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Abstract. The research issue of broadcasting has attracted a considerable amount of attention in a mobile computing system. By utilizing
broadcast channels, a server is able to continuously and repeatedly broadcast data to mobile users. From these broadcast channels, mobile
users obtain the data of interest efficiently and only need to wait for the required data to be present on the broadcast channel. Given the
access frequencies of data items, one can design proper data allocation in the broadcast channels to reduce the average expected delay of data
items. In practice, the data access frequencies may vary with time. We explore in this paper the problem of adjusting broadcast programs to
effectively respond to the changes of data access frequencies, and develop an efficient algorithm DL to address this problem. Performance
of algorithm DL is analyzed and a system simulator is developed to validate our results. Sensitivity analysis on several parameters, including
the number of data items, the number of broadcast disks, and the variation of access frequencies, is conducted. It is shown by our results
that the broadcast programs adjusted by algorithm DL are of very high quality and are in fact very close to the optimal ones.
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1. Introduction

In a mobile computing environment, a mobile user with a
power-limited mobile computer can access various informa-
tion via wireless communication. Applications such as stock
activities, traffic reports and weather forecast have become in-
creasingly popular in recent years [21,22]. It is noted that mo-
bile computers use small batteries for their operations without
directly connecting to any power source, and the bandwidth
of wireless communication is in general limited. As a result,
an important design issue in a mobile system is to conserve
the energy and communication bandwidth of a mobile unit
while allowing mobile users of the ability to access informa-
tion from anywhere at anytime [2,4,10].

The research issue of broadcasting has attracted a consid-
erable amount of attention in a mobile computing system.
By utilizing broadcast channels, a server is able to continu-
ously and repeatedly broadcast data to mobile users. These
broadcast channels are also known as “broadcast disks” from
which mobile users can obtain the data of interest efficiently
and only need to wait for the required data to present on the
broadcast channel [1,9,20]. The corresponding waiting time
is called the expected delay of that data item. One objective
of designing proper data allocation in the broadcast disks is
to reduce the average expected delay of data items. Broad-
casting schemes in this context have been extensively studied
[3.8,12,15,18].

Note that a lot of research effort has been elaborated on
exploring multiple broadcast channels for data dissemination
[13,14,16,17]. The advantages of utilizing multiple broadcast
channels can be found in [16,17]. Organizing data in multi-
ple broadcast channels raises a number of new research prob-
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lems. A system of multiple broadcast channels can be viewed
as a broadcast disk array. The broadcast disks in a broadcast
disk array can be categorized according to the speed of broad-
cast disks, where the speed of a broadcast disk corresponds to
the expected delay for the data items in that broadcast disk.
The data items in each broadcast disk are sent out in a round
robin manner. Clearly, as the number of data items in a broad-
cast disk increases, the expected delay of those data items in-
creases. As aresult, the data items that are more frequently re-
quested by mobile users should be put in fast broadcast disks,
whereas cold data items can be pushed to slow broadcast disks
to minimize the average expected delay of data items in the
broadcast disk array. Thus, it has been recognized as an im-
portant issue to develop algorithms to allocate data items to
the broadcast disk array according to their access frequencies
so as to minimize the average expected delay of data items
[14,16].

The study in [14] explored the problem of generating hi-
erarchical broadcast programs with the data access frequen-
cies and the number of broadcast disks in a broadcast disk
array given. Specifically, the problem of generating hierar-
chical broadcast programs is first transformed into the one of
constructing a channel allocation tree with variant-fanout. By
exploiting the feature of tree generation with variant-fanout,
a heuristic algorithm to minimize the expected delay of data
items in the broadcast program is developed. The tree ob-
tained in [14] is called channel allocation tree (or abbreviat-
edly as allocation tree) where the depth of the allocation trees
corresponds to the number of broadcast disks, and those leaf
nodes in the same level of the allocation tree correspond to
those data items to be put in the same broadcast disk. Fig-
ure 1 shows a hierarchical broadcast program with its channel
allocation tree where the upper channel is allocated with two
data items and each of the three lower channels is allocated
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Figure 1. The broadcast program and its allocation tree.

with three data items. As such, the data items in the fast disks
(i.e., the upper broadcast channel) spin faster than those data
items in the slow disks (i.e., the lower broadcast channels).
Note, however, that the algorithm in [14] is designed for the
situation where the data access frequencies and the number
of broadcast channels are given. In practice, the data access
frequencies may vary as time advances. For example, the ac-
cess frequencies of the traffic data increase drastically during
rush hours and decrease beyond the rush hours. Clearly, with-
out adapting to the change of access frequencies, the broad-
cast program determined off-line will unavoidably lead to de-
graded performance. Thus, with the broadcast programs gen-
erated by [14], it is important for the broadcast programs to
dynamically adapt to the change of the data access frequen-
cies so as to retain the performance of data broadcasting. This
is the very problem that we shall address in this paper.

The problem we study can be best understood by the il-
lustrative example in table 1. Assume that the data items R;,
1 < i < 11 are of the same size and the number of broad-
cast channels is 4. Denote that the access frequency of data
item R; as P.(R;). Four sets of access frequencies of data
items are given in table 1 and drawn in figure 2 for clarity.!
The average expected delay in table 1 is obtained by mul-
tiplying the access frequency of each data item by the ex-
pected delay of that data item and summing up the results,
ie., leil dg; - Pr(R;). Same as in [1,19], the expected de-
lay for each data item in the broadcast disk i is formulated
as Zi\/’:l (N; — x)/Nj, where N; is the number of data items
allocated in the broadcast disk i. It can be verified that the
expected delays of data items Rj, R3, Rs; and Rg in fig-
ure 1 are dg, = (1 4+0)/2 = 05,dg;, = 2+ 1+0)/3,
dre = 2+ 1+4+0)/3 and dg, = (2 + 1 + 0)/3, respectively.

At time ty, with the access frequencies of data items and
the number of broadcast channels given, the initial alloca-
tion trees obtained by the work in [14] is shown in fig-
ure 1. The average expected delay of data items at time 7y
is Z}il dg, - Pr(R;) = 0.8712. Assume that the allocation
tree will remain the same as the access frequencies of data
items vary with time. With the allocation tree determined at
time #(, the average expected delay of data items at time #4
is Z}il dg; - P:(R;) = 0.7371. Notice that with the access
frequencies changed, this average expected delay at time #4 is

I The access frequencies of data items are generated by Zipf distribution
which will be described later in this paper.
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much larger than its optimal value? (which is 0.5557 in this
case). Thus, it is an important issue to dynamically adjust the
broadcast program to reflect the change of access frequencies.
Consequently, date items should be moved among levels of a
given allocation tree to adapt to the change of access frequen-
cies of data items.

In this paper, by shuffling data items among different levels
in the allocation tree, we devise an algorithm to dynamically
adjust the broadcast programs in response to the change of
data access frequencies. This algorithm is referred to as al-
gorithm DL (standing for dynamic leveling). Clearly, a naive
approach to reach a new configuration would be re-executing
the algorithm in [14] again, which is however costly. Algo-
rithm DL is so designed that the new configuration for effi-
cient broadcast programs can be reached with the purpose of
minimizing the number of data movements. Notice that once
the change of access frequencies is larger than the predeter-
mined value (Such a value is called fluctuation factor), algo-
rithm DL should be executed to dynamically adjust broadcast
programs. Explicitly, the process of algorithm DL can be de-
composed into two phases, namely (1) the casual adjustment
phase and (2) the fine adjustment phase. In the casual adjust-
ment phase, algorithm DL reaches an initial adjustment for
data items among broadcast channels. Then, for fine tuning,
algorithm DL is designed to adjust the data items between
neighboring levels in the fine adjustment phase with the ob-
jective of minimizing the total cost of these two neighboring
levels. Performance of algorithm DL is analyzed and a sys-
tem simulator is developed to validate our results. Sensitivity
analysis on several parameters, including the number of data
items, the number of broadcast disks, and the variation of ac-
cess frequencies, is conducted. It is shown by our simulation
results that the broadcast programs achieved by algorithm DL
are of very high quality and are in fact very close to the op-
timal ones. This feature and the efficiency of algorithm DL
justify the practical importance of algorithm DL.

The rest of this paper is organized as follows. Problem
description is given in section 2. In section 3, we develop
algorithm DL to adjust the allocation tree to reflect the change
of access frequencies. Performance studies are conducted in
section 4. This paper concludes with section 5.

2. Problem description

Table 2 shows the descriptions of symbols used in this paper.
Denote the total number of data items as n, and a data item as
R;, 1 <i < n. The number of broadcast disks in a broadcast
disk array is K. Recall that P;(R;) is the access frequency of
R; and Y}, P:(R;) = 1. Theoretically, generating a broad-
cast program can be viewed as a partition problem for data
items. Given the number of broadcast disks in a disk array
and the access frequencies of all data items, we shall deter-
mine the proper set of data items that should be allocated to
each broadcast disk in a broadcast disk array with the purpose

2 Such optimal values can be obtained by exhaustive searches for broadcast
programs, and will be used for comparison purposes in this paper.
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Table 1
Access frequencies of data items.

Time Access frequency Average expected delay
Pr(Ry)  P(Ry)  P(R3) P(Rg) P(Rs) P(Rg) Pr(Ry)  Pe(Rg)  Pr(Ro)  Pr(Ryp) Pr(Ryp)  infigure 1 optimal
n 0.126 0.123 0.116 0.11 0.10 0.095 0.0869  0.0777  0.0673 0.055 0.0388 0.8712 0.8712
12} 0.16 0.152 0.137 0.122 0.10 0.09 0.0763  0.061 0.0458 0.0305 0.0152 0.8338 0.7805
1 02226 0201 0163 0129 009 007 0.0504 0.0323 0.0181  0.008 0.002 0.7746 0.7148
14 0.276 0.239 0.194 0.102 0.08 0.05 0.0298  0.0153  0.0064 0.0019 0.0002 0.7371 0.5557
0.3 This paper investigates the problem of adjusting the broad-
G\ = 4| cast program to match the access frequencies of data items.
. 0.25 N ‘0\ © 12 In order not to distract readers from the main theme of this
§ 0.2 . A\ = 3 paper for dynamically adjusting broadcast programs, readers
3 > t4 interested in the details of collecting access frequencies are
L 015 referred to [6,7,18,23]. Once the change of access frequen-
@ cies is larger than the predetermined value, algorithm DL will
§ 01 be executed to reach the new configuration close to the op-
< timal one. Figure 3 shows the optimal allocation trees with
0.05 the access frequencies given in table 1. In accordance with
the access frequencies of data items at time #; and the num-
] ber of broadcast channels given, the allocation tree was deter-
0 12 1ined by the algorithm in [14]. It can be seen in figure 3, at
data item time 1, 13 and 14, the optimal allocation trees differ from the
Figure 2. Data access frequencies vary as time advances. one at time #; due to the change of access frequencies. Con-
sequently, date items should be moved among levels within
the given allocation tree in response to the change of access
Table 2 frequencies of data items. Clearly, such movements have an
Description of symbols. impact on the average expected delay of all data items. The
Description Symbol problem we shall study in this paper can be stated as follows.
Number of broadeast disks in a broadcast disk array K Problem of adjusting allocation trees. Given an allocation
Number of data items within broadcast disk i A Ni tree, we shall adjust data items among the broadcast disks
The expected delay of data items within broadcast disk i d; ’ R X o
The jth data item R; when the access frequencies vary with the purpose of mini-
The access frequency of data item R; P:(R;) mizing the expected delay of data items.

of minimizing the average expected delay of all data items
(.e., Z;’:l dg, - Pr(R;)). The problem of generating broad-
cast programs for K broadcast channels can be viewed as a
discrete minimization problem: Given a list of n data items
with their access probabilities, partition them into K parts so
that the average expected delay of all data items is minimized.
The minimization problem is known to be NP-hard [11]. As
pointed out in [14], a broadcast program for a broadcast array
of K broadcast disks can be represented as a channel alloca-
tion tree with a height of K. Note that the leaf nodes in the
same level of the allocation tree correspond to a set of data
items to be put in the same broadcast disk.

To facilitate the presentation of the costs for an allocation
tree, we have the following definition.

Definition 1. Suppose that level v in the allocation tree has

Jj—i+1dataitems, R;, Ri11, ..., R;. The cost of level v in
an allocation tree is defined as C; ; = ,J(:fl((j —i+1)—
k/(G—i+1) Zé:i P:(R;). In essence, the value of Cj; is

related to the average expected delay of leaf nodes in level v.

With the problem described above, we should devise an al-
gorithm to determine the level of the allocation tree to start the
adjustment and identify the movements of data items among
levels in the allocation tree.

3. Algorithm DL: adjusting allocation tree by dynamic
leveling

In section 3.1, we devise algorithm DL to adjust allocation
trees which explores the features of the casual adjustment and
the fine adjustment. Then, the execution scenario of algorithm
DL is illustrated in section 3.2.

3.1. Design of algorithm DL

We devise in this paper an algorithm, referred to as algorithm
DL, to dynamically adjust the broadcast programs by shuf-
fling data items among different levels in the allocation tree.
The process of algorithm DL can be decomposed into two
phases, namely (1) the casual adjustment phase and (2) the
fine adjustment phase. In the casual adjustment phase, algo-
rithm DL moves data items among levels so as to enable the
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(a) The optimal allocation tree at t2

(b) The optimal allocation tree at t3

(c) The optimal allocation tree at t4

Figure 3. The optimal allocation trees under different times.

costs of most levels in the allocation tree to be smaller than
or equal to average cost. Then, for fine tuning, algorithm DL
adjusts the data items between neighboring levels with the ob-
jective of minimizing the total cost of these two neighboring
levels. Note that algorithm DL is greedy in nature and is of
time complexity O(K + n). The algorithmic form of algo-
rithm DL is described below.

Algorithm DL.
Input: The status table (S7') with K rows, where K is the
number of broadcast disks in a broadcast disk array.
Output: The resulting allocation tree.
begin
1. for each row i in table ST
2. ST@)-D=S8T@)-C —ST@) - P;
3. ST(@@) - G = false; /* ST(i) - G is the flag for casual
checking*/
/*Array § has K — 1 elements which record the cost
difference between two neighboring level*/
4. for each element / in array &
S[i] =|ST@{)-C—=ST@i+1)-C|
6. casual_checking = 0;
/*The casual adjustment phase*/
7. Choose the row i from table ST such that ST(i) - D

d

is maximal
8. repeat
9. begin
10. if (i ==1)
11. casual_tunning(i, i + 1);
12. elseif (i == k)
13. casual_tunning(i, i — 1);
14. else
15. {choose the row j where j € (i — 1,i + 1)
such that ST(j) - G is false and 48[ j] is maximal,
16. casual_tunning(i, j);}

17. casual_checking++;
18.  update table ST and array § accordingly;

19. choose the row i from ST where ST (i) - C is maximal
and ST (i) - G is false;

20. end

21. until casual_checking== K — 1;

/*the fine adjustment phase*/

22. Construct a priority queue PQ;
/*A priority queue is a data structure which returns the
element with the minimal value when one is to remove
an element from the priority queue*/
23. for each element i in array §
24, Insert §[i] into the PQ;
25. while (PQ is not empty)
26. begin
27. remove the element i from PQ;
28. i (STG@)-C <STE+1)-0)
/*if there is no movement between level i and level
i + 1, moving equals to —1%/

29. moving=push_up(i, i + 1);
30. else
31. moving=push_down(i, i 4+ 1);

32. if (moving= —1) /*some data movements occur*/

33. Update the elements in PQ and table ST accordingly;
34. end

end

Procedure casual_tuning(level i, level j)
{
sort those data items in level i according their access
probabilities;
if i <)
begin
while (ST(i) - C > Zszl ST(@{)-C/K)
move the data item in the rightest side of level i to
level j and update ST (i) - C accordingly;
end
else
begin
while (ST(i) - C > Z;K=1 ST(@{)-C/K)
move the data item in the leftest side of level i to
level j and update ST'(i) - C accordingly;
end

Table ST (standing for status table) is created to record the
cost of each level in the allocation tree, and the number of
rows in table ST is equal to the number of broadcast disks in
a broadcast disk array (from line 1 to line 3). Note that in
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table ST, the value of ST (i) - P is the cost of nodes in level i
previously, whereas the value of ST'(i) - C is the cost of nodes
in level i when the latest access frequencies were collected.
ST (i) - D stores the cost difference associated with level i,
ie., ST(i) - C — ST(@) - P. Also, ST(i) - G is used to indi-
cate whether the casual tuning is performed or not. Array §
has K — 1 elements that record the cost difference between
two neighboring levels (from line 4 to line 5). As can be seen
in causal adjustment phase (i.e., from line 7 to line 21), al-
gorithm DL makes sure that most levels of the allocation tree
satisfy the requirement of the casual adjustment. Since the ca-
sual adjustment intends to let the total cost of allocation tree
be evenly allocated to all levels, it is possible that some data
nodes would move back and forth between neighboring lev-
els. For execution efficiency, the number of runs for the casual
adjustment is limited to be K — 1. Procedure casual_tuning
is developed to move data items in level i so as to satisfy the
purpose of the casual adjustment.

By exploiting the casual adjustment, data items are roughly
allocated to each level of an allocation tree with the costs of
most levels are smaller than or equal to average cost. Then,
algorithm DL employs the fine adjustment to adjust data items
between neighboring levels. As can be seen from line 22 to
line 34 of algorithm DL, neighboring levels are examined on
finding potential movements with the purpose of minimizing
the total cost of neighboring levels. Specifically, in line 27 of
algorithm DL, the sequence of performing the fine tuning is
determined by identifying the largest cost difference among
those between neighboring levels (i.e., the largest value in §).
After identifying the neighboring levels (e.g., level i and level
i + 1) to perform the fine tuning, one should determine the
data movements between these levels. Note that there are two
kinds of movements, i.e., pushing up and polling down. Judi-
ciously applying these movements is able to reduce the total
cost of these two neighboring levels. Clearly, if the cost of
level i is smaller than level i + 1, we should move data items
from level i 4 1 to level i and vice versa. After deciding the
direction of data movements, we should determine the num-
ber of data items to move among levels in an allocation tree.
Explicitly, we develope procedure push_up and pull_down to
determine such a number. To facilitate the presentation of
algorithm DL, the procedures of push_up and pull_down are
described in detail later. From line 26 to line 34, algorithm
DL adjusts data items in neighboring levels iteratively with
the objective of minimizing the total cost of neighboring lev-
els until there is no further adjustment required (i.e., queue
PQ is empty). As such, the allocation tree is adjusted so as to
minimize the total cost of the allocation tree.

Once we identify the direction of data movements to per-
form, we should determine the number of data items to move
among levels. Suppose that data items in each level of an allo-
cation tree are sorted according to the descending order of ac-
cess frequencies. In order to evaluate the cost reduction by the
movement of pushing up, we have the following definition.

Definition 2. Suppose that level i has k — i + 1 nodes,
Ri,Rit1,..., Ry and level i + 1 has j — k data nodes,
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Ri+1, Req2, - .., Rj. The reduction gain achieved by pushing
p nodes (i.e., Rg+1, Ret2, ..., Reqp) up to level i, denoted
by u(p), can be formulated as u(p) = (Cix + Cis1,j) —
(Ciktp + Craps1,j)-

In light of definition 2, we devise a procedure push_up to
identify the group of nodes in level i + 1 to be moved up-
ward to level i so as to maximize the reduction gain between
these two neighboring levels. Figure 4 shows the scenario of
pushing up.

Procedure push_up(level i, level i + 1)

{
Determine p* such that u(p*) = max;,<j—r{u(p)};
/*determine the maximal value of u(p) when p varies
from 1 to j — k*/

ifu(p*) >0

push nodes Riy1, Ri42, ..., Riyp to level i in the tree;
else

p* = —1; /*no movement is performed since there is

no cost-effective movement*/

Similar to the operation of pushing up, we have definition 3
and procedure pull_down below to evaluate the group of nodes
in level i to be moved downward to level i 4+ 1 with the pur-
pose of reducing the total cost of these two neighboring levels.
Figure 5 illustrates the scenario of pulling down.

Definition 3. Suppose that level i has k — i + 1 data nodes,
Ri,Rit1,..., Ry and level i + 1 has j — k data nodes,
Ri+1, Req2, - .., Rj. The reduction gain achieved by pulling
p nodes (i.e., Rg—p+1, Re—p+2, ..., Ry) down to level i + 1,

denoted by d(p), can be formulated as d(p) = (Cix +
Ci+1,j) — (Cig—p + Cr—p+1,5)-

Push up these nodes

Figure 4. A scenario of pushing up.

Figure 5. A scenario of pulling down.
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Table 3
The profile of an illustrative example.
Time Ry Ry R3 Ry Rs Rg R7 Rg Rg Rio R11
1 0.126 0.123 0.116 0.11 0.1 0.095 0.0869 0.0777 0.0673 0.055 0.0388
1) 0.276 0.239 0.194 0.102 0.08 0.05 0.0298 0.0153 0.0064 0.0019 0.0002
Table 4

Procedure pull_down(level i, level i + 1)

{
Determine p* such that d(p*) = maxigp<k—i+1{d(p)};
/*determine the maximal value of d(p) when p varies
from1tok —i+ 1%/
ifd(p*) >0

pull nodes Ry_p*+1, Rk—p*42, ..., Ry downlevel i + 1

in the tree;
else
p* = —1; /*no movement is performed since there is

no cost-effective movement*/

}

3.2. An example execution scenario of algorithm DL

Consider the profile in table 3 where the number of data items
n is 11 and the number of broadcast disks is 4. The initial al-
location tree is shown in figure 6(a), where the allocation tree
is generated according to the access frequencies at #1. The
values in table ST and their changes made in accordance with
the execution of algorithm DL are shown in table 4. First, al-
gorithm DL chooses the maximal ST'(7) - D to start the casual
adjustment. In this example, level 1 is chosen since ST (1) - D
is the largest among all levels. As can be seen in table 4(a),
since the cost of level 1 is larger than the average cost of all
levels (i.e., ST(1) - C = 0.2575 > Z?:l ST@) - C/4 =
(0.2575 4 0.376 + 0.0951 4 0.0085)/4 = 0.184275), data
items in level 1 should be pulled down to level 2 to meet
the criterion of the casual adjustment. Thus, data item R»
is moved to level 2 and table ST is updated accordingly. Fol-
lowing the same procedure, algorithm DL performs proce-
dure casual_tuning iteratively until casual_checking equals
K — 1 (ie.,, 4 — 1 = 3). Table 4(b) shows the values of
table ST and the corresponding values in array § after the ca-
sual adjustment. The configuration of the allocation tree in
figure 6(a) becomes the one shown in figure 6(b). Then, in
the phase of the fine adjustment, each element of array § with
its value is inserted into queue PQ and algorithm DL performs
the fine tuning between neighboring levels. From table 4(b),
since §[3] is the largest, the fine adjustment will be executed
between level 3 and level 4. As ST(3) - C is smaller than
ST(4) - C, those data items in level 4 should be pushed up to
level 3. It can be verified that data item Rs5 should be pushed
up to level 3 so as to reduce the total cost of level 3 and level 4.
Table 4(c) shows the values of table ST and the corresponding
values in array § after the fine tuning is performed between
level 3 and level 4. Figure 6(c) shows the configuration of
the allocation tree after the first fine tuning. From table 4(c),
the next fine tuning is performed between level 2 and level 3.
Following the fine adjustment, algorithm DL stops when there
is no further data movement required. Table 4(d) shows the

An execution scenario under algorithm DL. (a) Run 1 of algorithm DL,
(b) table ST after the phase of the casual adjustment, (c) table ST after the
first fine tuning is performed, (d) the final result of table ST

(a)

Level i STG) - P ST(i) - C ST(i)- D ST(i)- G
1 0.1245 0.2575 0.133* false
2 0.326 0.376 0.05 false
3 0.25 0.0951 —0.1549 false
4 0.1611 0.0085 —0.1526 false
(b)
Level i ST@) - P ST@) - C ST(@) - D ST@G) -G 1)
1 0.1245 0 —0.1245 true 0
2 0.326 0 —0.326 true 0.148
3 0.25 0.148 —0.102 true 0.4028*
4 0.1611 0.5508 0.3897 false
(©
Level i ST(i)- P ST@i)-C ST(i)- D ST(i) -G 8
1 0.1245 0 —0.1245 true 0
2 0.326 0 —0.326 true 0.376*
3 0.25 0.376 0.126 true 0.117
4 0.1611 0.259 0.0979 false
)
Level i STG) - P ST(i) - C ST(i)- D ST(i)- G
1 0.1245 0 —0.1245 true
2 0.326 0.2165 —0.1095 true
3 0.25 0.252 0.002 true
4 0.1611 0.1072 —0.0539 false

values of table ST after performing algorithm DL. The final
allocation tree is shown in figure 6(d). Note that in this case
the final allocation tree happens to be the optimal one shown
in figure 3(c).

4. Performance evaluation

In order to evaluate the performance of algorithm DL, we
have implemented a simulation model of the broadcast en-
vironment. Specifically, the simulation model is described in
section 4.1. Then, we examine the impact of adjusting broad-
cast programs in section 4.2. Performance of algorithm DL is
analyzed in section 4.3. In section 4.4, algorithm DL and the
work in [14] is comparatively analyzed.

4.1. Simulation model

Table 5 summarizes the definitions for some primary simula-
tion parameters. The number of data items to be broadcasted
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(a) Allocation tree corresponding to Table 4a.

(b) Allocation tree corresponding to Table 4b.

(c) Allocation tree corresponding to Table 4c.

(d) The resulting allocation tree.

Figure 6. An execution scenario of algorithm DL: (a)—(c) the adjustment of the allocation tree, and (d) the resulting allocation tree.

Table 5
The parameters used in the simulation.

Notation Definition

n total number of data items to be broadcast
K number of broadcast disks in a broadcast disk array
6 Zipf parameter

f fluctuation factor

no_adjust scheme which does not adjust the broadcast program
OPT scheme to generate the optimal broadcast program
VEK scheme to generate the broadcast programs statically

in a broadcast disk array is denoted by n and the number of
broadcast disks in a broadcast disk array is K. The access fre-
quencies of broadcast data items are modelled by the Zipf dis-
tribution. Let P.(R;) = ((N — i)/N)G/ngzl((N — j)/N)?,
where 6 is the parameter of Zipf distribution [5]. It can be ver-
ified that the access frequencies become increasingly skewed
as the value of 6 increases. Specifically, the initial Zipf pa-
rameter, denoted by 6y, is set to 0.5. BOcyrrent 1s the Zipf pa-
rameter for the current access frequencies, whereas Oprevious
is the Zipf parameter collected last. The number of f called
the fluctuation factor is used to determine whether algorithm
DL will be executed or not. If the difference between Gcyrrent
and Oprevious 1s larger than the value of f, DL will be exe-
cuted to adjust the broadcast program in order to retain the
performance. For comparison purposes, a scheme, no_adjust,
which does not adjust the broadcast program in response to
the change of access frequencies, is implemented. To ob-
tain the optimal solutions for comparison, we implemented
scheme OPT by using the technique of branch and bound
[11]. For interest of brevity, the implementation details of

OPT are omitted in this paper. Notice that though scheme
OPT is able to find the optimal broadcast program, the exe-
cution time of OPT is prohibitively large due to its exponen-
tial time complexity. For comparison purposes, we also im-
plemented scheme VFX, which is able to generate broadcast
program with the number of broadcast disks and the number
of data items given.

4.2. The impact of adjusting broadcast programs

To show the advantage of adjusting broadcast programs when
the access frequencies vary, we set the value of n to 50, the
value of K to 4 and the value of f to 1. The expected delays of
data items under no_adjust, DL and OPT are examined with
the value of 6 varied. Without loss of generality, assume that
all the data items are of the same size which is used as one unit
of waiting time. The initial broadcast program is generated by
scheme OPT. The resulting expected delays of data items by
running no_adjust, DL and OPT are shown in figure 7. It can
be seen from figure 7 that the access frequencies become in-
creasingly skewed as the value of 6 increases and the average
expected delay of DL decreases since the broadcast program
is properly adjusted by DL in accordance with the change of
access frequencies of data items. Note that the difference be-
tween expected delay of DL and that of no_adjust becomes
larger as the 6 increases, indicating the necessity of adjust-
ing broadcast programs while the access frequencies of data
items vary. It is worth mentioning that though algorithm DL
is applied in 5 times, the expected delays of DL and OPT are
still very close in figure 7, showing the good quality of con-
figurations adjusted by algorithm DL.



362

5.5

5| TE—a g = —
> N
1]
O = 45 N
T E \&
T 5
28 4 N
[T o
o 3 \)lg\
%8 3.5 % DL "Ny
w , e

s © No_adjust N

4 OPT \*\\*
25
1 2 3 4 5 6 7

Zipf parameter

Figure 7. The average expected delays of no_adjust, DL and OPT with the
value of Zipf parameter varied.

4.3. The performance of algorithm DL

We now investigate the quality of solutions obtained by DL
and OPT. Note that algorithm DL will dynamically adjust the
broadcast program while the Zipf parameter varies. In order
to evaluate the impact of increasing the value of f, we set
the value of n to 50 and the value of K to 4. Figure 8 shows
the performance results of OPT and DL. As can be seen in
figure 8, the difference between expected delay of DL and that
of OPT is almost negligible, showing the very high quality of
the solutions obtained by algorithm DL. Note that as the value
of f increases, the solutions obtained by algorithm DL are all
very close to the optimal ones, indicating the robustness in
algorithm DL.

Next, the experiments of varying the value of K for OPT
and DL are conducted where we set the value of n to be 50
and the value of f to be 2.5. Figure 9 shows the average
expected delays of OPT and DL with the value of K var-
ied. As the value of K increases, the expected delays of OPT
and DL decrease. This agrees with our intuition since as the
number of broadcast channels increases, the number of data
items in each broadcast channel decreases, thereby reducing
the expected delay of data items. Notice that the difference
between the expected delay of DL and that of OPT is very
small, again showing the good quality of solutions obtained
by DL. The performance of DL with the value of n varied is
examined where we set the value of K to 5 and the value of
f to 2.5. The average expected delays of OPT and DL with
the value of n varied are shown in figure 10. As the number
of data items to be broadcast increases, the expected delays
of data items resulted by OPT and DL increase linearly as we
anticipate. Also, the difference between the expected delays
resulted by OPT and DL is negligible.

4.4. Comparative analysis for VFX and DL

In [14], VFX is designed for the situation where the data ac-
cess frequencies and the number of broadcast channels are
given. The experimental results show that the broadcast pro-
gram generated by VFX is of very high quality. However,
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Figure 10. The average expected delays of OPT and DL with the value of n
varied.

in practice, the data access frequencies may vary as time ad-
vances. It is important for broadcast programs to adapt to
the change of the data access frequencies so as to retain the
performance of data broadcasting. In this section, our exper-
imental results show that algorithm DL is more efficient to
achieve new configuration without re-executing VFX .

To evaluate the impact of increasing the value of n, we set
the value of K to 15 and the value of f to one. Figure 11
shows the execution times incurred by VF and DL. In fig-
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ure 11, the execution times incurred by VFX and by DL in-
crease as the number of data items increases. Note that the
execution time incurred by VFX is larger than that incurred
by DL, showing that DL is able to achieve the new configu-
ration more efficiently when the data access frequencies vary.
It is also observed that the curve of VFX in figure 11 is not
as smooth as that of DL due to the lack of dynamic allocation
adjustment of VFK .

Next, we examine the impact of increasing the value of K.
Without loss of generality, we set the value of n to 5 and the
value of f to one. The execution times incurred by VFX and
DL with the value of K varied are shown in figure 12. No-
tice that when the value of K is smaller than 5, the execution
time incurred by VFX is smaller than that incurred by DL.
Howeyver, as the value of K increases, the execution time in-
curred by VFX is significantly larger than that incurred by
DL. This indicates that when the value of K increases, the
advantage of algorithm DL over the approach of re-executing
algorithm VFX increases. In all, algorithm DL is able not
only to adjust the broadcast program efficiently in response
to the change of access frequencies of data items but also to
produce the solutions of very high quality. Note that the capa-
bility of adjusting broadcast programs dynamically should be
viewed as an enhanced feature rather than a limitation. In fact,
when the value of f is set to be infinite, the initial broadcast
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program generated by VFX will not be adjusted according to
the change of access frequencies. Thus, the performance de-
grades as the access frequencies vary, justifying the necessity
of algorithm DL.

5. Conclusions

We explored in this paper the problem of adjusting broadcast
programs to cope with the data access frequencies varied. By
exploiting the features of the casual adjustment and the fine
adjustment, we developed a heuristic algorithm DL to adjust
broadcast programs when the access frequencies of data items
change. Performance of algorithm DL was analyzed and a
system simulator was developed to validate our results. Sen-
sitivity analysis on several parameters, including the number
of data items, the number of broadcast disks, and the varia-
tion of access frequencies, was conducted. It was shown by
our simulation results that the broadcast programs achieved
by algorithm DL are of very high quality and are in fact very
close to the optimal ones. This feature and the efficiency of al-
gorithm DL justify the practical importance of algorithm DL.
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