

Constructing Control-Flow-Based Testing Tools for Web Application

Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang
{jjyang,jlhuang,fjwang}@csie.nctu.edu.tw

William. C. Chu
chu@cis.thu.edu.tw

Computer Science and Information Engineering
National Chiaotung University
Hsinchu City , Taiwan 300

&
Computer Information Science
Tunghai University
Taichung City, Taiwan 400

Abstract
Flexible and rich application frameworks of Web-based software
design make Web-based applications more prevalent in both
Internet and Intranet environments. Programmers enjoy various
of Web application frameworks whose support ranging from
simple user interactions based on plain client-server model, to
complicated distributed-object computations based on CORBA.
The varity gives user the flexibility to decide a proper framework,
and leads to the demands of new support tools and testing
framework to test and maintain Web applications.
In this paper, a architecture is proposed to support the testing of
web-based applications. The architecture covers application
model extraction, test execution automation, and test design
automation. In addition, a graph-based application model is also
presented to model the behavior of web-based applications. With
the graphic presentation, several traditional software testing
techniques are extended to test Web-based applications.

1. Introduction
Current Web model and its related improvement give Web-based
application designers flexibility at choosing proper development
products for their implementation. One Web-based application
usually provides interactive services by mrans of a sequence of
Web pages containing text, images, and user-fillable form
associated with computation on the Web server. To reduce load
on application server and the programming effort for user
interaction, user may moves part of computation to the Web
browser side by means of embedding browser-executable
components such as Java Applet or Microsoft ActiveX
components inside Web pages.
When Web apploications become large, more advanced Web
application frameworks, such as Cold Fusion, are needed to
implement many desired features such as database connection,
n-tire Web application, load-balancing, session management, and
security management. In these frameworks, lots of software
components be applied directly or customized are provided to
perform interaction at Web browser and database connection at
the Web server. Behavior and glues of components are described
in scripting language such as JavaScript or Microsoft VBScript.
Current developers of large Web-based application do not have
sufficient and powerful tools to debug or test their Web
applications. [7] also addressed the necessity of software testing
support to handle the complexity of Web applications Existing

Web testing tools on Internet are usually made for verifying the
syntax in HTML documents, checking the hyperlink integrity in a
set of HTML documents, testing GUI components embedded in
browsers, and measuring the performance of the Web application.
Few testing tools consider Web applications’s control and data
flow via static and dynamic analysis. There are still some
significant characteristics of Web applications need to be studied,
such as the control and data dependency of Web application’s
programming modules. This paper proposes a Web application
model by extending control flow graph to model Web
application’s control. The extended model is further used to
generate test cases by applying traditional flow-based test cases
generation techniques.
This paper is organized as follows. Section 2 reviews the current
approaches to implement Web applications. Section 3 describes
the behavior model for Web applications. Section 4 describes the
testing environment and its architecture, which includes test case
recording tool, test case composition tool, execution tools, and
load testing tools. Finaly, section 5 gives conclusion and future
works of the web application testing environment.

2. Characteristics of Web Applications
Web applications are composed of static HTML documents and
programs run at both server and client sides. HTTP (Hyper-Text
Transfer Protocol) is used for communication between Web
browsers and Web servers. Web servers and database servers are
usually connected by de facto database access protocols such as
ODBC (Open Database Connection) or JDBC (Java Database
Connection). The following subsections introduce the
architecture overview and activities involved in the Web
applications implementation. Meanwhile, the desired testing
support are also addressed.

2.1. Web Application Architecture
Web application architecture shown in Figure 1 is supported by
current Web-related techonologies. It consists of three major tiers,
the Web browser, the Web server, and optional database servers.
The information process in the application is passed throught
each tier. The user interaction is performed at the Web browser
tier. The program logic is done at the Web server tier. The
database processing is done at the database server tier. Hence, the
Web application architecture is also known as a three-tier
application architecture. When the database server tier is omitted,
it is known as a two-tier application architecture.

The Web browser is capable of retrieving hyper-text documents,
as requested by the application users, from the Web server via
HTTP protocol. It renders the hyper-text document in HTML
(Hyper-Text Markup Language) format on the screen.
Contemporary Web browsers also embed Java VM and
interpreter to execute the Java Applets or Java Scripts specified
in the documents. The browser also allows users to extend its
functionality by installing additional software modules such as
Netscape Communicator’s plug-in modules and Microsoft
Explorer’s ActiveX objects.

Augmented
HTML

Document

Database
Server

Socket/
RMI/

CORBA

Image, Sound, Animation

Plain HTML Document

Java Applet

Database
Access
Protocol

Server
Side

Intepreter

Web
Browser

Web
Server

Database
Server

Java
VM

Java
Script

Intepreter

Plug-In
Processor

HTML
Render

CGI
Programs

Network
Application

Server

F
r
o
n
t

E
n
d

Tier
Protocol /
Interface

Information
Flow

Information
Processor

Web
Document

LegendLegendLegendLegendCommon
Gateway
Interface

(CGI)

HTTP

Database Access
Protocol

Database Access
Protocol

Database Access
Protocol

Figure 1. Web Application Architecture

The Web server has a frontend (HTTP daemon) to accept the
HTTP requsets from the browsers. Accroding to the server’s
configuration, it may directly serve the stored HTML documents,
Java Applets, or multimedia files, or forwards the requests to
CGI programs, by which the HTML documents to be returned
are generated dynamically. Some Web servers also have
modules [4][8] to interprete the augmented HTML documents
before sending them to browsers.
In advanced Web applications, components in Web browsers
may communicate with other components in the Web servers
with protocols which are not HTTP. These emerging protocols
such as CORBA are more fitting when developing distributed
Web application in object-oriented technology.

2.2. Programming at Web Clients and
Servers
Web client programming focuses on the visual presentation and
user interaction. The program guides the user to input data and
validates user’s input before submitting it to the Web server. For
more complicated interaction, software compnents such as Java
Applets or Active X objects can be embedded in Web pages.
Script languages such as JavaScript or VBScript can be applied
to glue the components.
Besides deploying static documents on the Web servers,
desingers write augmented HTML documents or CGI programs
to achieve more functionalities by dynamically generating
HTML documents at run-time. The augmented HTML
documents are interpreted at server side by interpretation
modules such as ASP interpreter or Perl interpreter. Programs (or
scripts) within the augmented HTML documents or CGI
programs are usually passed the well-encapsulated HTTP
requests which originates from the Web browsers. They are also
provided with session managment and database connection
facilities. Examples of the server technologies are Microsoft
Active Server Page(ASP) [8], Sunsoft Servlet [11] and Cold
Fusion’s CFML [1]. Database connections can be provided by

Microsoft IDC(Internet Data Connection), ADO(Active Data
Object), ODBC(Open DataBase Connection), or JDBC (Java
DataBase Connection).
Testing supports at the server usually help either to test a set of
documents to check the integrity of the Web links among the
documents, or to test the CGI programs as traditional application.
However, few tools help to generate http transactions as test
cases based on the application behaviors which include
application logics performed at server side and user’s decision
made at browser side.

3. Web Application Models
In this section, a method is proposed to model the constitutents of
Web application in order to apply traditional test case generation
strategies.

3.1. Extracting an Application Model
A Web application consists of a set of programming modules
which are executed at the servers or the browser. To build the
control flow graph for the Web application, our proposed method
maps each entity in the Web application to a component of the
control graph, i.e. nodes, branches, edges. The extended control
graph for the Web application contains the following symbols as
appeared in Figure 2: programming module (node), user branch,
application branch, hyper-link edge, HTTP-redirect edge, and
intra-module edge.
A node in the control flow graph represents a programming
module. A programming module is usually implemented in a
single file such as .html file in HTML, .cgi file in Perl, or .asp
file in ASP. There may exist a more detailed control flow graph
residing in the single programming module, but it is not
discussed when considering the inter-module control graph.
During the mapping of control flow branch, the extended model
classifies the branches into the user branch and the application
brach. The user branch models that the user selects one of
hyperlinks from the browsed document at browser side. The
application branch models that the current programming module
forwards the control to other programming modules for further
processing based on the application logic.
When a programming module M generates an HTML document
containing hyperlinks to modules M1, M2 and M3 for user’s
selection, node NM, NM1, NM2 and NM3 are created to represent
programming module M, M1, M2 and M3 respectively in the
control flow graph. In addition, an user branch symbol UB is
placed among NM, NM1, NM2 and NM3. An intra-module edge is
used to associate NM and UB. Each branch alternative from UB
to NM1, NM2 and NM3 respectively is represented by one
hyper-link edge.
When a programming module M needs to transfer the control to
module M1, M2, or M3 for furthur processing based on the
application logic, an intra-module link is used to connect the
node for module M with an application brach symbol to
represent the control transfer made by application logic. Each
application branch alternative is connected by an HTTP-redirect
edge. The name ‘HTTP-redirect’ comes from the technique
which achieves the control transfer between Web programming
modules by sending HTTP redirect command to the browser.
When a module X needs to transfer control to module Y, it sends
to the browser an HTTP-redirect command containing the URL

referring to module Y. On receiving the URL, the browser sends
a new HTTP request which invokes module Y to the server. Thus,
the application’s control transfers from module X to module Y.
The control flow graph in Figure 2 can be constructed by
analyzing its programming modules. In the figure, there are two
HTTP-redirect edges from orderStart.asp to two independent
modules. In other programming practices where no http-redirect
is applied, the application logic implemented in availOffer.asp
and incomplete.html are merged into one single orderStart.asp.
Hence, the node for orderStart.asp would contain four
hyper-links memberInfo.html, availDrinks.asp, availPizza.asp
and confirm.asp. The practice can reduce the number of
programming modules, hoever it still increases the difficulties of
program understanding and testing. In fact, many links are not
easily determined by simple analysis on the programming
modules. Following subsections introduce static and dynamic
analysis methods, which can obtain a control flow graph more
precisely.

Welcome.html memberInfo.html

orderStart.asp

availOffer.asp

availDrinks.asp availPizza.asp confirm.asp

incomplete.html
User branch

HTTP redirect
edge

Hyper-link edge

Program
module (node)

Legend

App branch

Intra-module
edge

Figure 2. A sample control flow graph of Web application

3.2. A Model Obtained by Static Analysis
In static analysis, the source code of the programming modules
are analyzed to extract the inter-module relations. For Web
applications implemented in ordinary Web application
frameworks, the application logic is scattered in several files.
There are two popular approaches to specify application logic.
One is based on document content, it specifies application logic
inside some blocks of augmented HTML files. The other is based
on application logic, it specifies logic in script languages like
PERL and lets the script output the desired HTML file.
When constructing a model through static analysis, the
application designed in the content-oriented approach can be
extracted richer link information due to its format simplicity.
Analyzers can extract inter-module information from the
augmented HTML file (or HTML template) by extracting
attributes from certain HTML tags. For example, the following
fragment of an augmented HTML file can be extracted
hyper-links shown in bold-italic typeface.

…
<form action=orderStart.asp …>
…

<frame src=leftPane.html>
…
<image src=roadmap.gif usemap=#mapDef>
…
<script>
…
WindowObject.href=”foo.html”
…

</script>
…
<map name=mapDef>
<area shape=rect ... href=site1.html>
<area shape=rect ... href=site1.htm2>
<area shape=rect ... href=site1.htm3>

</map>

Figure 3. Hyperlinks inside a programming module

However, for the following fragment written in
Microsoft ASP, it is difficult to extract the five links
generated by the fragment with static analysis only. The
dynamic analysis in the next subsection can help to
extract the links generated dynamically.

<%
for i = 1 to 5
ref = “option” & i & “.html”
Response.write(“ ”

& i & “”)
next
%>

</html>

Figure 4. A sample .ASP file which needs dynamic
analysis on the Web server

3.3. A Model Obtained by Dynamic Analysis
The dynamic analysis on the Web application can extract the link
information by driving (loading) the program modules to its
interpreting engine. As mentioned above, programming modules
may be executed at servers or browsers. Supporting tools may be
desinged to analyze the following information:
(1) The link information of the programming module after the

server interpretation: For example, the ASP scripts shown in
Figure 4 contains no link information at static analysis. After
the supporting tool drives it into the server’s interpretation
engine, five links (i.e. option1.html, option2.html, ... and
option5.html) can be extracted from the interpreter’s HTML
output. A server script driving tool shown in Figure 5 may be
provided to support the extraction.

Server
Interpreted

Script

Server
Script

Intepreter

Server
Script
Driver

Control Flow
Builder

1. Script Interpretation Request

2. Retrieved script

3. Interpreted sciprt. in HTML format

4. Hyper-link information
for requested scripts

application
model

repository

5. updated link
information

Figure 5. Dynamic analysis for server interpreted scripts.

(2) The link information of the programming module after the
browser interprets the client-side scripts: For example, by
drving the following JavaScript to the browser’s interpreter,
two more links (i.e. site1.html and site2.html) can be obtained.
It is similiar to case (1) but the difference is in the way to get
the links information, as shown in figure 6.

Browser
Interpreted

Script

Client
Script

Interpreter

Client
Script
Driver

Control Flow
Builder

1. Script Interpretation Request

2. Retrieved script

3. Link information from
client script interpreter

4. Hyper-link information
for requested scripts

application
model

repository

5. updated link
information

Figure 6. Dynamic analysis on browser interpreted

scripts.
(3) The link information generated during user interaction on the

Web page: The programming module may dynamically
generate hyper-link request based on user’s interaction on the
Web page. The type of link information extraction requires a
person or automatic GUI driving tools to drive the user
interface. Thus, a link monitor in Figure 7 can extract the link
information.

Web
Browerser

Web
Server

Link
Monitor

application
model

repository

Control
Flow

Builder

1. HTTP request

2. Intercepted
hypter-link

requests

3. Updated
link

information

Intercepted
HTTP

requests

GUI
operation

guide

Figure 7. Analysis on hyper-links generated by user

interactions.

3.4. Generating Test Case for Web
Applications
With the application model constructed for the Web applications,
test case generation techniques based on control-flow graphs,
such as path testing, can be applied to test Web applications
directly [6][9][10]. Two path testing strategies, statement and
branch coverage, are adopted in the environment. Practical
program testing requires both the statement and branch coverage.
IEEE software test standard [2] regards the statement coverage as
the minimum testing requirement. In the Web application testing,
the term statement is replaced with programming module.
For example, based on the statement coverage strategy, one set of
test cases generated for the sample application shown in Figure 2
are listed as the following:

TestCase# 1 2
Nodes
In
Path

-welcome
�memberInfo
�orderStart
�incomplete

-welcome
�memberInfo
�orderStart
�availOffer
�availDrinks

TestCase# 3 4
Nodes
In
Path

-welcome
�memberInfo
�orderStart
�availOffer
�availPizza

-welcome
�memberInfo
�orderStart
�availOffer
�confirm

If the branch coverage stragtegy is used to generate test cases,
more paths are included in addition to above four paths. Paths
containing edges availDrinks�availOffer, availPizza�
availOffer, and confirm�memberInfo must be included to make
every branch alternative exercised.

4. A Web Application Testing Architecture

An application testing environment helps to automate the testing
process and integrate testing tools to support testing during the
test process. [5][13] have evaluated the architectures and
capabilities of application testing environments. The Web
application testing environment introduced here is to provide
integrated tools to support the testing requirments as mentioned
in section 3.

4.1. An Architecture Supporting Web
Application Testing
As shown in Figure 3, the Web Application testing tool
architecture consists of five subsystems, Source Document
Analysis, Test Management, Test Development, Test Failure
Analysis, Test Execution, and Test Measurement. Each
subsystem cooperate with each other to achieve testing activties.
A set of unified access interfaces for each subsystems are
provided to separate the interfaces from their implementations,
and it makes each subsystems more reusable and easy
maintained.

Test Suite/Case
Manager

Application
Information

Manager

Source
Documents

HTML
Analyzer

Test Coverage
Analyzer

Test Case
Generator

Test Case
Composer

Test Case
Recorder

Test Oracle
Test Suite
Summary
Generator

Test Case
Executor

Test Report
Composer

Test Coverage
Report

Test Suite
Summary

Test Failure
Report

Test Suite/Case
Repository

Application
Information
Repository

Test Execution

Test Failure Analysis
Test Measurement

Test Development

Test Management

Test Report

Legend

Data Flow

Control Flow

Source
Document
Analysis

Test Suite/Case
Mainenance

Tool

Server
Script

Analyzer

Client
Script

Analyzer

Figure 8. The Web Application Testing Architecture

The location and related parameters of the Web application under
testing must be provided to proceed with subsequent testing
activities. The testing activties are grouped into the following
four major steps: (1) application model construction,, (2) test
case construction and composition, (3) test case execution, and (4)
test result validation and measurement.
Application model construction is the responsibility of Source
Document Analysis subsystem. The HTML Analyzer fetches the
programming modules of the application and performs static link
analysis on the source documents of these modules. The Server
Side Analyzer performs dynamic link analysis on the HTML
output by interpreting the source code with the WWW server.s
The Client Script Analyzer performs dynamic link analysis at
client side by driving the WWW browser to fetch the
programming modules and interprete the client-side scripts.
Application models are built by these analyzer and stores in
Application Repository in Test Management sunsystem.

To construct test cases, Test Case Generator can generate test
cases automatically with user-selected test criterion mentioned in
section 3.4 and other parameters. Besides, users can create test
cases manually by using Test Case Recorder or Test Case
Composer. Test Case Recorder intercepts and records HTTP
communications between Web browser and servers to form test
cases based on Web application user’s real use-case. Test Case
Composer is an environment for users to create test cases by
writing test scripts directly.
To specify test cases in a more flexible way the test case designer
can resort to handcrafting test scripts by himself. Because the
testing environment stores the outcome of test case recorders and
test case generators in the test repository in the form of test
scripts. Test desingers can change test cases by modifying test
scripts.

4.2. The Execution of Testing Cases
In test cases execution, the Test Case Executor interpretes
designated testing scripts and sends corresponding HTTP
requests. Testing staffs can choose to run the test cases in batch
mode or in interactive mode. In the batch mode the test cases are
executed in background without rendering the HTML documents.
In the interactive test case execution mode, testing staffs watch
the Web pages under testing on the Web browser and control
each step of the test case execution. For each test case the control
panel of the test case player provides testing staffs with
information about the number of Web pages to be visited, the
data values to enter in HTML forms. Testing staffs lead the test
case to next step or specific step by pressing the ‘next step’
button or ‘Goto N-th step’ button at the control panel.
For Web pages requiring data input, testing staffs can request the
test case player to fill data in the form fields on the Web page by
pressing the ‘fill data’ button. The functionalities save testing
staffs from manually filling testing data or locating hyperlinks to
invoke on the Web page. It is especially useful when testing
HTML forms with lots of data fields to fill.

4.3 Test Result Validation and Measurement
The test case validation is made by the testing staffs or Test
Oracle, and the validation result is inserted into the test
repository for generating testing report.
Test Oracle is an component with expected patterns in the
returned HTML documents, and validates the test results of
application. A language is used to specify the expected test
results. However, for complicated Web applications, it needs
human attention to validate the test results. No matter what
method is applied, test results are store in Test Suite/Case
Repository in Test Management subsystem.
Test measure includes test coverage measurement and analysis.
Test Coverage Analyzer is designed to measure whethre and how
much a test criterion is adequately satisfied. Since it is expensive
to achieve 100% coverage, testers can decide one proper rate of
coverage based on their constranits in testing.

4.4. Implementation of the Architecture
A prototype of the testing architecture have been developed and
demonstrated. The client script driver is written in JavaScript
running at Web browser. The server script driver is implemented

as a Java application. Hyper-link information obtained from
script drivers are analyzed by PERL to form application models.
Test case recorder/player are implemented as a Web proxy server
with additional features.
Users of the testing environment can manipulate the tools from
Java Applets embedded in Web pages. The controlling interface
implemented as Java Applet provides GUI for user interactions
and communicates with the testing center via Java RMI.

5. Conclusion
This paper models the inter-module relations of Web applications
in terms of control flow graph and data flow graph. In addition,
an architecture is provided to help construct application model by
analyzing the programming modules statically and dynamically.
Test cases of the Web application can be generated based on the
application model or composed through the test case composition
interface. Automatic testing tools such as Test Case Executor
execute testing scripts to automate Web application test. The
prototype of the testing tools has been implemented and
integrated in the Web environment.

Bibliography
[1] Allaire Corp., Cold Fusion, in

http://www.allaire.com/products/COLDFUSION/.
[2] ANSI/IEEE Std 1008-1987, “IEEE Standard for Software

Unit Testing” in Collection of ANSI/IEEE standards on
software engineering, IEEE Computer Society Press,
1987.

[3] ANSI/IEEE Std 829-1983, “IEEE Standard for Software
Test Documentation” in Collection of ANSI/IEEE
standards on software engineering, IEEE Computer
Society Press, 1987.

[4] Apache Server Project, “Module mod_include”, in
http://www.apache.org/docs/ mod/mod_include.html.

[5] Eickelmann N.S. and Richardson D.J., “An evaluation of
software test environment architectures”, IEEE
Proceedings of ICSE-18, p.p. 353—364, 1996.

[6] Frankl, P.G., and Weyuker, E.J., “An applicable family of
data flow testing criteria”, IEEE Transactions on Software
Engineering, Vol 14, p.p. 1483—1498, 1988.

[7] Fromme B., Web Software Testing – Challenges and
Solutions, InterWorks ’98 Conference, 1998. Also
available in http://www.interworks.org/conference/
IWorks98/sessions/sn135/paper.html

[8] Homer A., et al. “Professional Active Server Pages”,
WROX publishing, 1997.

[9] Ntafos, S. C., “A comparison of some structural testing
strategies”, IEEE Transactions on Software Engineering,
Vol 14, p.p. 868—874, 1988.

[10] Rapps, S., and Weyuker, E.J., “Selecting software test data
using data flow information”, IEEE Transactions on
Software Engineering, Vol 11, p.p. 367—375, 1985.

[11] Sun Microsystem, Java Servlet, in
http://java.sun.com/products/java-server/servlets/
index.html.

[12] Testing and Testing Management Tools. Available in
http://www.methods-tools.com/tools/testing.html.

[13] Vogel P.A., “An Integrated General Purpose Automated
Test Environment”, ACM ISSTA ’93, p.p. 61—69, 1993.

	SEKE99: Proc. of the 11th Software Enginnering and Knowledge Enginnering Conference (SEKE), June 1999.

