
Intelligent Cache Capacity Allocation and Relocation Schemes in a Mobile
Proxy

Jiun-Long Huang and Ming-Syan Chen
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan, ROC

E-mail: jlhuang@arbor.ee.ntu.edu.tw, mschen@cc.ee.ntu.edu.tw

Abstract

In a mobile environment, since a mobile user is able to
freely move around these cells, an inter service area hand-
off occurs when a user moves from the service area of one
proxy to that of another. Some cache misses may be in-
curred by inter service area handoffs since the data objects
interest may not be cached in the new proxies. To address
this problem, we propose in this paper a novel cache ca-
pacity allocation scheme to combine the advantages of the
prior cache capacity allocation schemes. A cache reloca-
tion scheme is then proposed on the basis of the designed
cache capacity allocation scheme to address the problem
caused by user mobility.

Keyword: Cache capacity allocation, cache relocation,
mobile proxy, mobile computing

1 Introduction

The rapid growth of wireless communication has re-
sulted in strong demand of WWW access for mobile de-
vices, and hence attracted much research attention on sys-
tem design to support WWW access in wireless and mobile
environments [2][6]. The characteristics of mobile envi-
ronments and the long access latency caused by the low
speed wireless communication call for the design of new
mobile proxies [4][5].

Figure 1 shows a typical mobile environment with mo-
bile proxies. In a cellular network architecture, the whole
service area of a mobile environment is divided into sev-
eral cells. A mobile proxy is in charge of servicing several
adjacent cells, and these cells form the service area of the
mobile proxy. These mobile proxies are connected by a
high speed, fixed network, and are able to access Internet
via gateways. In a mobile environment, since a mobile user

Mobile Proxy

Service Area

Internet

Mobile Proxy

Service Area

Gateway

Router

Figure 1. Network architecture

is able to freely move around these cells, aninter service
area handoffoccurs when a user moves from the service
area of one proxy to that of another. Some cache misses
may be incurred by inter service area handoffs since the
data objects of interest may not be cached in the new prox-
ies. The problem of cache relocation deals with how to
move the cached data objects from the original proxy into
the new one when an inter service handoff occurs.

In addition, the problem of cache capacity allocation
deals with how to organize the cache capacity of a proxy
to fulfill the given requirements. Two categories of cache
capacity allocation schemes, global and personal cache ca-
pacity allocation schemes, have been employed in the lit-
erature. Although global cache capacity allocation is able
to optimize the overall performance, it may cause the prob-
lem of fairness especially to the users with different ac-
cess interest from others. In addition, it is difficult to de-
sign a cache relocation for global cache capacity alloca-
tion, and therefore, the system performance degrades due
to the cache misses incurred by inter service area handoffs.
On the other hand, authors in [4] and [5] had proposed a

1



personal cache capacity scheme by allocating a personal
cache, which is exclusively used by its owner, for each
user in order to facilitate cache relocation. However, due
to the characteristics of personal cache capacity allocation,
the overall cache capacity of the proxy might not be fully
utilized.

Consequently, we develop in this paper a Hybrid Cache
capacity Allocation scheme (referred to as scheme HCA) to
combine the respective merits of both schemes. Explicitly,
the whole cache capacity is first divided into two pools, a
global pool and a personal pool. The global pool stores data
objects of high interest from the system’s respect. To avoid
the fairness problem in global cache capacity allocation,
each user is assigned a personal cache allocated in the per-
sonal pool to store data objects which are hot from the sys-
tem’s respect but of the user’s interest. Moreover, personal
cache of each user is shared with others, and each data ob-
ject is cached at most once in a proxy in order to avoid the
problem of personal cache capacity allocation. Each user
is also assigned a CacheInfo which records the data ob-
jects of his or her interest. These data objects recorded in a
CacheInfo are the candidates to be relocated when an inter
service area handoff is incurred by the owner of the Cache-
Info. Therefore, with the aid of CacheInfoes, we devise
a cache relocation scheme on the basis of scheme HCA
which is able to cooperate with a moving path prediction
algorithm to eliminate possible cache misses incurred by
inter area service handoffs.

The rest of this paper is organized as follows. The re-
lated work is described in Section 2. The design of the
proposed cache capacity allocation scheme is presented in
Section 3. The proposed cache relocation scheme is de-
scribed in Section 4. Finally, Section 5 concludes this pa-
per.

2 Related Work

2.1 Cache Capacity Allocation

The problem of cache capacity allocation deals with
how to organize the cache capacity of a proxy to fulfill
the given requirements. Cache capacity allocation schemes
used in prior studies can be categorized as the following
two categories.

Global cache capacity allocation:Global cache capac-
ity allocation is a common assumption in most research
studies of proxies [1][8]. In global cache capacity allo-
cation, the whole cache capacity is shared by all users.
Data objects which are hot in global view will be cached,
and those which are not hot enough will be replaced. The
advantage of global cache capacity allocation is that it
optimizes the overall performance, and hence, is able to
achieve good overall system performance. However, the

fairness issue is a problem. Consider a user with distinct
access behavior. The data objects of the user’s interest are
of high likelihood to be replaced since global cache capac-
ity allocation only concerns overall system performance.
Hence, the user’s average access time is longer than oth-
ers’. In addition, it is difficult to design cache relocation
schemes in global cache capacity allocation since global
cache capacity allocation only concerns the overall cache
utilization. Therefore, several cache misses may occur due
to inter area service handoffs.

Personal cache capacity allocation:In personal cache
capacity allocation, each user is allocated with a cache ca-
pacity dedicated to him or her with a predetermined size
[4][5]. The advantage of personal cache capacity alloca-
tion is that it not only avoids the fairness problem caused by
global cache capacity allocation, but also facilitates cache
relocation to be described later in this subsection. How-
ever, the problems of personal cache capacity allocation
are twofold. First, many copies of one data object may
be stored in the proxy, hence reducing the storage utiliza-
tion and the scalability of the proxy. Second, each personal
space is of equal size and is exclusive for its owner. This
arrangement wastes the storage if the required size of the
personal cache of a user is smaller than that of allocated
one. On the other hand, the personal cache is not efficient
enough if the required size of the personal cache of a user
is larger than that of allocated one.

2.2 Cache Relocation

When an inter service handoff occurs, some cache
misses may occur since the data objects of the user’s in-
terest may not be cached in the new proxy. The problem of
cache relocation deals with how to move the cached data
objects from the original proxy into the new one when an
inter service handoff occurs.

The issue of cache relocation was addressed in [5]. The
system designed in [5] employed personal cache capacity
allocation and a cache relocation scheme was proposed on
the basis of personal cache capacity allocation. To facilitate
the proposed cache relocation scheme, a learning automata
was designed [5] to capture the users’ moving patterns and
to predict the users’ next movements among cells. When
sensing that an inter service handoff is likely to be triggered
by a user, the system uses the learning automata to deter-
mine the probabilities of all adjacent proxies where the user
may move. Then, the system moves the objects cached in
the user’s personal proxy to these possible new proxies ac-
cording to the obtained probabilities. The amount of the
cached objects that the system moves to each proxy is in
proportion to the probability that the user moves into the
proxy.

2



3 Design of Scheme HCA

We propose in this section scheme, to combine the ad-
vantages of global and personal cache capacity allocation
schemes. The characteristics of scheme HCA are as fol-
lows.

• Each mobile user is allocated a personal cache to store
interesting data objects for this mobile user.

• Each allocated personal cache is not for its owner’s
exclusive use. That is, data objects cached in personal
spaces can be accessed by other users, and the unused
space in each personal cache can be lent to other users
if necessary.

• Each data object is stored at most once in the proxy at
the same time.

3.1 Organization of the Cache Capacity

In scheme HCA, the whole cache capacity (denoted as
CTotal) is logically divided into two portions, a global pool
and a personal pool, with capacityCGlobal andCPers., re-
spectively. Each cached object may be in the PERSONAL,
GLOBAL or UNPOINTED state. A cache replacement
policy [1][8] is chosen as the underlying cache replacement
policy. Since most cache replacement policies employ an
evict function to determine the cache priorities of all data
objects, each cached data object here is also associated with
an access information block to store the access informa-
tion of the object used by the underlying cache replace-
ment policy to calculate cache priority of the data object.
An access information block associated with a data object
is called asystem-wideaccess information block since it
stores the access information from the system’s point of
view. The CacheInfo, which is stored in the personal pool,
is assigned to each user using the proxy to store meta data
of its owner. In addition, a personal pool also stores data
objects in the PERSONAL or UNPOINTED states. Simi-
larly, a global pool is the place to store data objects in the
GLOBAL states.

Figure 2 shows the relationship of CacheInfoes, data ob-
jects in the global or personal pools. The CacheInfo for
each useri consists ofnPtr. pointers pointing tonPtr.

data objects which are of topnPtr. personal cache prior-
ities from useri’s respective. These pointed data objects
are the candidates to be relocated when useri triggers an
inter service area handoff. The proposed cache relocation
scheme employing CacheInfoes is described in Section 4.
If a pointer points to one data object, the state of a pointer is
set to be the state of the pointed data object. Otherwise, the
state of the pointer is UNUSED. Suppose that the size of a
CacheInfo issize(Info) and each user isassigneda per-
sonal cache with capacitysize(Pers.Cache). Then, the

D2

x

D1

D5

x
x

D3

D4

Cache Info
of User i

x
x

x
x

Cache Info
of User j

G
G
S
U
S
P
U
U

G
G
U
U
G
S
U
U

G

G

S

G

S

D6U

Access Information Block

Figure 2. Cache Info

maximum number of users for using the service of a proxy
with a personal pool with capacityCPers. at the same time
can be formulated as

MaxUserNo =
CPers.

size(Info) + size(Pers.Cache)
.

Let UShared andUPers. be the summations of the sizes
of the data objects in the SHARED and PERSONAL states,
respectively. We also letUShared(i) be the size of personal
cacheusedby useri. Then,UShared(i) can be formulated
as

UPers.(i)

=
∑

∀Dj in the SHARED
state and pointed by
one useri’s pointer

(
size(Dj)

No. of pointers pointingDj

)
.

Consider the example in Figure 2. The size of personal
cache used by user 1 (i.e.,UserPers.(1)) is equal to
size(D3)

2 + size(D5) sinceD3 is pointed by user 1’s and
user 2’s pointers.

Note that the size of personal cacheusedby a user may
be larger than thatassignedto the user, especially when the
number of users in service is smaller thanMaxUserNo.
In addition, each pointer is associated with an access infor-
mation block to store the access information of the pointed
object from useri’s respect used by the underlying cache
replacement policy. An access information block in useri’s
CacheInfo is called apersonalaccess information block of
useri since it stores the access information of the pointed
object from useri’s respect.

3.2 State Transition and Primitive Operations

Figure 3 shows the state transition diagram of each data
object. The state of each data object which is newly cached

3



GLOBAL PERSONAL UNPOINTED

Demote
Not pointed

by any pointer

Promote
Pointed by at

least one pointer

New cached data object

Figure 3. State transition diagram of each
data object

in the proxy is set to be the PERSONAL state. The state
of the data object will be promoted to the GLOBAL state
when the cache priority of a data object in the PERSONAL
state is high enough. Similarly, the state of a data ob-
ject in the GLOBAL state will be demoted to the PER-
SONAL state if the cache priority of the data object is not
high enough. On the other hand, the state of a data ob-
ject in the PERSONAL state will be changed to the UN-
POINTED state if the data object is not pointed by any
pointer. The state of a data object in the UNPOINTED state
will be changed to the PERSONAL state if the data object
is pointed by at least one pointer. Note that only data ob-
jects in the UNPOINTED states will be considered by the
underlying cache replacement policy as the candidates to
be replaced.

We now describe some primitive operations to facilitate
the design of the proposed cache replacement policy.

DropPointer Operation DropPointer is used to drop the
pointer with the least personal cache priority among
pointers in a specified user’s CacheInfo. Given a user
i, operation DropPointer first calculates the personal
cache priorities of the data objects pointed by user
i’s pointers from useri’s respect. Suppose that the
data objectDk is with the least personal cache prior-
ity. Then, the state of the pointer in useri’s CacheInfo
pointingDk is set to be the UNUSED state. The state
of Dk will be set to be the UNPOINTED state ifDk

is not pointed by any pointer. Finally,UGlobal, UPers.

and UPers.(j) for each userj with a pointer in the
SHARED state pointing toDk are recalculated.

InsertPointer Given a pointerp, a data objectDk and a
useri, operation InsertPointer will insertp into user
i’s CacheInfo. First,p is set to pointDk. If the state
of Dk is UNPOINTED, the state ofp andDk are set
to be the PERSONAL states. Otherwise, the state of
p is set to be the state ofDk. Then, pointerp is in-
serted into useri’s CacheInfo. If there is at least one

pointer in the UNUSED state in useri’s CacheInfo,
one of these pointers is removed. Otherwise, opera-
tion DropPointer is activated to drop one of the point-
ers in useri’s CacheInfo.

Demote Operation Demote is invoked to demote the
state of the specified data object, sayDk, from the
GLOBAL state to the PERSONAL state. To demote
Dk, the states ofDk and all pointers pointing to
Dk are first set to be the PERSONAL states. Then,
UGlobal, UPers. and UPers.(j) for each userj with
a pointer pointing toDk are recalculated. Operation
Promote terminates ifUPers. ≤ CPers..

If UPers. > CPers., operator Demote first finds the
user, say useri, with the largestUPers.(i). Then,
operator DropPointer is invoked to drop one of the
pointers in useri’s CacheInfo. UGlobal, UPers. and
UPers.(j) for each userj with a pointer pointing to
Dk are recalculated. The steps mentioned in this para-
graph repeat untilUPers. ≤ CPers..

Promote Operation Promote is used to promote the state
of the specified data object, sayDk, from the PER-
SONAL state to the GLOBAL state. To promoteDk,
the states ofDk and all pointers pointing toDk are
first set to be the GLOBAL states. Then,UGlobal,
UPers. andUPers.(j) for each userj with a pointer
pointing toDk are recalculated. Operation Promote
terminates ifUGlobal ≤ CGlobal.

If UGlobal > CGlobal, operator Promote first finds the
data object, sayDx with the least global cache prior-
ity among all data objects in the GLOBAL states, and
demotesDx by operation Demote.UGlobal, UPers.

andUPers.(j) for each userj with a pointer pointing
to Dk are then recalculated. The steps mentioned in
this paragraph repeat untilUGlobal ≤ CGlobal.

3.3 Cache Replacement Policy

We now describe the proposed cache replacement pol-
icy by considering a scenario that a useri issues a request
to data objectDk. Note that the proposed cache replace-
ment policy for scheme HCA employs a priori cache re-
placement policy to calculate the cache priorities of all data
objects.

Cache Hit

When a cache hit occurs, the system-wide access informa-
tion of Dk is updated. When there is a pointer in useri’s
CacheInfo pointing toDk, the personal access information
of Dk in useri’s CacheInfo is also updated. In addition, if
the state ofDk is PERSONAL, the system will try to pro-
mote theDk to GLOBAL state by operation Promote. On

4



the other hand, if there is no pointer in useri’s CacheInfo
pointing toDk, operation InsertPointer will be invoked to
insert a pointer pointing toDk and with the same state as
Dk into useri’s CacheInfo.

Cache Miss

When a cache miss occurs, the proxy first retrievesDk

from the corresponding data server, returnsDk to useri,
and sets the state ofDk as PERSONAL. Operation In-
sertPointer is then invoked to insert a pointer pointing
to Dk and in the PERSONAL state into useri’s Cache-
Info. The procedure to handle cache misses terminates if
UGlobal + UPers. ≤ CTotal.

If UGlobal + UPers. > CTotal, some data objects
should be replaced since storage space is not enough. If
there are some data objects in the UNPOINTED states,
the data object with the least system-wide cache priority
among them is dropped in turn untilUGlobal + UPers. ≤
CTotal. It is possible thatUGlobal + UPers. is still
larger thanCTotal even when all data objects in the UN-
POINTED states are dropped. Suppose that userj is of

the largestUPers.(j) among all users
(

i.e., UPers.(j) =

max∀ user x{UserPers.(x)}
)

. Under this situation, oper-

ator DropPointer is invoked to drop one of userj’s pointer.
The steps in this paragraph repeat untilUGlobal +UPers. ≤
CTotal.

4 Design of Cache Relocation Scheme

We now design a cache relocation scheme on the basis
of scheme HCA. When an inter area service handoff from
proxyPa to proxyPb is triggered, proxyPb first allocates a
CacheInfo for useri and resets all pointers in the CacheInfo
to be the UNUSED states. The data objects pointed by
pointers in useri’s CacheInfo in proxyPa are considered
to be moved to proxyPb in turn according to their personal
cache priorities.

For each considered data objectDk, the pointer in user
i’s CacheInfo in proxyPa pointing toDk is first set to be
in the UNUSED state. IfDk is not pointed by any pointer
in proxy Pa, the state ofDk in proxy Pa is then set to be
the UNPOINTED state. IfDk has been cached in proxy
Pb, operation InsertPointer is invoked to insert a pointer
pointing toDk in useri’s CacheInfo in proxyPb. If Dk

is not cached in proxyPb, proxyPb automatically issues a
request ofDk for useri. Then, a cache miss onDk occurs
and the procedure to handle cache misses is invoked. Fi-
nally, the space of useri’s CacheInfo in proxyPa is marked
as unused when all pointers in useri CacheInfo in proxyPa

are in the UNUSED states.

In addition, the system can further employ a moving
path prediction algorithm [5][7] to pre-relocate the cached
objects when the users are likely to trigger an inter service
area handoff to reduce the possible cache misses during the
process of relocation.

5 Conclusion and Future Work

In this paper, we proposed scheme HCA which com-
bines the advantages of global and personal cache capac-
ity schemes. In addition, a cache relocation was proposed
based on scheme HCA to eliminate cache misses incurred
by inter service area handoffs.

In our future work, we will design a service ad-
mission control scheme since one proxy can only serve
MaxUserNo users at a time. In addition, a scheme to
dynamically determine the ratio of the sizes of object and
CacheInfo pools will also be designed. We shall extend our
schemes to be applied to mobile transcoding proxies [3].
Finally, we shall conduct several experiments to evaluate
the performance of scheme HCA.

References

[1] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World
Wide Web. IEEE Transactions on Knowledge and Data En-
gineering, 11(1):94–107, 1999.

[2] C. Baquero, V. Fonte, F. Moura, and R. Oliveira. MobiScape:
WWW Browsing under Disconnected and Semi-Connected
Operation. InProceedings of First Portuguese WWW Na-
tional Conference, July 1995.

[3] C.-Y. Chang and M.-S. Chen. Exploring Aggregate Effect
with Weighted Transcoding Graphs for Efficient Cache Re-
placement in Transcoding Proxies. InProceedings of the 18th
IEEE International Conference on Data Engineering, Febu-
rary 2002.

[4] S. Hadjiefthymiades, V. Matthaiou, and L. Merakos. Support-
ing the WWW in Wireless Communications Through Mobile
Agents.ACM Wireless Networks, 7(4):305–313, 2002.

[5] S. Hadjiefthymiades and L. Merakos. Using Proxy Cache
Relocation to Accelerate Web Browsing in Wireless/Mobile
Communications. InProceedings of the 10th International
Conference on World Wide Web, pages 26–35, May 2001.

[6] B. C. Housel, G. Samaras, and D. B. Lindquist. WebExpress:
A Client/Intercept Based System for Optimizing Web Brows-
ing in a Wireless Environment.ACM Mobile Networks and
Applications, 3(4):419–431, 1998.

[7] W.-C. Peng and M.-S. Chen. Developing Data Allocation
Schemes by Incremental Mining of User Moving Patterns in
a Mobile Computing System.IEEE Transactions on Knowl-
edge and Data Engineering, 15(1), February 2003.

[8] J. Shim, P. Scheuermann, and R. Vingralek. Proxy Cache Al-
gorithm: Design, Implementation, and Performance.IEEE
Transactions on Knowledge and Data Engineering, 11(4),
July-August 1999.

5


	conf: Proc. of the 3rd Intern'l Conference on Intelligent Multimedia Computing and Networking (IMMCN), Sep. 2003.


