
with SER analysis in this section. The metrics, mean error impact
(MEI) and mean error susceptibility (MES), are used to evaluate
the circuit susceptibility to soft errors. Relying on a symbolic
framework [14][15] which provides unified treatment of three
masking mechanisms through decision diagrams, MEI and MES
are calculated and thereafter, the soft error rate (SER) of a sequen-
tial circuit can be derived accurately and efficiently.

4.1. Mean Error Impact (MEI) of Internal Gates
The MEI value of a gate quantifies the probability that at least

one primary output is affected by an error originating at this gate.
The larger MEI a gate has, the higher the probability that an error
occurring at this gate will be latched. This implies that those gates
with higher MEI make the circuit more vulnerable to soft errors.
Please refer to [14][15] for more details about MEI.

4.2. Mean Error Susceptibility (MES) of Primary Outputs
For each primary output Fj, initial duration d and initial am-

plitude a, mean error susceptibility (MES) [14] is defined as the
probability of output Fj failing due to errors at internal gates. In
[14][15], the authors compute MES of each primary output in the
circuit for a discrete set of pairs (d, a) of initial glitch durations
and amplitudes. Then, the probability of output Fj failing (output
failure probability) due to errors with various durations and
amplitudes is calculated as a weighted sum of the discrete set of
MES values. Finally, the soft error rate (SER) of output Fj can be
derived based on the output failure probability.

5. Clock Skew Scheduling Based on
Piecewise Linear Programming
The motivating example in Section 3 is a special case of CSS

for MBU-aware soft error tolerance. A fundamental assumption in
the example is that we can completely overlap the error-latching
windows of a given pair of flip-flops (FFs) which have been
recognized as candidates for CSS. This assumption is not realistic
because it is not always possible to completely overlap er-
ror-latching windows without incurring any timing violations, i.e.,
setup time violations owing to long paths or hold time violations
owing to short paths. Moreover, adjusting the skew between two
FFs may also change skews between affected FFs and unaffected
FFs. For a large sequential circuit with hundreds of FFs, optimal
skew scheduling, shown to be a signomial problem [16], is

difficult to be determined algorithmically. To address this problem,
we develop an analytical method which can apply CSS with a
global view on all extracted candidate FFs while suppressing
timing violations. A generalized problem formulation, based on
piecewise linear programming (PLP), is presented in the sequel.

5.1. Problem Formulation
Given a non-skewed sequential circuit (i.e., skew(FFi, FFj) = 0

for all i and j) and all possible pairs of flip-flops as candidates
beneficial for MBU elimination, our objective is to achieve the
highest level of MBU-aware soft error tolerance by maximizing
the overlap between error-latching windows of each flip-flop pair
via clock skew scheduling.

Definition 4 (intersecting gate): The intersecting gate of two
flip-flops FFi and FFj is the root gate for the intersection of FFi’s
and FFj’s fanin cones. In case of more than one such gate, the one
with the largest MEI value is selected.

Definition 5 (skew): Given two flip-flops FFi and FFj for which
the arrival times to clock pins are ci and cj respectively, the skew
between FFi and FFj, denoted by skew(FFi, FFj), is (ci – cj).

In Figure 3, flip-flops FFi and FFj are a pair of candidates
whose intersecting gate is gate Gij. The propagation delays from
Gij to FFi and to FFj are denoted by di and dj respectively. Let the
amounts of adjustments in the arrival times of clock signals to FFi
and FFj be si and sj, where si and sj can be positive or negative. To
completely overlap the error-latching windows of FFi and FFj at
Gij, we have to determine si and sj such that skew(FFi, FFj) = (si –
sj) = (di – dj). But complete overlapping may need significantly
large |si| and/or |sj| and thereby, may induce timing violations,
which must be avoided in the resulting design. To suppress timing
violations, we set up the first two constraints as follows.

For each possible pair of flip-flops FFx (skewed by sx) and FFy
(skewed by sy) between which there exist combinational paths
from FFx to FFy, (6) is to prevent setup time violations and (7),
hold time violations:

sx + tcq + Axy + tsu < sy + Tclk (6)
sx + tcq + axy > sy + th (7)

where Tclk is the clock period of the sequential circuit, tcq, tsu and th
are respectively the clock-to-output delay, setup and hold times of
flip-flops, and Axy and axy are the maximum and minimum delays

Figure 3. Generalized clock skew scheduling of a candidate pair
of flip-flops (FFi and FFj) for MBU-aware soft error tolerance

of combinational paths from FFx to FFy, which can be obtained by
performing static timing analysis.

Let wij denote the reduction in SER of the given circuit ob-
tained by completely overlapping the error-latching windows of
FFi and FFj at Gij. The reason for selecting an intersecting gate
with the largest MEI is that, by doing so, it is very likely to obtain
the largest wij for CSS.

The theoretical optimal SER reduction is:

()∑ ∈Candidates),(, ji FFFFji ijw (8)

Since the optimum (8) may be unachievable due to constraints
(6) and (7), we use another variable, fij (0 ≦ fij ≦ wij), to denote
the actual reduction in SER resulting from the overlapping
(complete or partial) of FFi’s and FFj’s error-latching windows.
Figure 4 shows fij as a function of sij (= skew(FFi, FFj) = si – sj).
The rationale behind is that, once overlapped, fij is linearly
proportional to the size of the overlap between FFi’s and FFj’s
error-latching windows, and fij = wij when completely overlapped
at sij = (di – dj).

From Figure 4, one can note that the relationship of fij versus sij
is neither convex, nor concave. Instead, the formulation becomes
piecewise linear if fij(sij) is broken into four pieces: sij = (di – dj) –
(tsu + th), sij = (di – dj), and sij = (di – dj) + (tsu + th). By introducing
four new binary variables pij,1, pij,2, pij,3, and pij,4 such that

pij,1 + pij,2 + pij,3 + pij,4 = 1 (9)
and four new floating variables rij,1, rij,2, rij,3, and rij,4 where

0 ≦ rij,k < pij,k for k = 1, 2, 3, and 4, (10)
we can re-express sij as:

[]
[]
[]
[])()(

)()(

)()(

)()(

4,4,

3,3,

2,2,

1,1,

hsujiijhsujiij

hsuijjiij

hsuijhsujiij

hsujiijij

jiij

ttddUBrttddp

ttrddp

ttrttddp

LBttddrLBp

sss

−−+−×+++−×+

+×+−×+

+×+−−−×+

−−−−×+×=

−=
 (11)

where LB and UB are the lower and upper bounds on sij.

Similarly, fij can be rewritten as:

[]
[]
[]
[]00

)0(

)0(0

00

4,4,

3,3,

2,2,

1,1,

×+×+

−×+×+

−×+×+

×+×=

ijij

ijijijij

ijijij

ijijij

rp

wrwp

wrp

rpf
 (12)

Geometrically, as shown in Figure 4, pij,k = 1 means sij is
within the kth piece of fij(sij) and rij,k indicates the ratio of sij within
the kth piece. For a valid solution, there must be only one among
the four binary variables (pij,k) equal to 1 and only one among the
four floating variables (rij,k) greater than or equal to 0. All of the
other variables are 0.

Lastly, our proposed PLP-based SER mitigation framework,
for MBU-aware soft error tolerance, is formulated as:

Maximize ()∑ ∈Candidates),(, ji FFFFji ijf (13)

Subject to (6), (7), (9), (10), and (11)

where (6) and (7) ensure no timing violation in the resulting
circuit, and (9), (10), and (11) are used to transform the original
formulation to a piecewise linear representation.

The optimal solution to (13) can be found by existing mixed
integer linear programming (MILP) solvers. The worst-case
problem size of our PLP formulation is O(n2) where n is the
number of flip-flops in a circuit. This PLP-based methodology has
been experimentally verified to be very efficient in runtime, of on
the order of a minute for all benchmarks considered.

6. Experimental Results
In this section, we demonstrate various experiments of our

proposed framework for MBU-aware soft error tolerance. The
benchmark circuits are chosen from the ISCAS’89 suite. The
technology used is 70nm, Predictive Technology Model (PTM).
The setup (tsu) and hold (th) times of flip-flops are both assumed to
be 10ps. The overall methodology is implemented in C++, where
the piecewise linear programming formulation is solved by GNU
Linear Programming Kit (GLPK) version 4.33 on a 3GHz Pen-
tium 4 workstation running Linux.

Table 1 reports the experimental results for average MES im-
provement and SER reduction. For each benchmark in Table 1, we
list the numbers of primary inputs, primary outputs and internal
gates in column two, and the numbers of flip-flops, candidate
pairs along with the corresponding percentage among all possible
pairs in column three. For a circuit with n FFs, we check all
possible (n*(n-1)/2) pairs and extract those satisfying the IM or
MEP property as candidates for clock skew scheduling. The
average MES values over all primary outputs before and after
applying our PLP-based CSS are shown in columns five and six,
for three different initial duration sizes (small: 60ps, medium:
100ps, and large: 140ps). Columns seven and eight demonstrate
the MES improvement and the overall SER reduction. The
runtime spent on solving the PLP problem, which is not included
in the table, is about 1 minute for circuits s1196 and s1238 and
very few or even less than 1 second for all the others.

For example, circuit s208 has 10 primary inputs, 1 primary
output, 68 internal gates, and 8 flip-flops. Among 28 (= 8*7/2)
pairs of FFs, 21 pairs (75%) can be identified as candidates for
CSS. Based on (17), we formulate the CSS problem with these 21
pairs and then find its optimal solution by using GLPK. The MES
improvements for small (60ps), medium (100ps), and large (140ps)

Figure 4. fij versus sij, with four pieces that are piecewise linear:
sij = (di – dj) – (tsu + th), sij = (di – dj), and sij = (di – dj) + (tsu + th)

duration sizes are 15.9%, 35.7%, and 36.1%, respectively. When
considering all possible sizes of glitches, the overall SER reduc-
tion is 29.2%. On average across all benchmarks, 35.8% SER
reduction can be achieved.

Table 1 also shows the corresponding amount of skews due to
CSS. This is measured by normalized absolute adjustment in
clock signal, which is defined as:

clk

i
i

T

FF

⋅

Δ∑
FFs#

)(AT
 (14)

where ΔAT(FFi) is the amount of adjustment in the arrival time of
clock signal to FFi and Tclk is the clock period of the circuit.

Normalized absolute adjustment (14) quantifies the cost im-
posed by CSS in terms of the degree of clock network modifica-
tion. Intuitively, the larger the value of normalized absolute
adjustment, the more aggressive modification the clock network
may suffer. As it can be seen in the last column of Table 1, on
average 4.4% normalized absolute adjustment is needed by our
CSS-based framework. Note that the adjustment does not neces-
sarily imply additional logic on the clock tree. For an H-tree
structure, we can just unbalance wire loads during tree connec-
tion/construction to implement the skews between pairs of FFs.
This is practically feasible, especially for those circuits which
need significantly low adjustments in clock signals. For those
circuits needing higher adjustments, wire sizing/rerouting and
buffer sizing/relocation [17] are always the very first schemes for
creating intentional skews.

Figure 5 shows the mitigation of MBU effects during clock
cycles subsequent to particle hits (SEUs). In addition to the SER
reduction for the first clock cycle via CSS, the potential
CSS-induced MBU effects during the following cycles can be
significantly mitigated by using IM and MEP pairs of flip-flops as
candidates for CSS. On average across all subsequent cycles
(from the 2nd to the 7th) in Figure 5, the MBU effects of circuits

s208 (see Figure 5(a)) and s298 (see Figure 5(b)) can be mitigated
by 43% and 63%, respectively.

7. Conclusion
In this paper, we propose an analytical method for MBU-aware

soft error tolerance of sequential circuits. The approach adjusts the
arrival times of clock signals such that error-latching windows of
flip-flops can be overlapped, which in effect increases the prob-
ability of timing masking and decreases the soft error rate of a
sequential circuit. Moreover, two types of candidate pairs of
flip-flops, beneficial for MBU elimination, are introduced. The
overall methodology using clock skew scheduling is formulated as
a piecewise linear programming problem and can be solved
efficiently by GLPK. Experiments on a set of ISCAS’89 bench-
marks reveal the effectiveness of our framework.

References
[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design

and Test of Computers, May 2005.
[2] Y. S. Dhillon et al., “Analysis and optimization of nanometer CMOS

circuits for soft-error tolerance,” IEEE Trans. on VLSI, May 2006.
[3] S. Mitra et al., “Robust system design with built-in soft-error resilience,”

IEEE Computer Magazine, Feb. 2005.
[4] P. Shivakumar et al., “Modeling the effect of technology trends on the

soft error rate of combinational logic,” in Proc. of Int’l Conf. on De-
pendable Systems and Networks, June 2002.

[5] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden combina-
tional logic,” IEEE Trans. on CAD, Jan. 2006.

[6] S. Almukhaizim et al., “Seamless integration of SER in rewiring-based
design space exploration,” in Proc. of ITC, Oct. 2006.

[7] K. Mohanram and N. A. Touba, “Cost-effective approach for reducing
soft error failure rate in logic circuits,” in Proc. of ITC, Sep. 2003.

[8] M. R. Choudhury, Q. Zhou, and K. Mohanram, “Design optimization for
single-event upset robustness using simultaneous dual-VDD and sizing
technique,” in Proc. of ICCAD, Nov. 2006.

[9] K.-C. Wu and D. Marculescu, “Power-aware soft error hardening via
selective voltage scaling,” in Proc. of ICCD, Oct. 2008.

[10] S. Krishnaswamy et al., “Enhancing design robustness with reliabil-
ity-aware resynthesis and logic simulation,” Proc. of ICCAD, Nov. 2007.

[11] M. Zhang et al., “Sequential element design with built-in soft error
resilience,” IEEE Trans. on VLSI, Dec. 2006.

[12] V. Joshi et al., “Logic SER reduction through flipflop redesign,” in Proc.
of ISQED, March 2006.

[13] S. Krishnaswamy, I. L. Markov, and J. P. Hayes, “On the role of timing
masking in reliable logic circuit design,” in Proc. of DAC, June 2008.

[14] N. Miskov-Zivanov and D. Marculescu, “Soft error rate analysis for
sequential circuits,” in Proc. of DATE, April 2007.

[15] N. Miskov-Zivanov and D. Marculescu, “A systematic approach to
modeling and analysis of transient faults in logic circuits,” in Proc. of
ISQED, March 2009.

[16] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. on Computers,
July 1990.

[17] J. L. Neves and E. G. Friedman, “Design methodology for synthesizing
clock distribution networks exploiting nonzero localized clock skew,”
IEEE Trans. on VLSI, June 1996.

Table 1. Average mean error susceptibility (MES) improvement
and overall soft error rate (SER) reduction

Figure 5. Mitigation of MBU effects during clock cycles subse-
quent to particle hits (SEUs)

(a) s208 (b) s298

	06.5_1.PDF
	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

