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Abstract

In a mobile computing environment, the combined use of broadcast and on-demand channels
can utilize the bandwidth effectively for data dissemination. We explore in this paper the problem
of dynamic data and channel allocation with the number of communication channels and the num-
ber of data items given. We first derive the analytical models of the average access time when the
data items are requested through the broadcast and on-demand channels. Then, we transform this
problem into a guided search problem. In light of the theoretical properties derived, we devise al-
gorithm SOM to obtain the optimal allocation of data and channels. Algorithm SOM is a composite
algorithm which will cooperate with (1) a search strategy and (2) a broadcast program generation
algorithm. According to the analytical mode, we devise scheme BIS-Incremental on the basis of
algorithm SOM which is able to obtain solutions of high quality efficiently by employing binary
interpolation search. In essence, scheme BIS-Incremental is guided to explore the search space
with higher likelihood to be the optimal first, thereby leading to an efficient and effective search.

It is shown by our simulation results that the solution obtained by scheme BIS-Incremental is of
very high quality and is in fact very close to the optimal one. Sensitivity study on several parame-
ters, including the number of data items and the number of communication channels, is conducted.
The experimental results shows that scheme BIS-Incremental is of very good scalability which is
particularly important for its practical use in a mobile computing environment.
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1 Introduction

In a mobile computing environment, a mobile user with a power-limited mobile computer can access
various information via wireless communication. Applications such as stock activities, traffic reports
and weather forecast have become increasingly popular in recent years [29]. It is noted that mobile
computers use small batteries for their operations without directly connecting to any power source, and
the bandwidth of wireless communication is in general limited. As a result, an important design issue
in a mobile system is to conserve the energy and communication bandwidth of a mobile unit while
allowing mobile users of the ability to access information from anywhere at anytime [24].

A data delivery architecture in which a server continuously and repeatedly broadcasts data to a client
community through ainglebroadcast channel was proposed in [1] in order to conserve the energy and
communication bandwidth of a mobile computing system. In a push-based information system, a server
generates a broadcast program to broadcast data to mobile users. This broadcast channel is also referred
to as a broadcast disk from which mobile users can retrieve data [1][7]. The mobile users need to wait
for the data of interest to appear on the broadcast channel. The access time is defined as the time elapsed
from the moment a user issues a data request to the point that the requested data item is read [15]. One
objective of designing proper data allocation in the broadcast disks is to reduce the average access
time of data items. The research issues have attracted a considerable amount of attention, including
on-demand broadcast [3][4][5][6], data indexing [9][14][15][17][30][33] and client cache management
[4][27][31]. In addition, a significant amount of research effort has been elaborated on developing
the index mechanisms [16][20][25] and data allocation algorithms [22][23][28][34][35hurtiple
broadcast channels. In addition, the bandwidth allocation for multi-cell environments with frequency
reuse and inference considered was studied in [32].

In addition to being operated in broadcast mode, channels can be operatedi@mand mode
(i.e.,unicast modgin which a client explicitly sends data requests to retrieve the data items of interest
[18][19]. The major advantage of data broadcast is its scalability since the performance of the system
does not depend on the number of clients listening to the broadcast channels. However, the perfor-

mance degrades as the number of data items being broadcast increases. It has been shown that the



combined use of the broadcast and on-demand channels can utilize bandwidth more efficiently for data
dissemination [18][19]. Hence, the problemdynamic data and channel allocatianto dynamically

partition a given total number of communication channels into broadcasting ones and on-demand ones
and to dynamically allocate each data item on broadcast or on-demand channel according to the system
workload.

Prior studies of data and channel allocation can be classified into the following three categories: (1)
pure on-demand, (2) pure broadcast and (3) dynamic data and channel allocation. The pure on-demand
algorithms are used in traditional client/server architectures. All channels are operated in on-demand
mode, and all data items are allocated in the on-demand channels. Clients explicitly send data requests
to the server to obtain the desired data items. This method is desirable when the number of requests is
small and when energy saving is not an issue for the mobile devices. In pure broadcast, all channels are
allocated in broadcast mode [1][12][22][35], and all data items are broadcast repeatedly in broadcast
channels. This method is useful when the access frequencies of data items are highly skewed (i.e., a
small number of data items are of interest to a large group of users).

Dynamic data and channel allocation algorithms are proposed to combine the respective merits
of on-demand and broadcast modes and to adapt the change of system parameters including the data
access frequencies and the number of users in the system [18][19][26]. In dynamic data and channel
allocation, the system dynamically allocates broadcast and on-demand channels in accordance with data
requests to achieve optimal data access performance. When the load is heavy, the broadcast channels
may significantly relieve the load on on-demand channels by broadcasting frequently accessed data
items. When the load is light, on-demand channels can take over to provide instantaneous access to
data items.

In this paper, we study the problem of dynamic data and channel allocation. Consider the illustrative
example shown in Figure 1. Assume that the data itBng <i < 15, are of the same size and are
sorted by their access frequencies. The number of channels in this example is assumed to be four. In
the beginning, two channels are assigned as broadcast channels and the other two are on-demand ones.

Five data items are put in broadcast channels and the broadcast program is shown in Figure 1a. When
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Figure 1. An example scenario of dynamic data and channel allocation

the data request rate increasBg,is moved from the on-demand channel to the broadcast channel.

This will reduce the data request rate to on-demand channels and the expected waiting time in on-
demand channels is hence reduced. The broadcast program is then rescheduled and the new broadcast
program is shown in Figure 1b. If the data request rate keeps increasing, as shown in Figure 1c, one
channel is re-assigned to be a broadcast one and three dataiRgrRs &ndRg) are moved from on-

demand channels to broadcast channels. As the partition of broadcast and on-demand channels varies,
the number of data items in those channels changes accordingly, showing the dynamic characteristics
of this data and channel allocation problem.

We mention in passing that the authors of [26] provide an adaptive algorithm to allocate data items
on broadcast and on-demand channels. However, they assume a fixed ratio of the on-demand band-
width to the broadcast bandwidth. The work in [19] is designed to shuffle the loads among broadcast
and on-demand channels to keep the load of on-demand channels in a predetermined region. In [18],
the average access time of data items is formulated, and the optimal channel allocation is obtained ac-
cording to the derived theoretical results. Both works [18] and [19] empléigedroadcast programs.

A broadcast program is saiftht if all data items appear with the same frequencies in the broadcast
program. On the other hand, a broadcast program istsardrchicalif data items of high access fre-
guencies are broadcast more frequently than or equal to those of low access frequencies in the broadcast
program. It has been shown that hierarchical broadcast programs usually outperform flat broadcast pro-
grams [22][23]. Hence, algorithms proposed by [18] and [19] may not fully utilize network bandwidth.

In view of this, we employhierarchical broadcast programs in this paper in order to fully utilize the

The criterion for data movement will be given in Section 4 later.



broadcast channels. This feature distinguishes this paper from others.

Explicitly, we explore in this paper the problem of dynamic data and channel allocation with the
number of communication channels and the number of data items given. Gathering the access frequen-
cies of data items is another research issue, since clients do not explicitly send data requests when the
data items of interest are put in broadcast channels. Research works [13][36] in gathering or estimat-
ing the data access frequencies in broadcast channels can complement our work. Different from the
prior studies [18][19], hierarchical broadcast programs are employed in our study. In this paper, we
first describe the analytical models of broadcast and on-demand channels and transform the problem of
dynamic data and channel allocation into a guided search problem. In light of the theoretical proper-
ties derived, we devise five pruning properties which are able to effectively reduce the search space by
removing the infeasible solutions from the search space. We then devise algorithm SOM (standing for
SOlution Mapping) to obtain the optimal allocation of data and channels. Algorithm SObbisipos-
ite algorithm which will cooperate with (1) a search strategy and (2) a broadcast program generation
algorithm. According to the analytical models, we devise a search strategy called BIS (standing for
Binary Interpolation Search) which is able to dynamically partition the data items and channels into
broadcast and on-demand ones in accordance with the incoming requests. Then, based on algorithm
SOM, we devise scheme BIS-Incremental to obtain solutions of high quality efficiently by employing
BIS as the search strategy and"/gtanding for Variant-Fanout with the constraijtas the broadcast
program generation algorittfm In essence, scheme BIS-Incremental is guided to explore the search
space with higher likelihood to be the optimal first, thereby leading to an efficient and effective search.
In addition, scheme BIS-Incremental takes advantage of the incremental propert§ wiigh greatly
reduces the execution time. It is shown by our simulation results that the solutions obtained by scheme
BIS-Incremental are of very high quality and are in fact very close to the optimal ones. Sensitivity study
on several parameters, including the number of data items and the number of communication channels,
is conducted. Moreover, scheme BIS-Incremental is of very good scalability which is particularly im-
portant for its practical use in a mobile computing environment.

The rest of this paper is organized as follows. A description of the related work is given in Section 2.

2An introduction of algorithm VE will be given in Section 3.1.



In addition, the problem of dynamic data and channel allocation is also formulated. Then the analytical
models of broadcast, on-demand channels and the overall system are given in Section 3. In Section 4,
we transform the problem of dynamic data and channel allocation into a search problem and develop
an efficient algorithm to address this problem based on the derived analytical models. The performance
evaluation of the proposed algorithm is presented in Section 5. Finally, this paper concludes with

Section 6.

2 Preliminaries

2.1 Related Work

In [2], the architecture consisting of a single uplink channel and a broadcast channel is considered. A
portion of time slots on the broadcast channel is allocated to transmit the data items which are explicitly
requested by users via the uplink channel. These time slots are said to be in on-demand mode. On the
other hand, the remaining time slots are used to transmit all data items according to a hierarchical
broadcast program generated by the broadcast disk technique [1]. These time slots are said to be in
broadcast mode. In [2], the ratio of the time slots in broadcast mode to those in on-demand mode is
fixed, and the broadcast program is static. As a consequence, the scheme proposed in [1] cannot adapt
to the change of system workload.

The authors in [26] consider the environment with a broadcast channel, a downlink on-demand
channel and an uplink channel. The on-demand channel is dedicated to transmit the data items which
are explicitly requested by users via the uplink channel. Flat broadcast programs are employed and
only the data items whose request rates are high enough will be allocated on the broadcast channel. The
authors propose an algorithm to estimate the popularity of all data items and to dynamically determine
the set of data items on the broadcast channel according to the system workload.

In [10], the information system consists of a broadcast channel and an uplink channel. The authors
propose an algorithm to prioritize all data items according to the received data requests and the broad-
cast rates of these data items. Then, the algorithm will allocate the data items with highest priorities

on the broadcast channel. The flat broadcast programs are uséd,anydndexing technique [15]
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is employed to construct data indices. The authors also propose several energy efficient data access
protocols to minimize the power consumption on data access.

In [19], the authors consider the environments with a single broadcast channel and multiple on-
demand channels. The broadcast programs are assumed to be flat. The load of the on-demand channels
are first divided into several regions. Then, the authors propose a data allocation algorithm to keep the
load of the on-demand channels in a predetermined sub-optimal region by dynamically allocating some
data items to the broadcast channel. In addition, the proposed algorithm is able to adaptively adjust the
data allocation according to the system workload.

The authors in [18] consider the environments with multiple broadcast and on-demand channels.
The broadcast programs on the broadcast channels are assumed to be flat. The authors first model
the on-demand channels as an M/M/c queue. Then, the formulae of the average access time of the
broadcast and on-demand channels are derived. With these analytical results, the authors propose a
data and channel allocation algorithm to determine (1) the numbers of channels which are operated in
broadcast and on-demand modes and (2) the data items which are allocated in the broadcast and on-
demand channels according to the system workload. However, since the proposed algorithm does not
employ hierarchical broadcast programs, the network bandwidth may not be fully utilized. The problem
we address is similar to that considered in [18], but different from the latter in that, we also consider

the generation of hierarchical broadcast programs to attain a higher network bandwidth utilization.

2.2 System Description and Problem Formulation

Denote the total number of data itemsmand data items &8, 1 <i < n. Naturally, theng frequently
accessed data items are placed in broadcast channels and thegpther— ng data items are in on-
demand channels. L& = Kg + Kp represent the total number of channels wh&seandKg are the
numbers of broadcast and on-demand channels, respectively. The problem of generating broadcast
programs forKg broadcast channels can be viewed as the following discrete minimization problem:
Given a set oihg data items with their access probabilities, partition them Kgagparts so that the
average access time of all data items is minimized [12][22][23][35]. Note thatkgcedecidedKo

follows.
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Figure 2: The architecture of a data dissemination system

Figure 2 shows the architecture of a data dissemination system. We assume that each data item
is the same size and read-only [18][19]. After being powered on, without knowing the placement of
the requested data item, a mobile device has to send a data item request via on-demand channels. If
the requested data item is placed in an on-demand channel, the server will reply the data item directly.
If the data item is in a broadcast channel, the server replies the broadcast information containing the
channel frequencies, the data identifiers, the data index information, and other auxiliary information
[18]. After receiving the broadcast information, the mobile device will store the broadcast information
in the local storage, listen to the broadcast channel and wait for the requested data item.

If a mobile device already has the broadcast information in its local storage, for each user request,
the device will check whether the requested data item is placed in broadcast channels. If yes, the
device will tune to the channel where the required data item is placed and wait for the appearance of
the requested data item. Otherwise, the device will explicitly send a data request to the server via an
on-demand channel and the server will return the requested data item on the on-demand channel.

With the above model, the problem of dynamic data and channel allocation we consider in this
paper is formulated as follows:

Problem of dynamic data and channel allocation:GivenK channelsn data items and their access

frequencies, we shall do the following tasks to minimize the average access time of all data items.
1. Determine the numbers of broadcast and on-demand channelKf.and Kp), whereK =
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Ks + Ko.

2. Determine the numbers of data items allocated to broadcast and on-demand channgisfice.,

np), wheren = ng + np.

3. Construct a hierarchical broadcast program inKgebroadcast channels with timg most fre-

guently accessed data items.

3 Analytical Models

The analytical models of the broadcast and on-demand channels are given in Section 3.1 and Sec-
tion 3.2, respectively. In accordance with these analytical models, the overall average access time is

formulated in Section 3.3. For better readability, Table 1 lists the symbols used in this paper.

3.1 Broadcast Channels

Since there is more than one data broadcast program for liyamdng, we useAg(Kg, ng) to repre-
sent theminimal average access time of the data items allocated in broadcast channelsKyi et; )

be a configuration wherkég = K; andng = n;. The optimal broadcast program can be obtained by
executing one broadcast program generation algorithm.

Without considering the use of on-demand channels, the work in [22] explored the problem of
generating broadcast programs with the number broadcast channelkg).given. Specifically, the
problem of generating broadcast programsKgrbroadcast channels was transformed into a partition
problem to partition the data items inkKg partitions. The data items within the same partition are
periodically broadcast in the same channel. Two algorithms, OPT arffg WEre devised in [22]
to generatenierarchical broadcast programs for multiple broadcast channels. Algorithm OPT is an
A*-like algorithm which is able to generate the optimal broadcast program. However, OPT is quiet
time-consuming. On the other hand, ¥i5 a greedy, heuristic algorithm which is able to efficiently
obtain broadcast programs which are shown to be very close to the optimal ones. Since the details of

OPT and VI are beyond the scope of this paper, interested readers are referred to [22] for the details



| Description | Symbol |
Number of channels K
Number of broadcast channels Kg
Number of on-demand channels Ko
Number of data items n
Number of data items in broadcast channels Ng
Number of data items in on-demand channels No
The j-th data item R
The access frequency of data it&n Pr(R;)
The size of each data item )
The size of each data request r
The channel bandwidth b
The data request rate A
The average service time for each on-demand chanlﬁel

Table 1: Description of symbols

of OPT and VK. To facilitate the design of scheme BIS-Incremental, an overview &f Rjiven as
follows.

Basically, VR is a partition-based algorithm which divides all data items Kafmartitions where<
is the number of broadcast channels, and allocates all data items Imtwadcast channels according
to the resultant partitions. Initially, all data iten#®,, Ry, - - - Ry, are reordered according to their access
frequencies in descendent order, and are placed in one partition. The average access time of a partition
is defined as the average access time of the case that the data items of the partition are broadcast
periodically in one broadcast channel. Then, the average access time of a broadcast program on multiple
channels is the summation of the average access times of all partitions. In each cut, the partition with
the largest average access time, §ay,Ry11,- - -, Rq}, is selected, and the best cut point of the selected
partition, sayc, which best reduces the average access time of the broadcast program is determined.
Then, the selected partition is cut into two partitiod&p, Rp+1,---,Re} and {Re1,Req2,- -+, Rg}
For Kg broadcast channel&g — 1 cuts are sequentially performed to partition the data items into
Kg partitions. Finally, the resultant broadcast program is obtained by periodically broadcasting all data
items within the same partition in one broadcast channel.

Then, we have the incremental property of“V&s follows. For interest of space, the proof of all

properties and lemmas is given in Appendix.



Lemma 1 (Incremental Property): The execution of VE on configurationC(Ky,n;) will generate

K, data broadcast programs©fKy,n;), 1 < Kp < Kj.

Lemma 1 means that the execution of*v&n configuratiorC(Ky,n;) will generateK; broadcast pro-
grams which are the same as the results produced ByfetFconfigurationsC(Kg, n1) whereKp =1,

2,3,---,Kj.

3.2 On-demand Channels

Let Wo(Ko, no) denote the average access time of the data items placed in on-demand channels. Let
P3(no) be the probability that the requested data item is in on-demand channels when thigy e aiie

items placed in on-demand channels. We assume that the arrival process of user requests is a Poisson
process with the arrival rat&. It follows that the arrival process of requests received by on-demand
channels is also a Poisson process with arrivalxgte- P3(no)A. Same as in [18], we assume that the
gueueing buffer is infinite. Thus, the on-demand channels are modeled as an M/M/c queueing system
[11] with the arrival rateAg, the service ratgr and the channel number The average service time

is % Let the sizes of data items and data requestsd&lr, respectively. Hence, similar to [18], the

average service time of on-demand channels can be formulated as:

Omitting the equation manipulation which can be found in [11], the average access time of the on-

demand channels (i.e., the M/M/c queueing system wbef&p) whenp < 1is

rC

cl(ch)(1-p)?

. 1
Average access time H + ( ) Po, Where Q)

-1
_)\o _)\o B clyn rt
p_a,r_r, andpp = (nZOHJF—C!(l—p) :
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Figure 3: Trade-off for dynamic data dissemination

3.3 Overall Average Access Time

The probability that a user requests a data item placed in the broadcast chaRfigls)is= 32, Pr(R).
On the other hand, the probability that a user requests a data item placed in the on-demand channels is
P8(No) = Y itn nor1 Pr(R) =1- S, Pr(R) =1-P3(ng). Then, the minimal average access time

of a data dissemination system can then be formulated as follows:

Woptimal(K,n) = min {W(Kg,ng)}, where (2)

0<Kp<K,0<ng<n

W(Kg,ng) = P§(ns) xWs(Kg,ng) + (P5(No)) x Wo(Ko, o)

= Pg(ng) x Ws(Kg,ng) + (1—PE(ng)) x Wo(K — Kg,n—ng).

With Kg predetermined, the relationship amafNgKg, ng), Ws(Kg, ng) andWo (K — Kg,n—ng) is
plotted in Figure 3. Note thallp (K — Kg, n—ng) increases exponentially wheg increases (i.e., when
ng decreases). It is evident that with too few data items in broadcast channels, the volume of requests
at the servers may increase beyond their capacity, thereby making the service practically infeasible. On
the other hand, the change of the average access time for the broadcast data items is smoother than that
for the on-demand data items since the average access time of the broadcast data items only depends on
the number of data items allocated to broadcast channels. In this study, the dynamic data and channel

allocation algorithm designed will determine the proper value&gfand ng with the objective of
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minimizing the average access time of all data items.

4 SOM: Solution Mapping on Broadcast and On-demand Chan-
nels

In this section, we design algorithm SOM based on the analytical results in Section 3 to address the
problem of dynamic data and channel allocation. In Section 4.1, we transform the problem of dynamic
data and channel allocation into a search problem and give an overview of algorithm SOM. In Section
4.2, several properties to prune the infeasible solutions from the search space are given. Then, an effi-
cient search strategy based on binary interpolation search, referred to as BIS, is devised in Section 4.3.
Based on algorithm SOM, scheme BIS-Incremental, which is able to obtain nearly-optimal solutions
by employing BIS and the incremental properties ofYis then proposed. The complexity analysis

of scheme BIS-Incremental is given in Section 4.4. Finally, an illustrative example is given in Section

4.5.

4.1 Problem Transformation and Overview of SOM

GivenK andn, for each configuratio@(Kg, ng), Ws(Kg, ng) can be obtained by executing a broadcast
program generation algorithm, aligy(K — Kg,n— ng) can be calculated by the analytical model of

the on-demand channels. As a result, the problem can be transformed into a search problem: to find the
configuration with the minimal average access time by searching all given configur@tispag),

where0 < Kg <K and0<ng <n.

We design in this section algorithm SOM to address the problem of dynamic data and channel al-
location. In essence, algorithm SOM is a composite and generic algorithm which is composed of a
search strategy and a broadcast program generation algorithm. Algorithm SOM consists of two major
phases: the search space pruning phase and the solution searching phase. Figure 4 shows the archi-
tecture of algorithm SOM. In search space pruning phase, some infeasible configurations are removed

from the search space. Then, in solution searching phase, a search strategy is used to guide the search

12
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Figure 4: Architecture of algorithm SOM

of the optimal solutions with the aid of the employed broadcast program generation algorithm and the
analytical model of the on-demand channels. Note that algorithm SOM does not set any limitation in
the broadcast program generation algorithm and the modeling of the on-demand channels. Therefore,
any improvement in hierarchical broadcast program generation or on-demand channel modeling can be

integrated into algorithm SOM seamlessly.

4.2 Phase One: Search Space Pruning

Initially, the search space should contain all these configura@gKs,ng), where0 < Kg < K and

0 < ng < n, since they are possible to be the optimal one. Hence, the size of the initial search space
is (K+1) x (N+1). Since on-demand channels are modeled as an M/M/c queueing system, the
average access time of the on-demand channels can be derived by Equation (1). Hence, some infeasible

configurations can be pruned by the following properties:

Property 1: All configurations thall < Kg < K — 1 andng < Kg are pruned since those configurations

will not be the optimal.

Analogously, we have the following property.

Property 2: All configurations thahg = n andKg < K are pruned, since those configurations will not

be the optimal.
Omitting straightforward proofs, we also have the following three properties.
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Figure 5: An example of pruned search space

Property 3: All configurations thakg = 0 andng > O are pruned, since if there is no broadcast chan-

nel, no data item can be placed in broadcast channels. Tmgtnsust be O wheikg = 0.

Property 4: All configurations thatKo = 0 andnp > 0 are pruned, since if there is no on-demand

channel, no data item can be placed in on-demand channels. Thaihmjst be 0 wheio = 0.

_ Ao
~ Kou

is larger than or equal to 1, the system is unstable. That is, the average access time does not converge

Property 5: All configurations thap > 1 are pruned. Whep of an M/M/c queueing system

and will increase drastically as time advances.

Figure 5 shows an example search space where each square represents one configuration. A grey
square indicates that this configuration is pruned, and the numbers inside a grey square indicate this
configuration is pruned by these properties. Since the number of configurations pruned by Property 5
depends on other parameters such as the request arrival rate, we do not show the configurations pruned
by Property 5 in Figure 5.

Lemma 2: WhenK > 1 andn > K, Properties 1-4 are able to pruge+ w configurations.

Lemma 3: (1) The lower bound of the ratio of pruned configurationg; "12)(+KK+*12) whenK > 1 and

n> K. (2) Whenn > K, n>> 1 andK? > 1, this ratio will converge ta; + 2.
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In phase one, after building the initial search space, algorithm SOM will prune the infeasible con-
figurations according to Properties 1-5. Then, algorithm SOM will search the pruned search space for

the optimal configuration in phase two.

4.3 Phase Two: Solution Searching
4.3.1 Design of Search Strategy BIS

In phase two of algorithm SOM, a search strategy is employed to search the pruned search space for
the optimal configuration. It is obvious that the optimal configuration can be obtained by exhaustive
search. However, it is not scalable when the size of the pruned search space is large.

To achieve high scalability, we devise an efficient search strategy, referred to as BIS, based on the
analytical models. BIS is a greedy algorithm to find the sub-optimal solution of the search space. In
essence, BIS is guided to explore the search space with higher likelihood to be the optimal first. A
configurationC(Ky,n;) is said to be “local optimal whekg = K1” if W(Ky,n1 —1) >W(Ky,n1) and
W(Kz,n1+1) >W(Ky,n;). To facilitate the design of BIS, we employ the functlorcalOptimalCheck
to determine whether the input configuration is local optimhabcalOptimalChecik1,n;) returns
LOCALOPTIMAL to notify BIS that the input configuratioB(K1,n;) is the local optimal whekKg = Kj.
Otherwise, it return®INUS andPLUS to show thatW(Ki,n; — 1) < W(Kg,n1) andW(Kg,np + 1) <

W (Kz,n;), respectively. The algorithmic form dfocalOptimalChecls as follows.

Function LocalOptimalChecKg, ng)

CalculateKg,ng — 1)
CalculateKg,ng + 1)
if (W(Kg,ng—1) <W(Kg,ng)) then
returnMINUS
else if(W(Kg,ng+ 1) < W(Kg,ng)) then
returnPLUS
else/* W(Kg,ng — 1) > W (Kg, ng) andW(Kg,ng + 1) > W(Kg,ng) */
enl;ﬁ]yrnLOCALOPTIMAL

Procedure Calculatkg,ng)

1: Calculate and stoMg(Kg, ng) and the corresponding broadcast program by employed broadcast
program generation algorithm if they had not been calculated
2: Calculate and stordp(K — Kg,n—ng) by Equation (1) if it had not been calculated
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Figure 6: Execution scenario of functitkuwcalOptimalPrediction

3: Calculate and ston®/(Kg, ng) by Equation (2) if it had not been calculated

Note that each invocation dfocalOptimalCheckvill cause at least one execution of the broadcast
program generation algorithm. That is costly. Therefore, we design functioalOptimalPrediction
to predict the position of the local optimal solution to reduce the total execution time by reducing the
number of invocations dfocalOptimalCheck

To facilitate the design of functiohocalOptimalPrediction we first design a method to calcu-
late the approximations & (Kg, ng) andW(Kg,ng). Denote the approximations @ (Kg, ng) and
W(Kg, ng) asW5(Kg,ng) andW'(Kg,ng), respectively. Figure 6 shows the proposed approximation
method which calculateaf(Kg, ng) andW’(Kg, ng) by extrapolation. As shown in Figure 6, the value
of W5(K1,n2), for eachny, can be obtained by the extrapolationW(K1,n1) andWs(Kq,np — 1).
Then, we have the following equation:

We(K1,n2) W (K, N1+ a) —Wa(Ky, n)

= , Where
N2 — N1 a

1 : if LocalOptimalChecl{,n;) returnsPLUS,

-1 : if LocalOptimalCheck{;,n;) returnsMINUS.
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By solving the above equation, we haig(Ky,ny) as:
1
Wa(Ky,np) = 7 > (N2 — ) x (We(Ky,m +a) —Ws(Kz,ny)).

SinceWp (K1, n) can be obtained by Equation (1), witt (K1, n2), W/ (K1, n2) can be obtained by the

following equation:
WI(K]_, n2) = Pg(nz) X Wé(K]_, nz) + (1— Pg(nz)) X WQ(K —Ki,n— nz). 3)

LocalOptimalPredictionis employed to predict the position of the local optimal of the configura-
tions withKg = K1 andniower < Ng < Nupper- First, LocalOptimalPredictiorsetsn, = w
and checks wheth&W'(Ky,n; — 1) > W'(Ky,n1) andW’(Kg,np +1) > W/(Kg,np). That is to check
whetherW’(Ky,ny) is local optimal. If so,LocalOptimalPredictiorreportsC(Ky,n;) as the possible
configuration of the local optimal solution. OtherwiseWif(Ky,n; — 1) <W’(Ky,n;), LocalOptimal-
Predictionis invoked recursively by setting, pper = N1 — 1. Similarly, if W' (K1, ny + 1) <W'(Kg,ny),
LocalOptimalPredictionis invoked recursively by setting ower = N1 + 1. The algorithmic form of

functionLocalOptimalPredictioris as follows.

Function LocalOptimalPredictioKg , n_ower, U pper)

N, Ny
Ny « [ Lower'g U pper|

CalculateW’(Kq,n1), W/(Kq,n1 — 1) andW’(Ky,n1 + 1) by Equation 3
if (W (Kg,n1+1) <W/(Kg,nz)) then
return LocalOptimalPredictiol, ny + 1, Ny pper)
else if (W' (Kg,np — 1) <W/(Kg,nz)) then
return LocalOptimalPredictiol(, N ower, N1 — 1)
else/* W/(Ky,n;) is local optimal */
returnng
end if

We now design search strategy BIS usimagalOptimalCheclandLocalOptimalPrediction After
the search space is pruned, BIS checks these unpruned configurations iteratively. In each iteration,
BIS picks one value (denoted &s) from the possible values dfg, setsKg = K1 and considers the
configurations withKg = K;. Suppose thatyax andngin are the maximum and minimum, respec-

tively, of ng among all unpruned configurations wiklg = K;. BIS setsn = [Macuin] and checks
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whether or not the configuratid®(Ky,n;) is the local optimal witrKg = K3 by LocalOptimalCheck

If LocalOptimalChecketurnsLOCALOPTIMAL, BIS memorizes configuratio@(Ky,n;) as a candidate
of the resultant configuration. Then, BIS steps into next iteration by picking another vakig of
Otherwise, wherLocalOptimalChecketurnsPLUS or MINUS, LocalOptimalPredictions invoked to
predict the position of the local optimal witkg = K1. Suppose thatocalOptimalPredictiorreports
thatC(K1,n2) has the high probability to be the local optimal when= K;. LocalOptimalChecks
invoked again to check wheth@f(Ky, ny) is the local optimal. In one iteration, BIS repeats the above
procedure until the configuration predictedlmycalOptimalPredictions indeed the local optimal (i.e.,
LocalOptimalChecketurnsLOCALOPTIMAL). After picking all possible values dfg, BIS stops and
returns the best solution among the candidates.

For better understanding of algorithm SOM and search strategy BIS, we design scheme BIS-Generic
by employing BIS as the search strategy of algorithm SOM. Without being limited to any broadcast
program generation algorithm, scheme BIS-Generic is able to cooperate with any broadcast program
generation algorithm seamlessly. The algorithmic form of scheme BIS-Generic is as below, and the

procedure of search strategy BIS is described in lines 6-20.

Scheme BIS-Generic
Input: The data items sorted by their access frequencies and the number of communications.
Output: The number of broadcast channels and on-demand channels, the number of data items with
broadcast and on-demand channels, and the resultant broadcast program.
Note: Scheme BIS-Generic is not limited to any broadcast program generation algorithm.
1: Construct the search space and prune configurations according to the properties 1-5 /* Phase one
*

N

hﬁark the unavailable configurations (i.&5 > K or K < 0 or ng > n or ng < 0) ascalculatedand
setWs(Kg, ng), Wo(K — Kg,n—ng) andW(Kg, ng) to beco.
for all pruned configuratio®(Kg,ng) do

Set\NB(KB,nB) Wo(K — Kg,n—ng), andW(Kg, ng) to bec and mark them asalculated

?or (KB «— 0toK) do /* Phase two */
Calculate the corresponding valuesgfax andnyin
Ng «— [NMax+NMmin |

9: CalculateKg, ng)
10:  while (LocalOptimalChecKk{g, ng)#LOCALOPTIMAL) do

© Nog kA w

11: if (LocalOptimalChecKk{g, ng)=PLUS) then

12: NMin <— N+ 1

13: ng «— LocalOptimalPredictiori{g, Nmin, NMax)
14: else/* LocalOptimalCheckKg, ng)=MINUS */
15: nMaX — nB — l

16: ng « LocalOptimalPredictiori(g, Nmin, NMax)
17:

d
18: en%nwrﬂle _ _ _ _
19:  Keep track of the optimalprimal(K, n) — W(Kg,ng), the corresponding configuration
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C(Kg,ng) and broadcast program
20: end for

4.3.2 Employment of the Incremental Property of V¢

We now design scheme BIS-Incremental, which is able to obtain the local optimal solutions efficiently,
by integrating the incremental property of ¥fto scheme BIS-Generic. With the incremental prop-
erty of VX, the execution of VE on configurationC(Ky,n;) will generateK; broadcast programs
which are the same as the results produced bl X¢F configurationsC(Kg, n1) whereKg =1, 2, 3,

---, K1. To take advantage of the incremental property, the search strategy BIS should (1 )Ksgiarch
decreasing order and (2) store the results of \#bBtained by the incremental property for future use.
Note that the use of the incremental property of\foes not affect the quality of obtained solutions,

and VF is required to be the broadcast program generation algorithm of scheme BIS-Incremental. The
algorithmic form of scheme BIS-Incremental is given below. Since scheme BIS-Incremental is similar

to scheme BIS-Generic, only modifications are shown.

Scheme BIS-Incremental

Note: VFX is required to be the broadcast program generation algorithm.

6: for (Kg < K to 0)do

Procedure Calculatkg, ng)

1': CalculatéWgs(Kg, ng) and corresponding broadcast program by\fithey had not been

calculated. When V€is executedWs(a,ng) for all 1 < a < Kg and corresponding broadcast
programs are also stored and markedalsulated

4.4 Complexity Analysis

Since the most time-consuming portion of a BIS-based algorithm is the execution of the employed
broadcast program generation algorithm, we derive the time complexity of a BIS-based algorithm
by focusing on the executions of the employed broadcast program generation algorithm. The time
complexity of binary interpolation search in average cage(lslogn), and therefore, the time com-
plexity of schemes using BIS is0{Klogn)x the time complexity of the broadcast program gen-
eration algorithm.” By employing the incremental property, #reortized costo construct a data
broadcast program by Vs % x Time Complexity of V&, Therefore, the whole time complexity of

scheme BIS-Incremental B(K logn) x % x Time Complexity of V& = O(logn) x Time Complexity
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] Parameter \ Value \

Number of channel) 4
Number of data itemaj 10
Data item request arrival rat@ ) 20/sec
Average waiting time of one on-demand chanq]pl 0.1 sec
Average to transfer one data iteg) ( 0.1sec

System parameters

Ry Ro R3 R4 Rs Rs Ry Rs Rg Rio
Pr(R) | 0.174| 0.165| 0.147| 0.129| 0.11| 0.092| 0.073| 0.055| 0.037| 0.018

Access frequencies

Table 2: An example profile

of VFX. As shown in [22], withn sorted data items arid broadcast channels given, the time com-
plexity of VFX is K x (O(KlogK) 4 O(n)). The time complexity of scheme BIS-Incremental is hence
O(logn) x K x (O(KlogK) 4+ 0O(n)). If n>> K, the time complexity of scheme BIS-Incremental is
O(Knlogn). In addition, scheme BIS-Incremental requires a table to store information of each config-
uration. ForK channels and data items, the size of this table(ik§ + 1) x (n+ 1), and hence, the space

complexity of scheme BIS-Incremantal@K x n).

4.5 An lllustrative Example

In this subsection, we use a running example to illustrate the steps of scheme BIS-Incremental. Table
2 shows the parameters used in this example. The searching steps are shown in Figure 7 where the
number inside a configuration indicates the order of the configuration checkestbiOptimalCheck
The local optimal solution for each value I§ is marked by thick border.

In phase one, Table 3 is constructed, 8thg) for all 0 < ng < 10are calculated. Then, configu-
rations are pruned according to Properties 1-5. For each pruned config@@ékigmg), Ws(Kg, ng),
Wo(K — Kg,K — ng) andW(Kg,ng) are initialized to bew. Consider the configuratio@(3,3). The
number of the on-demand channelskis = K — Kg =4 —3 = 1. The data request arrival rate of

the on-demand channelsig = A x P5(3) = 20x (1—Pg(3)) = 20x (1—0.486) = 10.28. Because

o= % = 1928 — 1.028> 1, according to Property 5, this configuration is pruned.

In phase two, scheme BIS-Incremental first examines configurationKwith4. In this example,
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Figure 7: An example search scenario

the only available configuration witkg = 4 is C(4,10). We haveWp(0,0) = 0 since it contains no
on-demand channel. By executing ¥/Fwe haveWs(4,10) = 118 ms. By Equation (2), we have
W(4,10) = Pg(10) x Wg(4,10) + (1 — P§(10)) x Wp(0,0) = 118 ms. ConfiguratiorC(4,10) is then
checked byl ocalOptimalCheck Since configuratioi©(4,9) is pruned and configuratio@i(4,11) is
unavailable,LocalOptimalChecketurnsLOCALOPTIMAL which means that configuratidd(4,10) is
local optimal wherKg = 4.

Next, configurations witliKg = 3 are checked. Sindeg = 3, the number of data items on broadcast
channels is between 4 and 9. Scheme BIS-Incremental first checks the configuratiéia witBand
ng = (4i29} = 7. Wo(1,3), Ws(3,7) andW(3,7) are then calculated. Due to the incremental property
of VFK, Wg(2,7) andWs(1,7) are also obtained when VfFis executed orKg = 3 andng = 7, and
are stored in Table 3b for future use. Note that these two values are not available if other broadcast
generation algorithms (e.g., OPT) are employed. Thg(3,6) andW(3,8) are also calculated in
order to check whethaN(3,7) is the local optimal wherKg = 3. LocalOptimalChec3,7) returns
MINUS sinceW(3,6) < W(3,7). Then,LocalOptimalPredictiorns invoked and reports that(3,6) is of
high probability to be the local optimal solution. To check wheiéB, 6) is indeed the local optimal,
VFK is executed again to obtaig(3,5). Finally LocalOptimalChed3,6) returnsLOCALOPTIMAL
becaus&V(3,6) is less than botkV(3,5) andW(3,7).
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Ng 0 1 2 3 4 5 6 7 8 9 10
PQ(HB) 0 0.174 0.339 0.486 0.615 0.725 0.817 0.89 0.945 | 0.982 1
(a). TableRZ(ng)

N
Kg 0 1 2 3 4 5 6 7 8 9 10
4 % [ 0 0 0 0 0 [ [ 0 118/0
3 00 0 00 00 —/= 103/222| 110/158| 136/128| 164/112| —/— o0
2 o0 0 50/177 | 82/136 | 100/117| 127/108| 150/103| 173/101| 199/ —/- o0
1 o0 50/122| 100/111| 150/105| 200/102| 250/101| 300/100| 350/ 400/~ —/- o0
0 0/109 00 0 0 00 00 00 00 00 1) 1)

(b). TableWs(Kg, ng) /Wo(K — Kg,n—ng)

N
Kg 0 1 2 3 4 5 6 7 8 9 10
4 00 00 00 00 00 ) 0o 00 00 00 118
3 o0 0 00 00 — 136 118 135 161 — 00
2 o0 0 134 110 106 122 141 165 — — o0
1 00 109 107 127 162 209 263 — — — 0
0 109 00 00 o) 1) 00 00 00 00 1) 1)

(c). TableW(Kg,ng)

Table 3:Wg(Kg, ng), Wo(K — Kg,n—ng) andW(Kg, ng) for the example (time unit: ms)

The same procedure is executed on configurationsKygte2, 1 and 0, and the results are shown in
Table 3. By tracking the optimal configurations in different valueKgfwe can obtain the sub-optimal
configurationC(2,4). The configuratiorC(2,4) means that two channels are operated in broadcast
mode and the top four hot data items (i.B;, Ry, Rz andRy) are allocated in these two broadcast
channels. The remaining channels are operated in on-demand mode and the remaining data items are
allocated in the on-demand channels. The broadcast program of these two channels and four data items

is obtained by executing V& Finally, the corresponding broadcast program is shown in Figure 8.

5 Performance Evaluation

In order to evaluate the performance improvement achieved by algorithm SOM, we have designed a
simulation model of a data dissemination system which is described in Section 5.1. Four schemes are
developed based on algorithm SOM to address the problem of dynamic data and channel allocation.

Then, four experiments are conducted in the following subsections to examine the impact of different
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Figure 8: The resultant solution of the running example

| Parameters | Values |
Channel bandwidthil 80000 bps
Data item sizes) 8000 bytes
Data request size) 10 bytes
Data request rate for each uget/sec

Table 4: System parameters used in the simulation

system parameters on the performance of all schemes.

5.1 Simulation Model

Similar to the work in [18][19], we set the system parameters as shown in Table 4. Also, the access
frequency of the-th data item is assumed to B (R) = Z’J‘%é)" where 6 is the parameter of the
Zipf distribution. Note tha® = 0 indicates that the access frequencies are uniformly distributed (i.e.,
Pr(R) = Pr(R;) for all i, j). In addition, the access frequencies become increasing skewéd as
increases. As pointed out in [8], the valuetbappears to be about 0.8 for traces from a homogeneous
environment, and the value 8fappears to be around 0.7 for traces from a diversified user population.
In addition, as observed in [21], the value ®fppears to be larger than 1 in busy Web sites. Hence,
we set the default value éto be 0.9 and conduct an experiment with the valué véried to measure
the effect off. The simulator is coded in C++.

We have implemented four schemes based on algorithm SOM. A scheme den&d8l imeans
thatA is the corresponding search strategy &g the corresponding broadcast program generation
algorithm. In addition to scheme BIS-Incremental, we implement scheme BfSt¥Evaluate the

effect of employing the incremental property of ¥By comparing it with scheme BIS-Incremental.
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Scheme Search Strategy gfr?:r;?iitn AIgF;rr(i)tE:ﬁlm Remark

ES-OPT ES OPT

ES-VK ES VFK

BIS-VFX BIS VFK

BIS-Incremental BIS VEFK The incremental property of Fis employed

FLAT Scheme FLAT is not an instance of algorithm SOM

Table 5: Schemes in the experiments

Scheme BIS-VE is an instance of scheme BIS-Generic by employind 4B the broadcast program
generation algorithm. To measure the effect of the search strategy, BIS, we also implement scheme ES-
VFK which adopts exhaustive search (abbreviated as ES) al¢dréBpectively, as the search strategy

and the broadcast program generation algorithm. For each configuration, since the optimal broadcast
programs can be obtained by OPT, the optimal data and channel allocation can be obtained by collecting
all optimal broadcast programs of all possible configurations in the search space and taking the optimal
one among them. As a result, we implement scheme ES-OPT which employs ES and OPT as the
search strategy and the broadcast program generation algorithm, respectively, to obtain the optimal
configurations and the corresponding broadcast programs for comparison purposes. Note that all of
them are the instances of the proposed algorithm SOM.

In addition to the above SOM-based schemes, scheme FLAT [18], which employs flat broadcast
programs (i.e., allocates data items within broadcast channels with equal appearance frequencies), is
also implemented in order to evaluate the benefit of using hierarchical broadcast programs. Note that
since not being an instance of algorithm SOM, scheme FLAT does not employ any search strategy and
broadcast program generation algorithm. A summary of these schemes is given in Table 5.

The following subsections show the average access times and execution times of all schemes on
Experiments 1, 2, 3 and 4, respectively, and the parameters of each experiment are listed in Table 6.
The ratio of pruned configurations of each scheme is also given to measure the effect these parameters
on configuration pruning. Due to the high complexity of OPT, scheme ES-OPT is quite slower than
others. Hence, the execution time of scheme ES-OPT is not shown in the following figures. In addition,
since scheme ES-VFis slower than BIS-based schemes, the execution times of BIS-based schemes

are shown in another sub-figures to evaluate the effect of employing the incremental properfy. of VF
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| | 6 [ n | K [N |
Exp. 1| varied | 5000 9 500
Exp.2| 0.9 | varied 9 500
Exp.3| 0.9 | 5000 | varied| 500
Exp. 4| 0.9 5000 9 varied

Table 6: Parameters used in the experiments

5.2 Experiment #1: The Effect of the Skewness of Access Frequencies

Figure 9 shows the average access times, ratios of pruned configurations and execution times of all
schemes with the value éfvaried. The value 06 is set from O to 1.2.

As shown in Figure 9a, the average access times of all schemes decrease as thebvialcieages.
It can be explained that when the access frequencies are highly skewed, broadcasting hot data items
can effectively reduce the load of the on-demand channels, and hence reduce the average access times.
We also observe that schemes employing hierarchical broadcast programs (i.e., OPT¥anals¥é
schemes) outperform scheme FLAT especially when the access frequencies are highly skewed. In
this example, the performance gain of %Based schemes over scheme FLAT increases from 0.5%
to 32.14% as the value @ increases from 0 to 1.2. It fully agrees to the fact that‘\éhd OPT
outperform FLAT especially when the access frequencies are highly skewed [22]. In addition, the
results of VE-based schemes are very close to those of scheme ES-OPT (i.e., optimal solutions).

Figure 9b shows the ratio of the pruned configurations with the valu&\afried. Since scheme
FLAT does not prune configurations, the pruning effect of scheme FLAT is omitted in this and the
following experiments. We observe that the ratio of the pruned configurations decreases from 44.48%
to 22.32% as the value @ increases from 0 to 1.2. Since the number of all configurations and the
number of configurations pruned by Properties 1-4 are not affected by the valljettog situation
results from the pruning effect of Property 5. Note that Property 5 prunes configurationsgvhidh
Considering an arbitrary configuration, the conditiopof 1 is when the request rate of the on-demand
channels is larger than a threshold (ix&,> Kou). When@ increases, the access frequencies of cold
items decrease. Therefore, on-demand channels can contain more data items withouprneakeed

the threshold. Since the number of configurations pruned by Property 5 decreases as the inérease of
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Figure 9: The results with the value 6fvaried

the ratio of pruned configurations decreases as the val@amdreases. In addition, since pruning is
independent of the employed broadcast program generation algorithms, with the same parameters, the
numbers of pruned configurations of all SOM-based schemes are the same.

As observed in Figures 9c and 9d, the execution time of scheme ESr¢Feases as the value of
0 increases. It is because that ES examines all unpruned configurations and the effect of configuration
pruning decreases as the valuefincreases. On the other hand, since search strategy BIS only
checks a subset of unpruned configurations, with the same broadcast program generating algorithm,
the execution time of scheme ES-OPT is more sensitive to the char@j¢hah BIS-based schemes.
In this experiment, the execution time reduction of scheme BIS-BWer scheme ES-Vfis around
98%, showing the high efficiency of BIS. In addition, the execution time reduction of scheme BIS-
Incremental over scheme BIS-Yhncreases from 5.26% to 20.67% as the valu@ ofcreases from 0

to 1.2. This result shows the advantage of employing the incremental property<of VF
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Figure 10: The results with the number of data itemsvéried

5.3 Experiment #2: The Effect of the Number of Data Items

In experiment 2, we investigate the effect of all schemes with the number of data itemy {ragied.

The number of data items is set from 2000 to 10000. As observed in Figure 10a, the average access
times of all schemes increase as the number of data items increases. The performance gain of scheme
ES-OPT (i.e., optimal solution) over scheme FLAT increases from 35.94% to 39.08% as the number of
data items increases, showing the advantage of employing hierarchical broadcast program generation
algorithms. In addition, the results of ¥Fbased schemes are close to those of scheme ES-OPT, and
the performance gain of fcbased schemes over scheme FLAT ranges from 30.59% to 33.24%.

Figure 10b shows that the ratio of pruned configurations slightly decreases from 24.13% to 23.31%
as the number of data items increases. This result agrees to the analysis in Lemma 3 that the ratio of
pruned configurations is only slightly affected by the valuen@inceK < n in this experiment. In
addition, as shown in Figures 10c and 10d, the execution time of each scheme increases with the value

of nincreases. Although the ratio of pruned configurations only decreases slightly as the number of
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Figure 11: The results with the number of chann&l}\aried

data items increases, the increment of the number of unpruned configurations is still in proportion to
the increment of the number of data items since the number of all configuration&(iel) x (n+ 1))

increases as the value ofincreases. Hence, in execution time, scheme ES-OPT is more sensitive to
the number of pruned configurations than BIS-based schemes since scheme ES-OPT scans all unpruned
configurations. As a result, BlIS-based schemes are more scalable than scheme ES-OPT. As shown in
Figures 10c and 10d, as the valuendficreases, the execution time reduction of scheme BIS-MFer

scheme ES-V€ increases from 93.69% to 99.06%. In addition, the execution time reduction of scheme
BIS-Incremental over scheme BIS-{YFanges from 18.57% to 22.78%. Since the employment of the
incremental property of VEdoes not affect the quality of the results, scheme BIS-Incremental is more

scalable than scheme BIS-¥®n the number of data items.
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5.4 Experiment #3: The Effect of the Number of Channels

This experiment evaluates the effect of the number of channelsKi)enhich is set from 3 to 15.

As shown in Figure 11a, the average access times of all schemes decrease as the number of channels
increases. This result agrees to the intuition that the increase of bandwidth will decrease the average
access time. However, the improvement on the average access time decreases as the number of channels
increases. As a result, the determination of the number of channels should consider the balance between
performance improvement and the number of channels used. We also observe that the performance
gain of scheme ES-OPT over scheme FLAT ranges from 25.02% to 38.26% as the number of channels
increases. In addition, the performance gain of\Fased schemes over scheme FLAT ranges from
19.03% to 36.87%. These results show that the schemes employing hierarchical broadcast programs
are able to utilize network bandwidth better than that employing flat broadcast programs.

As shown in Figure 11b, the ratio of pruned configurations decreases from 58.63% to 14.83%
as the number of channels increases. With the analysis in Lemma 3, the influence of the ratio of
pruned configurations is dominated Kyrather tham sinceK < n in this experiment. As a result,
the influence of the change &fis more significant than that of the changenofFigures 11c and 11d
show that the execution times of all schemes increase as the number of channels increases. It can be
explained as follows. The execution times of all schemes are proportional of the number of unpruned
configurations, which increases as the valu&ahcreases since the number of all configurations is
(K+1) x (n+1) and the ratio of pruned configurations decreases as the valumofeases. Since the
execution time of scheme ES-OPT is more sensitive to the number of unpruned configurations than that
of BIS-based schemes, BIS-based schemes are more scalable when the ahexomes large. As
shown in Figures 11c and 11d, the execution time reduction of scheme Bi®»F scheme ES-VF
ranges from 96.04% to 98.01% as the valu& ahcreases. In addition, the execution time reduction of
scheme BIS-Incremental over scheme BIS®\ificreases from 11.36% to 27.87%. This result shows

the high scalability of scheme BIS-Incremental.
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Figure 12: The results with the number of usé\3 yaried

5.5 Experiment #4: The Effect of the Number of Users

This experiment measures the effect of the number of users. Figure 12a shows the average access
times of all schemes with the number of users varied. The number of users is set from 200 to 1000.
As observed in Figure 12a, the average access time reduction of scheme ES-OPT over scheme FLAT
increases from 11.8% to 40.66% as the number of users increases. It is because that the data request
rate is proportional of the number of users. In addition, the increment of average access time decreases
as the number of users increases. It can be explained as follows. When the number of users is small,
most channels are allocated in on-demand mode and most data items are allocated in the on-demand
channels. When the number of users becomes large, to reduce the increment of average access time,
some channels are re-allocated to broadcast mode and some data items are re-allocated to the broadcast
channels. Hence, the system becomes less sensitive to the number of users when the number of users
increases. This result shows the advantage of the combined use of broadcast and on-demand channels.

In this experiment, the performance gain of scheme ES-OPT over scheme FLAT increases from 1.10%
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to 46.20% as the number of users increases, and the performance gaift-tks€d schemes over
scheme FLAT ranges from 0.81% to 40.66%.

Figure 12b shows that the ratio of pruned configurations increases from 20.36% to 30.71% as the
value ofN increases. Similar to the situation wh@waries, the increase of the valueMdftauses more
configurations to be pruned by Property 5. Hence, the ratio of pruned configurations increases as the
value ofN increases. It shows that the pruning properties are scalable when the number of users is high.

Figures 12c and 12d show the execution time of each scheme with the vélnaokd. Resulting
from the effect showing in Figure 12b, the execution times of all schemes decrease as the Xalue of
increases. In addition, since BIS-based schemes are less sensitive to the number of unpruned configu-
rations than scheme ES-OPT, the increment of the execution times of BIS-based schemes is smoother
than that of scheme ES-OPT. In this experiment, the execution time reduction of scheme'Bt&evF
scheme ES-VE is around 97%, and the execution time reduction of scheme BIS-Incremental over

scheme BIS-VE decreases from 22.94% to 13.22%.

5.6 Summary

In this section, we evaluate the performance of several instances of algorithm SOM. From above ex-
periments, we observe that the average access time of all schemes employing hierarchical broadcast
generation programs (i.e., OPT andX/Based schemes) is better than that of scheme FLAT which
employs flat broadcast programs. This result shows the advantage of using hierarchical broadcast
program generation algorithms. The solutions obtained bY-W&sed schemes are close to scheme
ES-OPT due to the fact that the results ofV&re close to those of OPT.

We also observe that the execution time of BIS-based schemes is much faster than that of scheme
ES-OPT when the same broadcast program generation algorithm is employed. It is because that BIS
only searches the configurations with high probability to be the optimal one instead of all configurations
in the search space. Due to the combination of the merits of BIS afig 84Reme BIS-VE is able to
obtain nearly-optimal solutions efficiently. In addition, by employing the incremental propertytaf VF
scheme BIS-Incremental is able to obtain the same solutions as what scheme 'Bt®xdfms and is

more efficient and scalable than scheme BIS{VF
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6 Conclusions

In this paper, we explored the problem of dynamic data and channel allocation with the number of
communication channels and the number of data items given. We first derived the analytical models
of the average access time on broadcast and on-demand channels. Then, we transformed this problem
into a guided search problem. In light of the theoretical properties derived, we devised algorithm SOM
to obtain the optimal allocation of data and channels. According to the analytical mode, we devised
scheme BIS-Incremental based on SOM which is able to obtain solutions of high quality efficiently
by employing binary interpolation search and the incremental property 6f \@ensitivity study on
several parameters, including the number of data items and the number of communication channels,
was conducted. Our simulation results showed that the solutions of scheme BIS-Incremental are of
very high quality and are in fact very close to the optimal ones. In addition, the experimental results
also showed that scheme BIS-Incremental is of very good scalability which is particularly important

for its practical use in a mobile computing environment.
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Appendix: All Proof

Proof of Property 1Consider an arbitrary configuration C whigh< Kg < K — 1 andng < Kg. Since
ng < Kg, at least one broadcast channel does not contain any data item. Then, we can get another con-
figuration C by reassigning the broadcast channel(s) without any data item as on-demand channel(s).
Pg is equal tdPg" since no data item is reassigned. Since these reassigned broadcast channels contain no
data item, the average access times in broadcast channels of C aredequal (i.e s = W3). Since
C' has more on-demand channels tha\g,is smaller that\p. By Equation (2), we have/’ <W,
and as a result, C is not the optimal since<better than C. Q.E.D.
Proof of Lemma 1:Consider the procedure of YFmentioned above. The initial partitions of all
configurations with the same parameters ex¢gptaare the same (i.e., placing all data items in one
partition). Then, the selected partitions to be cut and the best cut points for these configurations are the
same. Hence, the results after the first cuts of all configurations with the same parameter&gxcept
equal to the result of V€ whenKg = 2. With the same reasoning, the results of th# cuts of all
configurations with the same parameters exégpequal to the result of VEwhenKg = n+ 1. This
property follows. Q.E.D.
Proof of Lemma 2:WhenK = 1, the size of search space(§+1) x (n+1) = (1+1) x (n+1) =
2n+ 2. The feasible configurations a@1,n) andC(0,0). Then, the number of configurations pruned
by Properties 1-4 i@n+2—2 = 2n.

Considering the cases thét> 1, whenKg = 0, Properties 2 and 3 are able to pruneonfigura-
tions. For eaclKp, 1 < Kg < K —1, Properties 1 and 2 are able to pruQg and one configurations
respectively. WherkKg = K, Properties 1 and 4 are able to prumeonfigurations. Then, the total

number of configurations pruned by Properties 1 to 4 is

Number of configurations pruned by Properties 1-4

K-1
= n+_Z(i+1)+n
~ s (K—1)2(K+2)'
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Consequently, we can conclude that the total number of configurations pruned by Properties 1-4 is

PERUSEILST Q.E.D.

Proof of Lemma 3:nitially, the total number of configurations in the search spagais1)(K + 1).

WhenK > 1 andn > K, according to Lemma 2, the number of configurations pruned by Properties

(K—1)(K+2)

1-5is at leasBn+ > . Then, the lower bound of the ratio of the pruned configurations can be

formulated as follows:

The lower bound of the ratio of the pruned configurations

on 4 (K=1K+2)

(n+1)(K+1)
An+K24+K-2
2(n+1)(K +1)

v

Whenn>> 1 andK? > 1,

The lower bound of the ratio of the pruned configurations
In+K2+K -2
2(n+1)(K+1)
an+K24+K+4
2(n+1)(K+1)
K 4

1
B §X<n+1+K+1)

v

Q

Note thatKL+1 ~ % whenK? > 1. The approximated lower bound of the ratio of the pruned configura-

tions whemn > 1 andK? > 1is

The ratio of pruned configurations

> %x (%1-1-%“) sincen > 1 andK? > 1
1 K 4
~ 2 <H+R>
K 2
= %-i-R,
proving Lemma 3. Q.E.D.
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