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Abstract

In a mobile computing environment, the combined use of broadcast and on-demand channels

can utilize the bandwidth effectively for data dissemination. We explore in this paper the problem

of dynamic data and channel allocation with the number of communication channels and the num-

ber of data items given. We first derive the analytical models of the average access time when the

data items are requested through the broadcast and on-demand channels. Then, we transform this

problem into a guided search problem. In light of the theoretical properties derived, we devise al-

gorithm SOM to obtain the optimal allocation of data and channels. Algorithm SOM is a composite

algorithm which will cooperate with (1) a search strategy and (2) a broadcast program generation

algorithm. According to the analytical mode, we devise scheme BIS-Incremental on the basis of

algorithm SOM which is able to obtain solutions of high quality efficiently by employing binary

interpolation search. In essence, scheme BIS-Incremental is guided to explore the search space

with higher likelihood to be the optimal first, thereby leading to an efficient and effective search.

It is shown by our simulation results that the solution obtained by scheme BIS-Incremental is of

very high quality and is in fact very close to the optimal one. Sensitivity study on several parame-

ters, including the number of data items and the number of communication channels, is conducted.

The experimental results shows that scheme BIS-Incremental is of very good scalability which is

particularly important for its practical use in a mobile computing environment.
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1 Introduction

In a mobile computing environment, a mobile user with a power-limited mobile computer can access

various information via wireless communication. Applications such as stock activities, traffic reports

and weather forecast have become increasingly popular in recent years [29]. It is noted that mobile

computers use small batteries for their operations without directly connecting to any power source, and

the bandwidth of wireless communication is in general limited. As a result, an important design issue

in a mobile system is to conserve the energy and communication bandwidth of a mobile unit while

allowing mobile users of the ability to access information from anywhere at anytime [24].

A data delivery architecture in which a server continuously and repeatedly broadcasts data to a client

community through asinglebroadcast channel was proposed in [1] in order to conserve the energy and

communication bandwidth of a mobile computing system. In a push-based information system, a server

generates a broadcast program to broadcast data to mobile users. This broadcast channel is also referred

to as a broadcast disk from which mobile users can retrieve data [1][7]. The mobile users need to wait

for the data of interest to appear on the broadcast channel. The access time is defined as the time elapsed

from the moment a user issues a data request to the point that the requested data item is read [15]. One

objective of designing proper data allocation in the broadcast disks is to reduce the average access

time of data items. The research issues have attracted a considerable amount of attention, including

on-demand broadcast [3][4][5][6], data indexing [9][14][15][17][30][33] and client cache management

[4][27][31]. In addition, a significant amount of research effort has been elaborated on developing

the index mechanisms [16][20][25] and data allocation algorithms [22][23][28][34][35] inmultiple

broadcast channels. In addition, the bandwidth allocation for multi-cell environments with frequency

reuse and inference considered was studied in [32].

In addition to being operated in broadcast mode, channels can be operated inon-demand mode

(i.e.,unicast mode) in which a client explicitly sends data requests to retrieve the data items of interest

[18][19]. The major advantage of data broadcast is its scalability since the performance of the system

does not depend on the number of clients listening to the broadcast channels. However, the perfor-

mance degrades as the number of data items being broadcast increases. It has been shown that the
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combined use of the broadcast and on-demand channels can utilize bandwidth more efficiently for data

dissemination [18][19]. Hence, the problem ofdynamic data and channel allocationis to dynamically

partition a given total number of communication channels into broadcasting ones and on-demand ones

and to dynamically allocate each data item on broadcast or on-demand channel according to the system

workload.

Prior studies of data and channel allocation can be classified into the following three categories: (1)

pure on-demand, (2) pure broadcast and (3) dynamic data and channel allocation. The pure on-demand

algorithms are used in traditional client/server architectures. All channels are operated in on-demand

mode, and all data items are allocated in the on-demand channels. Clients explicitly send data requests

to the server to obtain the desired data items. This method is desirable when the number of requests is

small and when energy saving is not an issue for the mobile devices. In pure broadcast, all channels are

allocated in broadcast mode [1][12][22][35], and all data items are broadcast repeatedly in broadcast

channels. This method is useful when the access frequencies of data items are highly skewed (i.e., a

small number of data items are of interest to a large group of users).

Dynamic data and channel allocation algorithms are proposed to combine the respective merits

of on-demand and broadcast modes and to adapt the change of system parameters including the data

access frequencies and the number of users in the system [18][19][26]. In dynamic data and channel

allocation, the system dynamically allocates broadcast and on-demand channels in accordance with data

requests to achieve optimal data access performance. When the load is heavy, the broadcast channels

may significantly relieve the load on on-demand channels by broadcasting frequently accessed data

items. When the load is light, on-demand channels can take over to provide instantaneous access to

data items.

In this paper, we study the problem of dynamic data and channel allocation. Consider the illustrative

example shown in Figure 1. Assume that the data itemsRi , 1≤ i ≤ 15, are of the same size and are

sorted by their access frequencies. The number of channels in this example is assumed to be four. In

the beginning, two channels are assigned as broadcast channels and the other two are on-demand ones.

Five data items are put in broadcast channels and the broadcast program is shown in Figure 1a. When
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Figure 1: An example scenario of dynamic data and channel allocation

the data request rate increases,R6 is moved from the on-demand channel to the broadcast channel.1

This will reduce the data request rate to on-demand channels and the expected waiting time in on-

demand channels is hence reduced. The broadcast program is then rescheduled and the new broadcast

program is shown in Figure 1b. If the data request rate keeps increasing, as shown in Figure 1c, one

channel is re-assigned to be a broadcast one and three data items (R7, R8 andR9) are moved from on-

demand channels to broadcast channels. As the partition of broadcast and on-demand channels varies,

the number of data items in those channels changes accordingly, showing the dynamic characteristics

of this data and channel allocation problem.

We mention in passing that the authors of [26] provide an adaptive algorithm to allocate data items

on broadcast and on-demand channels. However, they assume a fixed ratio of the on-demand band-

width to the broadcast bandwidth. The work in [19] is designed to shuffle the loads among broadcast

and on-demand channels to keep the load of on-demand channels in a predetermined region. In [18],

the average access time of data items is formulated, and the optimal channel allocation is obtained ac-

cording to the derived theoretical results. Both works [18] and [19] employedflat broadcast programs.

A broadcast program is saidflat if all data items appear with the same frequencies in the broadcast

program. On the other hand, a broadcast program is saidhierarchical if data items of high access fre-

quencies are broadcast more frequently than or equal to those of low access frequencies in the broadcast

program. It has been shown that hierarchical broadcast programs usually outperform flat broadcast pro-

grams [22][23]. Hence, algorithms proposed by [18] and [19] may not fully utilize network bandwidth.

In view of this, we employhierarchical broadcast programs in this paper in order to fully utilize the

1The criterion for data movement will be given in Section 4 later.
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broadcast channels. This feature distinguishes this paper from others.

Explicitly, we explore in this paper the problem of dynamic data and channel allocation with the

number of communication channels and the number of data items given. Gathering the access frequen-

cies of data items is another research issue, since clients do not explicitly send data requests when the

data items of interest are put in broadcast channels. Research works [13][36] in gathering or estimat-

ing the data access frequencies in broadcast channels can complement our work. Different from the

prior studies [18][19], hierarchical broadcast programs are employed in our study. In this paper, we

first describe the analytical models of broadcast and on-demand channels and transform the problem of

dynamic data and channel allocation into a guided search problem. In light of the theoretical proper-

ties derived, we devise five pruning properties which are able to effectively reduce the search space by

removing the infeasible solutions from the search space. We then devise algorithm SOM (standing for

SOlution Mapping) to obtain the optimal allocation of data and channels. Algorithm SOM is acompos-

ite algorithm which will cooperate with (1) a search strategy and (2) a broadcast program generation

algorithm. According to the analytical models, we devise a search strategy called BIS (standing for

Binary Interpolation Search) which is able to dynamically partition the data items and channels into

broadcast and on-demand ones in accordance with the incoming requests. Then, based on algorithm

SOM, we devise scheme BIS-Incremental to obtain solutions of high quality efficiently by employing

BIS as the search strategy and VFK (standing for Variant-Fanout with the constraintK) as the broadcast

program generation algorithm2. In essence, scheme BIS-Incremental is guided to explore the search

space with higher likelihood to be the optimal first, thereby leading to an efficient and effective search.

In addition, scheme BIS-Incremental takes advantage of the incremental property of VFK which greatly

reduces the execution time. It is shown by our simulation results that the solutions obtained by scheme

BIS-Incremental are of very high quality and are in fact very close to the optimal ones. Sensitivity study

on several parameters, including the number of data items and the number of communication channels,

is conducted. Moreover, scheme BIS-Incremental is of very good scalability which is particularly im-

portant for its practical use in a mobile computing environment.

The rest of this paper is organized as follows. A description of the related work is given in Section 2.

2An introduction of algorithm VFK will be given in Section 3.1.
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In addition, the problem of dynamic data and channel allocation is also formulated. Then the analytical

models of broadcast, on-demand channels and the overall system are given in Section 3. In Section 4,

we transform the problem of dynamic data and channel allocation into a search problem and develop

an efficient algorithm to address this problem based on the derived analytical models. The performance

evaluation of the proposed algorithm is presented in Section 5. Finally, this paper concludes with

Section 6.

2 Preliminaries

2.1 Related Work

In [2], the architecture consisting of a single uplink channel and a broadcast channel is considered. A

portion of time slots on the broadcast channel is allocated to transmit the data items which are explicitly

requested by users via the uplink channel. These time slots are said to be in on-demand mode. On the

other hand, the remaining time slots are used to transmit all data items according to a hierarchical

broadcast program generated by the broadcast disk technique [1]. These time slots are said to be in

broadcast mode. In [2], the ratio of the time slots in broadcast mode to those in on-demand mode is

fixed, and the broadcast program is static. As a consequence, the scheme proposed in [1] cannot adapt

to the change of system workload.

The authors in [26] consider the environment with a broadcast channel, a downlink on-demand

channel and an uplink channel. The on-demand channel is dedicated to transmit the data items which

are explicitly requested by users via the uplink channel. Flat broadcast programs are employed and

only the data items whose request rates are high enough will be allocated on the broadcast channel. The

authors propose an algorithm to estimate the popularity of all data items and to dynamically determine

the set of data items on the broadcast channel according to the system workload.

In [10], the information system consists of a broadcast channel and an uplink channel. The authors

propose an algorithm to prioritize all data items according to the received data requests and the broad-

cast rates of these data items. Then, the algorithm will allocate the data items with highest priorities

on the broadcast channel. The flat broadcast programs are used and(1,m) indexing technique [15]
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is employed to construct data indices. The authors also propose several energy efficient data access

protocols to minimize the power consumption on data access.

In [19], the authors consider the environments with a single broadcast channel and multiple on-

demand channels. The broadcast programs are assumed to be flat. The load of the on-demand channels

are first divided into several regions. Then, the authors propose a data allocation algorithm to keep the

load of the on-demand channels in a predetermined sub-optimal region by dynamically allocating some

data items to the broadcast channel. In addition, the proposed algorithm is able to adaptively adjust the

data allocation according to the system workload.

The authors in [18] consider the environments with multiple broadcast and on-demand channels.

The broadcast programs on the broadcast channels are assumed to be flat. The authors first model

the on-demand channels as an M/M/c queue. Then, the formulae of the average access time of the

broadcast and on-demand channels are derived. With these analytical results, the authors propose a

data and channel allocation algorithm to determine (1) the numbers of channels which are operated in

broadcast and on-demand modes and (2) the data items which are allocated in the broadcast and on-

demand channels according to the system workload. However, since the proposed algorithm does not

employ hierarchical broadcast programs, the network bandwidth may not be fully utilized. The problem

we address is similar to that considered in [18], but different from the latter in that, we also consider

the generation of hierarchical broadcast programs to attain a higher network bandwidth utilization.

2.2 System Description and Problem Formulation

Denote the total number of data items asn, and data items asRi , 1≤ i ≤ n. Naturally, thenB frequently

accessed data items are placed in broadcast channels and the othernO = n−nB data items are in on-

demand channels. LetK = KB + KO represent the total number of channels whereKB andKO are the

numbers of broadcast and on-demand channels, respectively. The problem of generating broadcast

programs forKB broadcast channels can be viewed as the following discrete minimization problem:

Given a set ofnB data items with their access probabilities, partition them intoKB parts so that the

average access time of all data items is minimized [12][22][23][35]. Note that onceKB is decided,KO

follows.
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Figure 2: The architecture of a data dissemination system

Figure 2 shows the architecture of a data dissemination system. We assume that each data item

is the same size and read-only [18][19]. After being powered on, without knowing the placement of

the requested data item, a mobile device has to send a data item request via on-demand channels. If

the requested data item is placed in an on-demand channel, the server will reply the data item directly.

If the data item is in a broadcast channel, the server replies the broadcast information containing the

channel frequencies, the data identifiers, the data index information, and other auxiliary information

[18]. After receiving the broadcast information, the mobile device will store the broadcast information

in the local storage, listen to the broadcast channel and wait for the requested data item.

If a mobile device already has the broadcast information in its local storage, for each user request,

the device will check whether the requested data item is placed in broadcast channels. If yes, the

device will tune to the channel where the required data item is placed and wait for the appearance of

the requested data item. Otherwise, the device will explicitly send a data request to the server via an

on-demand channel and the server will return the requested data item on the on-demand channel.

With the above model, the problem of dynamic data and channel allocation we consider in this

paper is formulated as follows:

Problem of dynamic data and channel allocation:GivenK channels,n data items and their access

frequencies, we shall do the following tasks to minimize the average access time of all data items.

1. Determine the numbers of broadcast and on-demand channels (i.e.,KB and KO), whereK =
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KB +KO.

2. Determine the numbers of data items allocated to broadcast and on-demand channels (i.e.,nB and

nO), wheren = nB +nO.

3. Construct a hierarchical broadcast program in theKB broadcast channels with thenB most fre-

quently accessed data items.

3 Analytical Models

The analytical models of the broadcast and on-demand channels are given in Section 3.1 and Sec-

tion 3.2, respectively. In accordance with these analytical models, the overall average access time is

formulated in Section 3.3. For better readability, Table 1 lists the symbols used in this paper.

3.1 Broadcast Channels

Since there is more than one data broadcast program for givenKB andnB, we useWB(KB,nB) to repre-

sent theminimalaverage access time of the data items allocated in broadcast channels. LetC(K1,n1)

be a configuration whereKB = K1 andnB = n1. The optimal broadcast program can be obtained by

executing one broadcast program generation algorithm.

Without considering the use of on-demand channels, the work in [22] explored the problem of

generating broadcast programs with the number broadcast channels (i.e.,KB) given. Specifically, the

problem of generating broadcast programs forKB broadcast channels was transformed into a partition

problem to partition the data items intoKB partitions. The data items within the same partition are

periodically broadcast in the same channel. Two algorithms, OPT and VFK, were devised in [22]

to generatehierarchical broadcast programs for multiple broadcast channels. Algorithm OPT is an

A∗-like algorithm which is able to generate the optimal broadcast program. However, OPT is quiet

time-consuming. On the other hand, VFK is a greedy, heuristic algorithm which is able to efficiently

obtain broadcast programs which are shown to be very close to the optimal ones. Since the details of

OPT and VFK are beyond the scope of this paper, interested readers are referred to [22] for the details

8



Description Symbol

Number of channels K
Number of broadcast channels KB

Number of on-demand channels KO

Number of data items n
Number of data items in broadcast channels nB

Number of data items in on-demand channels nO

The j-th data item Rj

The access frequency of data itemRj Pr(Rj)
The size of each data item s
The size of each data request r
The channel bandwidth b
The data request rate λ
The average service time for each on-demand channel1

µ

Table 1: Description of symbols

of OPT and VFK. To facilitate the design of scheme BIS-Incremental, an overview of VFK is given as

follows.

Basically, VFK is a partition-based algorithm which divides all data items intoK partitions whereK

is the number of broadcast channels, and allocates all data items intoK broadcast channels according

to the resultant partitions. Initially, all data items,R1,R2, · · ·Rn, are reordered according to their access

frequencies in descendent order, and are placed in one partition. The average access time of a partition

is defined as the average access time of the case that the data items of the partition are broadcast

periodically in one broadcast channel. Then, the average access time of a broadcast program on multiple

channels is the summation of the average access times of all partitions. In each cut, the partition with

the largest average access time, say{Rp,Rp+1, · · · ,Rq}, is selected, and the best cut point of the selected

partition, sayc, which best reduces the average access time of the broadcast program is determined.

Then, the selected partition is cut into two partitions,{Rp,Rp+1, · · · ,Rc} and {Rc+1,Rc+2, · · · ,Rq}.
For KB broadcast channels,KB− 1 cuts are sequentially performed to partition the data items into

KB partitions. Finally, the resultant broadcast program is obtained by periodically broadcasting all data

items within the same partition in one broadcast channel.

Then, we have the incremental property of VFK as follows. For interest of space, the proof of all

properties and lemmas is given in Appendix.
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Lemma 1 (Incremental Property): The execution of VFK on configurationC(K1,n1) will generate

K1 data broadcast programs ofC(Kb,n1), 1≤ Kb≤ K1.

Lemma 1 means that the execution of VFK on configurationC(K1,n1) will generateK1 broadcast pro-

grams which are the same as the results produced by VFK for configurationsC(KB,n1) whereKB =1,

2, 3,· · ·, K1.

3.2 On-demand Channels

Let WO(KO,nO) denote the average access time of the data items placed in on-demand channels. Let

Pn
O(nO) be the probability that the requested data item is in on-demand channels when there arenO data

items placed in on-demand channels. We assume that the arrival process of user requests is a Poisson

process with the arrival rateλ . It follows that the arrival process of requests received by on-demand

channels is also a Poisson process with arrival rateλO = Pn
O(nO)λ . Same as in [18], we assume that the

queueing buffer is infinite. Thus, the on-demand channels are modeled as an M/M/c queueing system

[11] with the arrival rateλO, the service rateµ and the channel numberc. The average service time

is 1
µ . Let the sizes of data items and data requests bes andr, respectively. Hence, similar to [18], the

average service time of on-demand channels can be formulated as:

µ =
b

s+ r
.

Omitting the equation manipulation which can be found in [11], the average access time of the on-

demand channels (i.e., the M/M/c queueing system wherec = KO) whenρ < 1 is

Average access time=
1
µ

+
(

rc

c!(cµ)(1−ρ)2

)
p0, where (1)

ρ =
λO

cµ
, r =

λO

µ
, andp0 =

(
c−1

∑
n=0

rn

n!
+

rc

c!(1−ρ)

)−1

.
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3.3 Overall Average Access Time

The probability that a user requests a data item placed in the broadcast channels isPn
B(nB)= ∑nB

i=1Pr(Ri).

On the other hand, the probability that a user requests a data item placed in the on-demand channels is

Pn
O(nO) = ∑n

i=n−nO+1Pr(Ri) = 1−∑nB
i=1Pr(Ri) = 1−Pn

B(nB). Then, the minimal average access time

of a data dissemination system can then be formulated as follows:

Woptimal(K,n) = min
0≤KB≤K,0≤nB≤n

{W(KB,nB)}, where (2)

W(KB,nB) = Pn
B(nB)×WB(KB,nB)+(Pn

O(nO))×WO(KO,nO)

= Pn
B(nB)×WB(KB,nB)+(1−Pn

B(nB))×WO(K−KB,n−nB).

With KB predetermined, the relationship amongW(KB,nB), WB(KB,nB) andWO(K−KB,n−nB) is

plotted in Figure 3. Note thatWO(K−KB,n−nB) increases exponentially whennO increases (i.e., when

nB decreases). It is evident that with too few data items in broadcast channels, the volume of requests

at the servers may increase beyond their capacity, thereby making the service practically infeasible. On

the other hand, the change of the average access time for the broadcast data items is smoother than that

for the on-demand data items since the average access time of the broadcast data items only depends on

the number of data items allocated to broadcast channels. In this study, the dynamic data and channel

allocation algorithm designed will determine the proper values ofKB and nB with the objective of
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minimizing the average access time of all data items.

4 SOM: Solution Mapping on Broadcast and On-demand Chan-

nels

In this section, we design algorithm SOM based on the analytical results in Section 3 to address the

problem of dynamic data and channel allocation. In Section 4.1, we transform the problem of dynamic

data and channel allocation into a search problem and give an overview of algorithm SOM. In Section

4.2, several properties to prune the infeasible solutions from the search space are given. Then, an effi-

cient search strategy based on binary interpolation search, referred to as BIS, is devised in Section 4.3.

Based on algorithm SOM, scheme BIS-Incremental, which is able to obtain nearly-optimal solutions

by employing BIS and the incremental properties of VFK, is then proposed. The complexity analysis

of scheme BIS-Incremental is given in Section 4.4. Finally, an illustrative example is given in Section

4.5.

4.1 Problem Transformation and Overview of SOM

GivenK andn, for each configurationC(KB,nB), WB(KB,nB) can be obtained by executing a broadcast

program generation algorithm, andWO(K−KB,n−nB) can be calculated by the analytical model of

the on-demand channels. As a result, the problem can be transformed into a search problem: to find the

configuration with the minimal average access time by searching all given configurationsC(KB,nB),

where0≤ KB≤ K and0≤ nB≤ n.

We design in this section algorithm SOM to address the problem of dynamic data and channel al-

location. In essence, algorithm SOM is a composite and generic algorithm which is composed of a

search strategy and a broadcast program generation algorithm. Algorithm SOM consists of two major

phases: the search space pruning phase and the solution searching phase. Figure 4 shows the archi-

tecture of algorithm SOM. In search space pruning phase, some infeasible configurations are removed

from the search space. Then, in solution searching phase, a search strategy is used to guide the search

12
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Figure 4: Architecture of algorithm SOM

of the optimal solutions with the aid of the employed broadcast program generation algorithm and the

analytical model of the on-demand channels. Note that algorithm SOM does not set any limitation in

the broadcast program generation algorithm and the modeling of the on-demand channels. Therefore,

any improvement in hierarchical broadcast program generation or on-demand channel modeling can be

integrated into algorithm SOM seamlessly.

4.2 Phase One: Search Space Pruning

Initially, the search space should contain all these configurationsC(KB,nB), where0≤ KB ≤ K and

0≤ nB ≤ n, since they are possible to be the optimal one. Hence, the size of the initial search space

is (K + 1)× (N + 1). Since on-demand channels are modeled as an M/M/c queueing system, the

average access time of the on-demand channels can be derived by Equation (1). Hence, some infeasible

configurations can be pruned by the following properties:

Property 1: All configurations that1≤KB≤K−1 andnB < KB are pruned since those configurations

will not be the optimal.

Analogously, we have the following property.

Property 2: All configurations thatnB = n andKB < K are pruned, since those configurations will not

be the optimal.

Omitting straightforward proofs, we also have the following three properties.
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Property 3: All configurations thatKB = 0 andnB > 0 are pruned, since if there is no broadcast chan-

nel, no data item can be placed in broadcast channels. That is,nB must be 0 whenKB = 0.

Property 4: All configurations thatKO = 0 andnO > 0 are pruned, since if there is no on-demand

channel, no data item can be placed in on-demand channels. That is,nO must be 0 whenKO = 0.

Property 5: All configurations thatρ = λO
KOµ ≥ 1 are pruned. Whenρ of an M/M/c queueing system

is larger than or equal to 1, the system is unstable. That is, the average access time does not converge

and will increase drastically as time advances.

Figure 5 shows an example search space where each square represents one configuration. A grey

square indicates that this configuration is pruned, and the numbers inside a grey square indicate this

configuration is pruned by these properties. Since the number of configurations pruned by Property 5

depends on other parameters such as the request arrival rate, we do not show the configurations pruned

by Property 5 in Figure 5.

Lemma 2: WhenK ≥ 1 andn≥ K, Properties 1-4 are able to prune2n+ (K−1)(K+2)
2 configurations.

Lemma 3: (1) The lower bound of the ratio of pruned configurations is4n+K2+K−2
2(n+1)(K+1) whenK ≥ 1 and

n≥ K. (2) Whenn≥ K, nÀ 1 andK2À 1, this ratio will converge toK
2n + 2

K .
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In phase one, after building the initial search space, algorithm SOM will prune the infeasible con-

figurations according to Properties 1-5. Then, algorithm SOM will search the pruned search space for

the optimal configuration in phase two.

4.3 Phase Two: Solution Searching

4.3.1 Design of Search Strategy BIS

In phase two of algorithm SOM, a search strategy is employed to search the pruned search space for

the optimal configuration. It is obvious that the optimal configuration can be obtained by exhaustive

search. However, it is not scalable when the size of the pruned search space is large.

To achieve high scalability, we devise an efficient search strategy, referred to as BIS, based on the

analytical models. BIS is a greedy algorithm to find the sub-optimal solution of the search space. In

essence, BIS is guided to explore the search space with higher likelihood to be the optimal first. A

configurationC(K1,n1) is said to be “local optimal whenKB = K1” if W(K1,n1−1) ≥W(K1,n1) and

W(K1,n1+1)≥W(K1,n1). To facilitate the design of BIS, we employ the functionLocalOptimalCheck

to determine whether the input configuration is local optimal.LocalOptimalCheck(K1,n1) returns

LOCALOPTIMAL to notify BIS that the input configurationC(K1,n1) is the local optimal whenKB = K1.

Otherwise, it returnsMINUS andPLUS to show thatW(K1,n1− 1) < W(K1,n1) andW(K1,n1 + 1) <

W(K1,n1), respectively. The algorithmic form ofLocalOptimalCheckis as follows.

Function LocalOptimalCheck(KB,nB)
1: Calculate(KB,nB−1)
2: Calculate(KB,nB +1)
3: if (W(KB,nB−1) < W(KB,nB)) then
4: returnMINUS
5: else if(W(KB,nB +1) < W(KB,nB)) then
6: returnPLUS
7: else/* W(KB,nB−1)≥W(KB,nB) andW(KB,nB +1)≥W(KB,nB) */
8: returnLOCALOPTIMAL
9: end if

Procedure Calculate(KB,nB)

1: Calculate and storeWB(KB,nB) and the corresponding broadcast program by employed broadcast
program generation algorithm if they had not been calculated

2: Calculate and storeWO(K−KB,n−nB) by Equation (1) if it had not been calculated
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Figure 6: Execution scenario of functionLocalOptimalPrediction

3: Calculate and storeW(KB,nB) by Equation (2) if it had not been calculated

Note that each invocation ofLocalOptimalCheckwill cause at least one execution of the broadcast

program generation algorithm. That is costly. Therefore, we design functionLocalOptimalPrediction

to predict the position of the local optimal solution to reduce the total execution time by reducing the

number of invocations ofLocalOptimalCheck.

To facilitate the design of functionLocalOptimalPrediction, we first design a method to calcu-

late the approximations ofWB(KB,nB) andW(KB,nB). Denote the approximations ofWB(KB,nB) and

W(KB,nB) asW′
B(KB,nB) andW′(KB,nB), respectively. Figure 6 shows the proposed approximation

method which calculatesW′
B(KB,nB) andW′(KB,nB) by extrapolation. As shown in Figure 6, the value

of W′
B(K1,n2), for eachn2, can be obtained by the extrapolation ofWB(K1,n1) andWB(K1,n1− 1).

Then, we have the following equation:

W′
B(K1,n2)
n2−n1

=
WB(K1,n1 +α)−WB(K1,n1)

α
, where

α =





1 : if LocalOptimalCheck(K1,n1) returnsPLUS,

-1 : if LocalOptimalCheck(K1,n1) returnsMINUS.
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By solving the above equation, we haveW′
B(K1,n2) as:

W′
B(K1,n2) =

1
α
× (n2−n1)× (WB(K1,n1 +α)−WB(K1,n1)).

SinceWO(K1,n2) can be obtained by Equation (1), withW′
B(K1,n2), W′(K1,n2) can be obtained by the

following equation:

W′(K1,n2) = Pn
B(n2)×W′

B(K1,n2)+(1−Pn
B(n2))×WO(K−K1,n−n2). (3)

LocalOptimalPredictionis employed to predict the position of the local optimal of the configura-

tions withKB = K1 andnLower≤ nB ≤ nU pper. First, LocalOptimalPredictionsetsn1 = dnLower+nU ppere
2

and checks whetherW′(K1,n1− 1) ≥W′(K1,n1) andW′(K1,n1 + 1) ≥W′(K1,n1). That is to check

whetherW′(K1,n1) is local optimal. If so,LocalOptimalPredictionreportsC(K1,n1) as the possible

configuration of the local optimal solution. Otherwise, ifW′(K1,n1−1) < W′(K1,n1), LocalOptimal-

Predictionis invoked recursively by settingnU pper = n1−1. Similarly, if W′(K1,n1+1) < W′(K1,n1),

LocalOptimalPredictionis invoked recursively by settingnLower = n1 + 1. The algorithmic form of

functionLocalOptimalPredictionis as follows.

Function LocalOptimalPrediction(K1,nLower,nU pper)

1: n1← dnLower+nU ppere
2

2: CalculateW′(K1,n1), W′(K1,n1−1) andW′(K1,n1 +1) by Equation 3
3: if (W′(K1,n1 +1) < W′(K1,n1)) then
4: return LocalOptimalPrediction(K1,n1 +1,nU pper)
5: else if(W′(K1,n1−1) < W′(K1,n1)) then
6: return LocalOptimalPrediction(K1,nLower,n1−1)
7: else/* W′(K1,n1) is local optimal */
8: returnn1
9: end if

We now design search strategy BIS usingLocalOptimalCheckandLocalOptimalPrediction. After

the search space is pruned, BIS checks these unpruned configurations iteratively. In each iteration,

BIS picks one value (denoted asK1) from the possible values ofKB, setsKB = K1 and considers the

configurations withKB = K1. Suppose thatnMax andnMin are the maximum and minimum, respec-

tively, of nB among all unpruned configurations withKB = K1. BIS setsn1 = dnMax+nMin
2 e and checks
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whether or not the configurationC(K1,n1) is the local optimal withKB = K1 by LocalOptimalCheck.

If LocalOptimalCheckreturnsLOCALOPTIMAL, BIS memorizes configurationC(K1,n1) as a candidate

of the resultant configuration. Then, BIS steps into next iteration by picking another value ofK1.

Otherwise, whenLocalOptimalCheckreturnsPLUS or MINUS, LocalOptimalPredictionis invoked to

predict the position of the local optimal withKB = K1. Suppose thatLocalOptimalPredictionreports

thatC(K1,n2) has the high probability to be the local optimal whenKB = K1. LocalOptimalCheckis

invoked again to check whetherW(K1,n2) is the local optimal. In one iteration, BIS repeats the above

procedure until the configuration predicted byLocalOptimalPredictionis indeed the local optimal (i.e.,

LocalOptimalCheckreturnsLOCALOPTIMAL). After picking all possible values ofKB, BIS stops and

returns the best solution among the candidates.

For better understanding of algorithm SOM and search strategy BIS, we design scheme BIS-Generic

by employing BIS as the search strategy of algorithm SOM. Without being limited to any broadcast

program generation algorithm, scheme BIS-Generic is able to cooperate with any broadcast program

generation algorithm seamlessly. The algorithmic form of scheme BIS-Generic is as below, and the

procedure of search strategy BIS is described in lines 6-20.

Scheme BIS-Generic
Input : The data items sorted by their access frequencies and the number of communications.
Output : The number of broadcast channels and on-demand channels, the number of data items with
broadcast and on-demand channels, and the resultant broadcast program.
Note: Scheme BIS-Generic is not limited to any broadcast program generation algorithm.

1: Construct the search space and prune configurations according to the properties 1-5 /* Phase one
*/

2: Mark the unavailable configurations (i.e.,KB > K or K < 0 or nB > n or nB < 0) ascalculatedand
setWB(KB,nB), WO(K−KB,n−nB) andW(KB,nB) to be∞.

3: for all pruned configurationC(KB,nB) do
4: SetWB(KB,nB), WO(K−KB,n−nB), andW(KB,nB) to be∞ and mark them ascalculated
5: end for
6: for (KB← 0 to K) do /* Phase two */
7: Calculate the corresponding values ofnMax andnMin

8: nB← dnMax+nMine
2

9: Calculate(KB,nB)
10: while (LocalOptimalCheck(KB,nB) 6=LOCALOPTIMAL) do
11: if (LocalOptimalCheck(KB,nB)=PLUS) then
12: nMin ← nB +1
13: nB← LocalOptimalPrediction(KB,nMin,nMax)
14: else/* LocalOptimalCheck(KB,nB)=MINUS */
15: nMax← nB−1
16: nB← LocalOptimalPrediction(KB,nMin,nMax)
17: end if
18: end while
19: Keep track of the optimalWoptimal(K,n)←W(KB,nB), the corresponding configuration
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C(KB,nB) and broadcast program
20: end for

4.3.2 Employment of the Incremental Property of VFK

We now design scheme BIS-Incremental, which is able to obtain the local optimal solutions efficiently,

by integrating the incremental property of VFK into scheme BIS-Generic. With the incremental prop-

erty of VFK, the execution of VFK on configurationC(K1,n1) will generateK1 broadcast programs

which are the same as the results produced by VFK for configurationsC(KB,n1) whereKB =1, 2, 3,

· · ·, K1. To take advantage of the incremental property, the search strategy BIS should (1) searchKB in

decreasing order and (2) store the results of VFK obtained by the incremental property for future use.

Note that the use of the incremental property of VFK does not affect the quality of obtained solutions,

and VFK is required to be the broadcast program generation algorithm of scheme BIS-Incremental. The

algorithmic form of scheme BIS-Incremental is given below. Since scheme BIS-Incremental is similar

to scheme BIS-Generic, only modifications are shown.

Scheme BIS-Incremental
Note: VFK is required to be the broadcast program generation algorithm.
6′: for (KB← K to 0) do

Procedure Calculate(KB,nB)
1′: CalculateWB(KB,nB) and corresponding broadcast program by VFK if they had not been

calculated. When VFK is executed,WB(α ,nB) for all 1≤ α ≤ KB and corresponding broadcast
programs are also stored and marked ascalculated.

4.4 Complexity Analysis

Since the most time-consuming portion of a BIS-based algorithm is the execution of the employed

broadcast program generation algorithm, we derive the time complexity of a BIS-based algorithm

by focusing on the executions of the employed broadcast program generation algorithm. The time

complexity of binary interpolation search in average case isO(K logn), and therefore, the time com-

plexity of schemes using BIS is “O(K logn)× the time complexity of the broadcast program gen-

eration algorithm.” By employing the incremental property, theamortized costto construct a data

broadcast program by VFK is 1
K ×Time Complexity of VFK. Therefore, the whole time complexity of

scheme BIS-Incremental isO(K logn)× 1
K ×Time Complexity of VFK = O(logn)×Time Complexity
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Parameter Value

Number of channels (K) 4
Number of data items (n) 10
Data item request arrival rate (λ ) 20/sec
Average waiting time of one on-demand channel (1

µ ) 0.1 sec

Average to transfer one data item (s
b) 0.1 sec

System parameters

R1 R2 R3 R4 R5 R6 R7 R8 R8 R10

Pr(Ri) 0.174 0.165 0.147 0.129 0.11 0.092 0.073 0.055 0.037 0.018

Access frequencies

Table 2: An example profile

of VFK. As shown in [22], withn sorted data items andK broadcast channels given, the time com-

plexity of VFK is K× (O(K logK)+O(n)). The time complexity of scheme BIS-Incremental is hence

O(logn)×K × (O(K logK) + O(n)). If nÀ K, the time complexity of scheme BIS-Incremental is

O(Knlogn). In addition, scheme BIS-Incremental requires a table to store information of each config-

uration. ForK channels andn data items, the size of this table is(K +1)×(n+1), and hence, the space

complexity of scheme BIS-Incremantal isO(K×n).

4.5 An Illustrative Example

In this subsection, we use a running example to illustrate the steps of scheme BIS-Incremental. Table

2 shows the parameters used in this example. The searching steps are shown in Figure 7 where the

number inside a configuration indicates the order of the configuration checked byLocalOptimalCheck.

The local optimal solution for each value ofKB is marked by thick border.

In phase one, Table 3 is constructed, andPn
B(nB) for all 0≤ nB≤ 10 are calculated. Then, configu-

rations are pruned according to Properties 1-5. For each pruned configurationC(KB,nB), WB(KB,nB),

WO(K−KB,K− nB) andW(KB,nB) are initialized to be∞. Consider the configurationC(3,3). The

number of the on-demand channels isKO = K −KB = 4− 3 = 1. The data request arrival rate of

the on-demand channels isλO = λ ×Pn
O(3) = 20× (1−Pn

B(3)) = 20× (1−0.486) = 10.28. Because

ρ = λ0
KOµ = 10.28

1×10 = 1.028> 1, according to Property 5, this configuration is pruned.

In phase two, scheme BIS-Incremental first examines configurations withKB = 4. In this example,
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Figure 7: An example search scenario

the only available configuration withKB = 4 is C(4,10). We haveWO(0,0) = 0 since it contains no

on-demand channel. By executing VFK, we haveWB(4,10) = 118 ms. By Equation (2), we have

W(4,10) = Pn
B(10)×WB(4,10) + (1−Pn

B(10))×WO(0,0) = 118 ms. ConfigurationC(4,10) is then

checked byLocalOptimalCheck. Since configurationC(4,9) is pruned and configurationC(4,11) is

unavailable,LocalOptimalCheckreturnsLOCALOPTIMAL which means that configurationC(4,10) is

local optimal whenKB = 4.

Next, configurations withKB = 3 are checked. SinceKB = 3, the number of data items on broadcast

channels is between 4 and 9. Scheme BIS-Incremental first checks the configuration withKB = 3 and

nB = d4+9
2 e = 7. WO(1,3), WB(3,7) andW(3,7) are then calculated. Due to the incremental property

of VFK, WB(2,7) andWB(1,7) are also obtained when VFK is executed onKB = 3 andnB = 7, and

are stored in Table 3b for future use. Note that these two values are not available if other broadcast

generation algorithms (e.g., OPT) are employed. Then,W(3,6) andW(3,8) are also calculated in

order to check whetherW(3,7) is the local optimal whenKB = 3. LocalOptimalCheck(3,7) returns

MINUS sinceW(3,6) < W(3,7). Then,LocalOptimalPredictionis invoked and reports thatC(3,6) is of

high probability to be the local optimal solution. To check whetherW(3,6) is indeed the local optimal,

VFK is executed again to obtainWB(3,5). Finally LocalOptimalCheck(3,6) returnsLOCALOPTIMAL

becauseW(3,6) is less than bothW(3,5) andW(3,7).
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nB 0 1 2 3 4 5 6 7 8 9 10
Pn

B(nB) 0 0.174 0.339 0.486 0.615 0.725 0.817 0.89 0.945 0.982 1

(a). TablePn
B(nB)

nB

KB 0 1 2 3 4 5 6 7 8 9 10
4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 118/0
3 ∞ ∞ ∞ ∞ −/− 103/222 110/158 136/128 164/112 −/− ∞
2 ∞ ∞ 50/177 82/136 100/117 127/108 150/103 173/101 199/− −/− ∞
1 ∞ 50/122 100/111 150/105 200/102 250/101 300/100 350/− 400/− −/− ∞
0 0/109 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

(b). TableWB(KB,nB)/WO(K−KB,n−nB)

nB

KB 0 1 2 3 4 5 6 7 8 9 10
4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 118
3 ∞ ∞ ∞ ∞ − 136 118 135 161 − ∞
2 ∞ ∞ 134 110 106 122 141 165 − − ∞
1 ∞ 109 107 127 162 209 263 − − − ∞
0 109 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

(c). TableW(KB,nB)

Table 3:WB(KB,nB), WO(K−KB,n−nB) andW(KB,nB) for the example (time unit: ms)

The same procedure is executed on configurations withKB =2, 1 and 0, and the results are shown in

Table 3. By tracking the optimal configurations in different values ofKB, we can obtain the sub-optimal

configurationC(2,4). The configurationC(2,4) means that two channels are operated in broadcast

mode and the top four hot data items (i.e.,R1, R2, R3 andR4) are allocated in these two broadcast

channels. The remaining channels are operated in on-demand mode and the remaining data items are

allocated in the on-demand channels. The broadcast program of these two channels and four data items

is obtained by executing VFK. Finally, the corresponding broadcast program is shown in Figure 8.

5 Performance Evaluation

In order to evaluate the performance improvement achieved by algorithm SOM, we have designed a

simulation model of a data dissemination system which is described in Section 5.1. Four schemes are

developed based on algorithm SOM to address the problem of dynamic data and channel allocation.

Then, four experiments are conducted in the following subsections to examine the impact of different
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Figure 8: The resultant solution of the running example

Parameters Values

Channel bandwidth (b) 80000 bps
Data item size (s) 8000 bytes
Data request size (r) 10 bytes
Data request rate for each user1/sec

Table 4: System parameters used in the simulation

system parameters on the performance of all schemes.

5.1 Simulation Model

Similar to the work in [18][19], we set the system parameters as shown in Table 4. Also, the access

frequency of thei-th data item is assumed to bePr(Ri) = ( 1
i )

θ

∑n
j=1(

1
j )

θ whereθ is the parameter of the

Zipf distribution. Note thatθ = 0 indicates that the access frequencies are uniformly distributed (i.e.,

Pr(Ri) = Pr(Rj) for all i, j). In addition, the access frequencies become increasing skewed asθ

increases. As pointed out in [8], the value ofθ appears to be about 0.8 for traces from a homogeneous

environment, and the value ofθ appears to be around 0.7 for traces from a diversified user population.

In addition, as observed in [21], the value ofθ appears to be larger than 1 in busy Web sites. Hence,

we set the default value ofθ to be 0.9 and conduct an experiment with the value ofθ varied to measure

the effect ofθ . The simulator is coded in C++.

We have implemented four schemes based on algorithm SOM. A scheme denoted byA-B means

thatA is the corresponding search strategy andB is the corresponding broadcast program generation

algorithm. In addition to scheme BIS-Incremental, we implement scheme BIS-VFK to evaluate the

effect of employing the incremental property of VFK by comparing it with scheme BIS-Incremental.
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Scheme Search Strategy
Broadcast Program
Generation Algorithm

Remark

ES-OPT ES OPT
ES-VFK ES VFK

BIS-VFK BIS VFK

BIS-Incremental BIS VFK The incremental property of VFK is employed

FLAT Scheme FLAT is not an instance of algorithm SOM

Table 5: Schemes in the experiments

Scheme BIS-VFK is an instance of scheme BIS-Generic by employing VFK as the broadcast program

generation algorithm. To measure the effect of the search strategy, BIS, we also implement scheme ES-

VFK which adopts exhaustive search (abbreviated as ES) and VFK, respectively, as the search strategy

and the broadcast program generation algorithm. For each configuration, since the optimal broadcast

programs can be obtained by OPT, the optimal data and channel allocation can be obtained by collecting

all optimal broadcast programs of all possible configurations in the search space and taking the optimal

one among them. As a result, we implement scheme ES-OPT which employs ES and OPT as the

search strategy and the broadcast program generation algorithm, respectively, to obtain the optimal

configurations and the corresponding broadcast programs for comparison purposes. Note that all of

them are the instances of the proposed algorithm SOM.

In addition to the above SOM-based schemes, scheme FLAT [18], which employs flat broadcast

programs (i.e., allocates data items within broadcast channels with equal appearance frequencies), is

also implemented in order to evaluate the benefit of using hierarchical broadcast programs. Note that

since not being an instance of algorithm SOM, scheme FLAT does not employ any search strategy and

broadcast program generation algorithm. A summary of these schemes is given in Table 5.

The following subsections show the average access times and execution times of all schemes on

Experiments 1, 2, 3 and 4, respectively, and the parameters of each experiment are listed in Table 6.

The ratio of pruned configurations of each scheme is also given to measure the effect these parameters

on configuration pruning. Due to the high complexity of OPT, scheme ES-OPT is quite slower than

others. Hence, the execution time of scheme ES-OPT is not shown in the following figures. In addition,

since scheme ES-VFK is slower than BIS-based schemes, the execution times of BIS-based schemes

are shown in another sub-figures to evaluate the effect of employing the incremental property of VFK.
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θ n K N

Exp. 1 varied 5000 9 500
Exp. 2 0.9 varied 9 500
Exp. 3 0.9 5000 varied 500
Exp. 4 0.9 5000 9 varied

Table 6: Parameters used in the experiments

5.2 Experiment #1: The Effect of the Skewness of Access Frequencies

Figure 9 shows the average access times, ratios of pruned configurations and execution times of all

schemes with the value ofθ varied. The value ofθ is set from 0 to 1.2.

As shown in Figure 9a, the average access times of all schemes decrease as the value ofθ increases.

It can be explained that when the access frequencies are highly skewed, broadcasting hot data items

can effectively reduce the load of the on-demand channels, and hence reduce the average access times.

We also observe that schemes employing hierarchical broadcast programs (i.e., OPT and VFK-based

schemes) outperform scheme FLAT especially when the access frequencies are highly skewed. In

this example, the performance gain of VFK-based schemes over scheme FLAT increases from 0.5%

to 32.14% as the value ofθ increases from 0 to 1.2. It fully agrees to the fact that VFK and OPT

outperform FLAT especially when the access frequencies are highly skewed [22]. In addition, the

results of VFK-based schemes are very close to those of scheme ES-OPT (i.e., optimal solutions).

Figure 9b shows the ratio of the pruned configurations with the value ofθ varied. Since scheme

FLAT does not prune configurations, the pruning effect of scheme FLAT is omitted in this and the

following experiments. We observe that the ratio of the pruned configurations decreases from 44.48%

to 22.32% as the value ofθ increases from 0 to 1.2. Since the number of all configurations and the

number of configurations pruned by Properties 1-4 are not affected by the value ofθ , this situation

results from the pruning effect of Property 5. Note that Property 5 prunes configurations whichρ ≥ 1.

Considering an arbitrary configuration, the condition ofρ ≥ 1 is when the request rate of the on-demand

channels is larger than a threshold (i.e.,λO ≥ KOµ). Whenθ increases, the access frequencies of cold

items decrease. Therefore, on-demand channels can contain more data items without makingρ exceed

the threshold. Since the number of configurations pruned by Property 5 decreases as the increase ofθ ,
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Figure 9: The results with the value ofθ varied

the ratio of pruned configurations decreases as the value ofθ increases. In addition, since pruning is

independent of the employed broadcast program generation algorithms, with the same parameters, the

numbers of pruned configurations of all SOM-based schemes are the same.

As observed in Figures 9c and 9d, the execution time of scheme ES-VFK increases as the value of

θ increases. It is because that ES examines all unpruned configurations and the effect of configuration

pruning decreases as the value ofθ increases. On the other hand, since search strategy BIS only

checks a subset of unpruned configurations, with the same broadcast program generating algorithm,

the execution time of scheme ES-OPT is more sensitive to the change ofθ than BIS-based schemes.

In this experiment, the execution time reduction of scheme BIS-VFK over scheme ES-VFK is around

98%, showing the high efficiency of BIS. In addition, the execution time reduction of scheme BIS-

Incremental over scheme BIS-VFK increases from 5.26% to 20.67% as the value ofθ increases from 0

to 1.2. This result shows the advantage of employing the incremental property of VFK.

26



0

5

10

15

20

25

30

2000 4000 6000 8000 10000
Number of Data Items (n)

A
ve

ra
ge

 A
cc

es
s 

T
im

e 
(s

ec
)

ES-OPT
ES-VFK
BIS-VFK
BIS-Incremental
FLAT

(a) Average Access Time

0

5

10

15

20

25

30

2000 4000 6000 8000 10000
Number of Data Items (n)

Pr
un

ed
 C

on
f.

 (
%

)

ES-OPT

ES-VFK

BIS-VFK

BIS-Incremental

(b) Ratio of the Pruned Configurations

0

5

10

15

20

25

2000 4000 6000 8000 10000
Number of Data Items (n)

E
xe

cu
ti

on
 T

im
e 

(s
ec

) ES-VFK
BIS-VFK
BIS-Incremental
FLAT

(c) Execution Time I

0

0.05

0.1

0.15

0.2

0.25

0.3

2000 4000 6000 8000 10000
Number of Data Items (n)

E
xe

cu
ti

on
 T

im
e 

(s
ec

) BIS-VFK

BIS-Incremental

FLAT

(d) Execution Time II

Figure 10: The results with the number of data items (n) varied

5.3 Experiment #2: The Effect of the Number of Data Items

In experiment 2, we investigate the effect of all schemes with the number of data items (i.e.,n) varied.

The number of data items is set from 2000 to 10000. As observed in Figure 10a, the average access

times of all schemes increase as the number of data items increases. The performance gain of scheme

ES-OPT (i.e., optimal solution) over scheme FLAT increases from 35.94% to 39.08% as the number of

data items increases, showing the advantage of employing hierarchical broadcast program generation

algorithms. In addition, the results of VFK-based schemes are close to those of scheme ES-OPT, and

the performance gain of VFK-based schemes over scheme FLAT ranges from 30.59% to 33.24%.

Figure 10b shows that the ratio of pruned configurations slightly decreases from 24.13% to 23.31%

as the number of data items increases. This result agrees to the analysis in Lemma 3 that the ratio of

pruned configurations is only slightly affected by the value ofn sinceK ¿ n in this experiment. In

addition, as shown in Figures 10c and 10d, the execution time of each scheme increases with the value

of n increases. Although the ratio of pruned configurations only decreases slightly as the number of
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Figure 11: The results with the number of channels (K) varied

data items increases, the increment of the number of unpruned configurations is still in proportion to

the increment of the number of data items since the number of all configurations (i.e.(K +1)×(n+1))

increases as the value ofn increases. Hence, in execution time, scheme ES-OPT is more sensitive to

the number of pruned configurations than BIS-based schemes since scheme ES-OPT scans all unpruned

configurations. As a result, BIS-based schemes are more scalable than scheme ES-OPT. As shown in

Figures 10c and 10d, as the value ofn increases, the execution time reduction of scheme BIS-VFK over

scheme ES-VFK increases from 93.69% to 99.06%. In addition, the execution time reduction of scheme

BIS-Incremental over scheme BIS-VFK ranges from 18.57% to 22.78%. Since the employment of the

incremental property of VFK does not affect the quality of the results, scheme BIS-Incremental is more

scalable than scheme BIS-VFK on the number of data items.
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5.4 Experiment #3: The Effect of the Number of Channels

This experiment evaluates the effect of the number of channels (i.e.,K) which is set from 3 to 15.

As shown in Figure 11a, the average access times of all schemes decrease as the number of channels

increases. This result agrees to the intuition that the increase of bandwidth will decrease the average

access time. However, the improvement on the average access time decreases as the number of channels

increases. As a result, the determination of the number of channels should consider the balance between

performance improvement and the number of channels used. We also observe that the performance

gain of scheme ES-OPT over scheme FLAT ranges from 25.02% to 38.26% as the number of channels

increases. In addition, the performance gain of VFK-based schemes over scheme FLAT ranges from

19.03% to 36.87%. These results show that the schemes employing hierarchical broadcast programs

are able to utilize network bandwidth better than that employing flat broadcast programs.

As shown in Figure 11b, the ratio of pruned configurations decreases from 58.63% to 14.83%

as the number of channels increases. With the analysis in Lemma 3, the influence of the ratio of

pruned configurations is dominated byK rather thann sinceK ¿ n in this experiment. As a result,

the influence of the change ofK is more significant than that of the change ofn. Figures 11c and 11d

show that the execution times of all schemes increase as the number of channels increases. It can be

explained as follows. The execution times of all schemes are proportional of the number of unpruned

configurations, which increases as the value ofK increases since the number of all configurations is

(K +1)×(n+1) and the ratio of pruned configurations decreases as the value ofK increases. Since the

execution time of scheme ES-OPT is more sensitive to the number of unpruned configurations than that

of BIS-based schemes, BIS-based schemes are more scalable when the value ofK becomes large. As

shown in Figures 11c and 11d, the execution time reduction of scheme BIS-VFK over scheme ES-VFK

ranges from 96.04% to 98.01% as the value ofK increases. In addition, the execution time reduction of

scheme BIS-Incremental over scheme BIS-VFK increases from 11.36% to 27.87%. This result shows

the high scalability of scheme BIS-Incremental.
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Figure 12: The results with the number of users (N) varied

5.5 Experiment #4: The Effect of the Number of Users

This experiment measures the effect of the number of users. Figure 12a shows the average access

times of all schemes with the number of users varied. The number of users is set from 200 to 1000.

As observed in Figure 12a, the average access time reduction of scheme ES-OPT over scheme FLAT

increases from 11.8% to 40.66% as the number of users increases. It is because that the data request

rate is proportional of the number of users. In addition, the increment of average access time decreases

as the number of users increases. It can be explained as follows. When the number of users is small,

most channels are allocated in on-demand mode and most data items are allocated in the on-demand

channels. When the number of users becomes large, to reduce the increment of average access time,

some channels are re-allocated to broadcast mode and some data items are re-allocated to the broadcast

channels. Hence, the system becomes less sensitive to the number of users when the number of users

increases. This result shows the advantage of the combined use of broadcast and on-demand channels.

In this experiment, the performance gain of scheme ES-OPT over scheme FLAT increases from 1.10%
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to 46.20% as the number of users increases, and the performance gain of VFK-based schemes over

scheme FLAT ranges from 0.81% to 40.66%.

Figure 12b shows that the ratio of pruned configurations increases from 20.36% to 30.71% as the

value ofN increases. Similar to the situation whenθ varies, the increase of the value ofN causes more

configurations to be pruned by Property 5. Hence, the ratio of pruned configurations increases as the

value ofN increases. It shows that the pruning properties are scalable when the number of users is high.

Figures 12c and 12d show the execution time of each scheme with the value ofN varied. Resulting

from the effect showing in Figure 12b, the execution times of all schemes decrease as the value ofN

increases. In addition, since BIS-based schemes are less sensitive to the number of unpruned configu-

rations than scheme ES-OPT, the increment of the execution times of BIS-based schemes is smoother

than that of scheme ES-OPT. In this experiment, the execution time reduction of scheme BIS-VFK over

scheme ES-VFK is around 97%, and the execution time reduction of scheme BIS-Incremental over

scheme BIS-VFK decreases from 22.94% to 13.22%.

5.6 Summary

In this section, we evaluate the performance of several instances of algorithm SOM. From above ex-

periments, we observe that the average access time of all schemes employing hierarchical broadcast

generation programs (i.e., OPT and VFK-based schemes) is better than that of scheme FLAT which

employs flat broadcast programs. This result shows the advantage of using hierarchical broadcast

program generation algorithms. The solutions obtained by VFK-based schemes are close to scheme

ES-OPT due to the fact that the results of VFK are close to those of OPT.

We also observe that the execution time of BIS-based schemes is much faster than that of scheme

ES-OPT when the same broadcast program generation algorithm is employed. It is because that BIS

only searches the configurations with high probability to be the optimal one instead of all configurations

in the search space. Due to the combination of the merits of BIS and VFK, scheme BIS-VFK is able to

obtain nearly-optimal solutions efficiently. In addition, by employing the incremental property of VFK,

scheme BIS-Incremental is able to obtain the same solutions as what scheme BIS-VFK obtains and is

more efficient and scalable than scheme BIS-VFK.
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6 Conclusions

In this paper, we explored the problem of dynamic data and channel allocation with the number of

communication channels and the number of data items given. We first derived the analytical models

of the average access time on broadcast and on-demand channels. Then, we transformed this problem

into a guided search problem. In light of the theoretical properties derived, we devised algorithm SOM

to obtain the optimal allocation of data and channels. According to the analytical mode, we devised

scheme BIS-Incremental based on SOM which is able to obtain solutions of high quality efficiently

by employing binary interpolation search and the incremental property of VFK. Sensitivity study on

several parameters, including the number of data items and the number of communication channels,

was conducted. Our simulation results showed that the solutions of scheme BIS-Incremental are of

very high quality and are in fact very close to the optimal ones. In addition, the experimental results

also showed that scheme BIS-Incremental is of very good scalability which is particularly important

for its practical use in a mobile computing environment.
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Appendix: All Proof

Proof of Property 1:Consider an arbitrary configuration C which1≤ KB≤ K−1 andnB < KB. Since

nB < KB, at least one broadcast channel does not contain any data item. Then, we can get another con-

figuration C′ by reassigning the broadcast channel(s) without any data item as on-demand channel(s).

Pn
B is equal toP′nB since no data item is reassigned. Since these reassigned broadcast channels contain no

data item, the average access times in broadcast channels of C and C′ are equal (i.e.,WB = W′
B). Since

C′ has more on-demand channels than C,W′
O is smaller thanWO. By Equation (2), we haveW′ < W,

and as a result, C is not the optimal since C′ is better than C. Q.E.D.

Proof of Lemma 1:Consider the procedure of VFK mentioned above. The initial partitions of all

configurations with the same parameters exceptKB are the same (i.e., placing all data items in one

partition). Then, the selected partitions to be cut and the best cut points for these configurations are the

same. Hence, the results after the first cuts of all configurations with the same parameters exceptKB

equal to the result of VFK whenKB = 2. With the same reasoning, the results of then-th cuts of all

configurations with the same parameters exceptKB equal to the result of VFK whenKB = n+1. This

property follows. Q.E.D.

Proof of Lemma 2:WhenK = 1, the size of search space is(K + 1)× (n+ 1) = (1+ 1)× (n+ 1) =

2n+2. The feasible configurations areC(1,n) andC(0,0). Then, the number of configurations pruned

by Properties 1-4 is2n+2−2 = 2n.

Considering the cases thatK > 1, whenKB = 0, Properties 2 and 3 are able to prunen configura-

tions. For eachKB, 1≤ KB ≤ K−1, Properties 1 and 2 are able to pruneKB and one configurations

respectively. WhenKB = K, Properties 1 and 4 are able to prunen configurations. Then, the total

number of configurations pruned by Properties 1 to 4 is

Number of configurations pruned by Properties 1-4

= n+
K−1

∑
i=1

(i +1)+n

= 2n+
(K−1)(K +2)

2
.
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Consequently, we can conclude that the total number of configurations pruned by Properties 1-4 is

2n+ (K−1)(K+2)
2 . Q.E.D.

Proof of Lemma 3:Initially, the total number of configurations in the search space is(n+1)(K +1).

WhenK ≥ 1 andn≥ K, according to Lemma 2, the number of configurations pruned by Properties

1-5 is at least2n+ (K−1)(K+2)
2 . Then, the lower bound of the ratio of the pruned configurations can be

formulated as follows:

The lower bound of the ratio of the pruned configurations

≥ 2n+ (K−1)(K+2)
2

(n+1)(K +1)

=
4n+K2 +K−2
2(n+1)(K +1)

WhennÀ 1 andK2À 1,

The lower bound of the ratio of the pruned configurations

≥ 4n+K2 +K−2
2(n+1)(K +1)

≈ 4n+K2 +K +4
2(n+1)(K +1)

=
1
2
×

(
K

n+1
+

4
K +1

)

Note that 1
K+1 ≈ 1

K whenK2À 1. The approximated lower bound of the ratio of the pruned configura-

tions whennÀ 1 andK2À 1 is

The ratio of pruned configurations

≥ 1
2
×

(
K

n+1
+

4
K +1

)
sincenÀ 1 andK2À 1

≈ 1
2
×

(
K
n

+
4
K

)

=
K
2n

+
2
K

,

proving Lemma 3. Q.E.D.
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