Population Estimation for Resource Inventory
Applications over Sensor Networks

Jiun-Long Huang

Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan
jlhuang@cs.nctu.edu.tw

Abstract. The growing advance in wireless communications and elec-
tronics makes the development of low-cost and low-power sensors possi-
ble. These sensors are usually small in size and are able to communicate
with other sensors in short distances wirelessly. A sensor network consists
of a number of sensors which cooperates with one another to accomplish
some tasks. In this paper, we address the problem of resource inventory
applications, which means a class of applications involving population
calculation of a specific species or object type. To reduce energy con-
sumption, each sensor only reports the number of sensed objects to the
server, and the server will estimate the object number according to the
received reports of all sensors. To address this problem, we design in this
paper a population estimation algorithm, called algorithm Estimation, to
estimate the object numbers. Several experiments are conducted to mea-
sure the performance of algorithm Estimation. The experimental results
show that algorithm Estimation is able to obtain closer approximations
of object numbers than prior algorithms.
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1 Introduction

The growing advance in wireless communications and electronics makes the de-
velopment of low-cost and low-power sensors possible. These sensors are usually
small in size and are able to communicate with other sensors in short distances
wirelessly. A sensor network [I] consists of a number of sensors which cooper-
ates with one another to accomplish some tasks. Sensors can be deployed either
in a random or in a predetermined manner. Since being self-organized, sensors
are able to form a sensor network automatically. Due to the characteristics of
wireless communication and configuration-free deployment, sensor networks are
suitable for various application areas including inventory management, product
quality monitoring and disaster area monitoring [I][5]. Hence, sensor networks
have attracted a significant research attention, including hardware and operat-
ing system design [8][13], localization [2][10], data aggregation methods [3][6][9]
and applications of sensor networks [11][14].
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The authors in [7] described one kind of applicationﬂ, resource inventory ap-
plications, which uses sensor networks to calculate object numbers. By resource
inventory, it means a class of applications involving population calculation of
a specific species or object type. To calculate population of objects, a number
of sensors are deployed in a plane and each sensor is able to sense the number
of objects within its sensing region. These sensors then form a sensor network
and users are able to query the number of objects sensed by the sensor network
via a server. For the sake of simplicity, in this paper we use “object number”
to indicate the number of objects sensed by a sensor network. Since sensors are
usually powered by batteries, energy conservation becomes an important issue
in the design of sensor networks. To reduce energy consumption, the authors in
[7] suggested that each sensor only reports the number of sensed objects to the
serveild, and the server will estimate the object number according to the received
reports of all sensors.

Since the sensors may be deployed randomly, the sensing regions of these
sensors may be overlapped with one another. This phenomenon results in the
difficulty of obtaining the exact object number due to the reason that one ob-
ject may be sensed by more than one sensor. Fortunately, knowing the ranges
of object numbers is still useful enough in many applications [7]. As a conse-
quence, the authors in [7] proposed an energy-conserved scheme which is able to
obtain the lower bounds and the upper bounds of the exact object numbers. For
convenience, we name the scheme proposed in [7] as scheme SDARIA (i.e., the
acronym of the title of [7]). Although being shown to be able to conserve much
energy than other schemes [7], the lower bounds and the upper bounds obtained
by scheme SDARIA are not informative. In our experiments, the upper bounds
obtained by scheme SDARIA are around 170% ~ 250% of the exact numbers,
while the lower bounds are around 60% ~ 80% of the exact numbers. Such high
error rates make users not able to get enough information about the exact object
numbers.

In view of this, we design in this paper a population estimation scheme, called
algorithm Estimation, to estimate the object numbers. Specifically, algorithm Es-
timation first partitions the plane into several disjoint grids, and identifies the full
and partial grids of each sensor. Algorithm Estimation then estimates the object
number of each grid, and finally estimates the overall object numbers according
to the estimated object number of each grid. Several experiments are conducted
to measure the performance of algorithm Estimation. The experimental results
show that algorithm Estimation is able to obtain closer approximations of object
numbers than scheme SDARIA.

The rest of this paper is organized as follows. Section [2] gives a description of
resource inventory applications and an overview of scheme SDARIA. The design
of algorithm Estimation is given in Section Bl Section [ shows the performance
study of algorithm Estimation. Finally, Section [f concludes this paper.

! Interested readers can refer to [7] for more examples of resource inventory applica-
tions.
2 The detailed architecture of resource inventory applications is given in Section
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2 Preliminaries

2.1 Related Work

The system architecture of resource inventory applications proposed in [7] is
shown in Figure [[I To calculate the number of objects, a number of sensors
are deployed in a plane and each sensor is able to sense the number of objects
within its sensing region. These sensors then form a sensor network and users are
able to query the number of objects via a server. For energy conservation, each
sensor only reports the number of sensed objects to the server when the server
requests all sensors to report their sensing status. Similar as [7], we assume that
the server is able to get the sensing regions of all sensors. The sensing region of
each sensor can be obtained from manual measurement by human or automatic
measurement by sensors when they are equipped with GPS [4].
Basically, scheme SDARIA comprises the following two phases.

— Data aggregation phase: In data aggregation phase, each sensor reports the
number of sensed objects to the server via the sink. After receiving the
reports of all sensors, the server transforms the received reports into the
corresponding snapshot graph G = {V, E'}. The transformation procedure is
as follows. Each sensor is modelled as a vertex and there is an edge between
two sensors if these two sensors’ sensing regions are overlapped with each
other. Figure 2] shows an example of the transformation between the reports
and the corresponding snapshot graph.

— Population estimation phase: In population estimation phase, the server es-
timates the object number according to the snapshot graph G. In scheme
SDARIA, two algorithms are proposed to obtain the upper bound and the
lower bound of the exact object number.

Experimental results in [7] showed that the data aggregation method used
in scheme SDARIA is able to greatly reduce the power consumption of sensors.
Therefore, in this paper we adopt the data aggregation method used in scheme
SDARIA and focus on population estimation phase. In scheme SDARIA, upper

Snapshot Graph

Ql 5 O

Estimated O
Population <:| Q 9 8

Fig. 1. System Architecture
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Fig. 2. Transformation between sensing reports and the corresponding snapshot graph

bound calculation is modelled as finding a subset of V' which includes solely the
vertices whose sensing regions cannot be replaced by the combinations of other
vertices’ sensing regions. For the interest of space, we do not describe the details
of the upper bound calculation algorithm in this section. Interested readers can
refer to [7] for details.

3 Design of Population Estimation Algorithm

Although we can obtain the lower bounds and the upper bounds of object num-
bers, respectively, by the lower bound and the upper bound calculation algo-
rithms used in scheme SDARIA, these bounds do not give users enough infor-
mation about the exact object numbers. For example, in our experiments, the
obtained upper bounds are around 190% ~ 210% of the exact object numbers,
and the lower bounds are around 60% ~ 80% of the exact object numbers. To
address this problem, we propose a grid-based population estimation algorithm,
called algorithm Estimation, to obtain close approximations of exact object
numbers.

Before designing algorithm Estimation, we first partition the plane into several
non-overlapped grids. Consider the sensing region of a sensor shown in Figure 3l
A grid g is called the full grid of a sensor s if all the area of grid g is covered
by the sensing region of sensor s. Similarly, a grid g is called the partial grid of
a sensor s if only part of the area of grid g is covered by the sensing region of
sensor s. A grid g is called the overlapped grid of sensor s if grid g is a full or a
partial grid of sensor s. In Figure Bl the full and partial grids of the sensor are
marked as ‘F’ and ‘P’, respectively.

To facilitate the estimation of the exact object numbers, we have the following
assumptions.

1. The objects sensed by sensor s is uniformly distributed in the sensing region
of sensor s.
2. The objects in a grid g is uniformly distributed in the area of grid g.
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Fig. 3. Full and partial grids

3. On average, for a partial grid g of a sensor s, only half of the area of grid g
is covered by the sensing region of sensor s.

Note that these assumptions are made only to guide the design of algorithm
Estimation, and are not the limitations of algorithm Estimation. They will be
relaxed in the experiments in Section [l

The procedure of algorithm Estimation is as follows. Initially, each sensor is
marked as UNSELECTED. Algorithm Grid-Estimation is an iterative algorithm
and selects one sensor marked as UNSELECTED in each iteration. Consider the
case that sensor s is selected. Denote the number of objects sensed by sensor
s as s.0ObjNo, and let full and partial be the sets of the full grids and the
partial grids, respectively, of sensor s. By Assumption 3, we first calculate the

1

equivalent number of full grids by considering one partial grid as 35 full grid.

Hence, the equivalent number of the full grids of sensor s is | full|+ |p‘"2—tml|. By
s.0bjNo
\fullH— \parztial\

addition, by Assumption 2 and Assumption 3,

Assumption 1, objects are expected in each full grid of sensor s. In

—s:0bjNo___ objects are expected

[Fulll+ \parztmu

in each partial grid of sensor s. Hence, sensor s suggests that wﬁ’%
w 2

objects are expected in each of its overlapped grids. Finally, sensor s is marked
as SELECTED. The above procedure repeats until all sensors are marked as
SELECTED. Since the expected object number in grid g may be suggested by
several sensors, the expected object number in grid g is determined as the average
of possible object numbers suggested by sensors. Finally, the estimated object
number is determined as the summation of the expected object numbers of all
grids. The algorithmic form of the proposed population algorithm is as follows.

Algorithm Estimation

: for each grid g do /* Initialization */
2:  g.AvgObjNo «— 0
3: g.SensorNo 0
4: end for
5
6

—_

: Mark all sensors as UNSELECTED
: while (at least one sensor is marked as UNSELECTED) do
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7:  Pick one sensor which is marked as UNSELECTED
8  full «— full grids of sensor s
9:  partial «— partial grids of sensor s

10:  expectation = ObjNo

11:  for each grid g in full|J partial do
12: g.AvgObjNo —
m x (g.AvgObjNo * g.SensorNo + expectation)
13: g.SensorNo < g.SensorNo+ 1
14:  end for
15:  Mark sensor s as SELECTED
16: end while
17: total — 0
18: for each grid g do
19:  total < total + g.AvgObjNo
20: end for
21: return total

4 Performance Evaluation

4.1 Simulation Model

Similar as [7], the sensors are uniformly placed in to a 500x500m plane and the
sensing radius of each sensor is set to 100m. We use GSTD tool [12] to generate
the synthetic datasets used in this simulation. We synthesize the locations of ob-
jects by two distributions: uniform distribution and Gaussian distribution with
standard deviation 50, and they are shown in Figure @ and Figure @b, respec-
tively. Since focusing on population estimation phase, in data aggregation phase,
we adopt the data aggregation method used in scheme SDARIA. In addition to
algorithm Estimation, we also implement scheme SDARIA for comparison pur-
poses. We implement both schemes in C++ and the simulation is executed in a
PC with one Pentium III 500MHz CPU and 512MB memory. The default system
parameters are listed in Table [Tl

Since both schemes use the same data aggregation method, the energy con-
sumption of the sensors in both schemes is the same. Hence, we take accuracy and
execution time as the performance metrics of both schemes. Error rate, which is
define as below, is taken to measure the accuracy of population estimation.

Estimated object number-Exact object number

Error rate =
Exact object number

(a) Uniform (b) Gaussian-50
Fig. 4. Datasets
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Table 1. Default system parameters

|Parameter |Value|
Number of sensors (V) 30
Number of objects 2000
Sensing radius 100m
Grid size (Grid size ratio=2%)|2m

Table 2. Description of curves

| Curve | Result |

Lower bound |Lower bound obtained by scheme SDARIA
Estimation |Estimated object number
Upper bound|Upper bound obtained by scheme SDARIA

Note that error rate smaller than zero indicates that the estimated object number
is smaller than the actual object number. The accuracy is higher when error rates
are closer to zero. That is, the accuracy is high when the absolute values of error
rates are small.

We now describe the meaning of the curves which will appear in the follow-
ing experimental results. Lower bound represents the lower bounds obtained
by scheme SDARIA. The lower bound calculation algorithms used in scheme
SDARIA is a brute force-based algorithm to obtain the optimal solutions of
maximal independent set problem [7]. Cureve Estimation represents the re-
sults of algorithm Estimation, while curve Upper bound represents the upper
bounds obtained by scheme SDARIA. A summary of these curves as given in
Table

4.2 Effect of Sensor Number

This experiment is conducted to measure the effect of the number of sensors.
Figure [l shows the error rates and execution time of all algorithms with the
number of sensors varied. The number of sensors is set from 30 to 180.

As observed in FigureBh and FigureBb, the error rates of upper bound calcu-
lation algorithm range from 80% to 205%. Note that the lower bound calculation
algorithm used in scheme SDARIA is of high complexity, and hence, only the
results with 30 sensors are shown in Figure[Bh and Figure[Gb. In our experiment,
the execution time of the lower bound calculation algorithm is longer than six
hours when the number of sensors is larger than 30. In addition, the error rates
of algorithm Estimation are between -2.9% and 11.25% in this experiment. Since
the absolute values of the error rates of algorithm Estimation are smaller than
those of the lower bound and the upper bound calculation algorithms used in
scheme SDARIA, algorithm Estimation is able to give users closer estimations
than the lower bound and the upper bound calculation algorithms. Figure Bk
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Fig. 5. Effect of sensor number

shows the execution time of algorithm Estimation. The execution time of al-
gorithm Estimation increases linearly as the number of sensors increases. This
result agrees to the complexity analysis of algorithm Estimation in Section Bl

4.3 Effect of Object Number

This experiment is to investigate the effect of the number of objects. Figure[@lshows
the error rates of all algorithms by setting object number from 500 to 5000. Since
the execution time of all algorithms are not affected by object number and the dis-
tribution of objects, we only show the error rates of all algorithms in this subsection.
As shown in Figure[G] the error rates of all algorithms are affected by the distribu-
tion of objects. Since being designed under the premise that objects are distributed
uniformly, algorithm Estimation performs very well in dataset Uniform. It is also
observed that the error rates of algorithm Estimation slightly increase as the num-
ber of objects increases. In this experiment, the error rates of algorithm Estimation
increase from -0.81% to 0.1% and from 8% to 10.6%, respectively, in datasets Uni-
form and Gaussian-50. As shown in Figure[6l the error rates of the lower bound
calculation algorithm in datasets Uniform and Gaussian-50 range from -33.94%
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Fig. 6. Effect of object number

t0-38.91% and from -14.2% to -15.1%, respectively. We observe that the absolute
values error rates of the lower bound calculation algorithm become smaller when
the distribution of objects becomes centralized.

5 Conclusion

In this paper, we addressed the problem of resource inventory applications over
wireless sensor networks. To reduce energy consumption, each sensor reports
only the number of sensed objects to the server, and the server will estimate the
object number according to the received reports of all sensors. In view of this, we
designed algorithm Estimation to estimate the object numbers. Several experi-
ments were conducted to measure the performance of algorithm Estimation. The
experimental results showed that algorithm Estimation was able to obtain close
approximations of object numbers in reasonable execution time. In our experi-
ments, the approximations of algorithm Estimation were around 95% ~ 115%
of the exact object numbers. This result showed that algorithm Estimation is
more suitable for practical use than prior schemes.
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