

A Tool Set to Support Web Application Testing

Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang

Department of Computer Science and Information Engineering

National Chiao-Tung University, Taiwan, ROC
Email: {jjyang,jlhuang,fjwang}@csie.nctu.edu.tw

Abstract
The development and deployment of Web-based applications are
getting prevalent in the Internet and Intranet environment. A
Web-based application usually requires programming for both
web servers and browsers. Several frameworks and techniques
have been proposed to ease the development of web-based
application. For example, Microsoft InterDev and FrontPage are
provided to support software development of such style.
However, few tools are provided to directly support the software
testing on Web-based applications.
In this paper, a set of software tools is proposed to support the
testing of web-based applications. The tool set covers application
model extraction, test execution automation, and test design
automation. In addition, a graph-based application model is also
presented to model the behavior of web-based applications. With
the graphic presentation, several traditional software testing
techniques are extended to test Web-based applications.

1. Introduction
The Web-based applications becomes popular due to the
highly-available Internet access and widespread deployment of
Web browsers on most platforms of operating environments.
More and more applications which need to be platform
independent and distributed processing rely on the Web as the
software architecture. Applications such as on-line shopping
system, on-line registration system, or process management
system are typical examples which are implmented under the
Web architecture. Several development frameworks have been
built to assist Web applicaton developers. In the frameworks,
Web applications are developed under client-server model,
three-tier model, or even n-tier model. Besides, lots of software
components which can be directly applied or customized are
provided to perform interaction at Web browser and database
connection at the Web server. Behaviors and glues of
components are described in scripting language such as
JavaScript or Microsoft VBScript.
Web application developers can build Web applications under the
assistance of proper frameworks and software components.
However, they have not sufficient and powerful tools to debug or
test their Web applications. [9] also addressed the neccesity of
software testing support to handle complexity of the Web
applications. Only a few commercial products have been

announced to support Web applications testing[20]. Some of
them test the software components such as JavaApplet and
Active X objects which are embedded in the Web pages[18][19].
Some extend traditional GUI testing tools to test the GUI events
inside the Web browsers. Some help justify the result shown on
the Web browser’s window by matching text patterns or
pixel-level comparison. Some check the documents for syntax
and compatibility to popular Web browsers.
Current Web testing tools are mainly made to verify the syntax in
HTML documents, check hyperlink integrity in a set of HTML
documents, test GUI components embedded in browsers, and
measure the performance of the Web application. Few testing
tools consider Web application’s control and data flow via static
and dynamic analysis. There are still some significant
characteristics of Web applications need to be studied, such as
the control and data dependency of Web application’s
programming modules. This paper proposes a Web application
model by extending control flow graph to model Web
application’s control. The extended model is further used to
generate test cases by applying traditional flow-based test cases
generation techniques. In addtion, an integrated Web application
testing environment is implemented to help Web testing staffs (1)
design or generate test cases to reveal potential Web-related bugs,
and (2) automate the test case execution to avoid repetitious
manual input.
This paper is organized as follows. Section 2 reviews the current
approaches to implement Web applications. Section 3 describes
the behavior model for Web applications. Section 4 describes the
testing environment and its tool set, which includes test case
capture tool, composition tool, execution tools, and load testing
tools. Finaly, section 5 gives conclusion and future works of the
web application testing environment.

2. Characteristics of Web Applications
Web applications are composed of static HTML documents and
programs run at both server and client sides. HTTP (Hyper-Text
Transfer Protocol) is used for communication between Web
browsers and Web servers. Web servers and database servers are
usually connected by de facto database access protocols such as
ODBC (Open Database Connection) or JDBC (Java Database
Connection). The following subsections introduce the
architecture overview and activities involved in the Web
applicaitons implementation. Meanwhile, the desired testing
support are also addressed.

2.1. Web Application Architecture
Web application architecture shown in Figure 1 is supported by
current Web-related techonologies. It consists of three major tiers,
the Web browser, the Web server, and optional database servers.
The information process in the application is passed throught
each tier. The user interaction is performed at the Web browser
tier. The program logic is done at the Web server tier. The
database processing is done at the database server tier. Hence, the
Web application architecture is also known as a three-tier
application architecture. When the database server tier is omitted,
it is known as a two-tier application architecture.

Augmented
HTML

Document

Database
Server

Socket/
RMI/

CORBA

Image, Sound, Animation

Plain HTML Document

Java Applet

Database
Access
Protocol

Server
Side

Intepreter

Web
Browser

Web
Server

Database
Server

Java
VM

Java
Script

Intepreter

Plug-In
Processor

HTML
Render

CGI
Programs

Network
Application

Server

F
r
o
n
t

E
n
d

Tier
Protocol /
Interface

Information
Flow

Information
Processor

Web
Document

LegendLegendLegendLegendCommon
Gateway
Interface

(CGI)

HTTP

Database Access
Protocol

Database Access
Protocol

Database Access
Protocol

Figure 1. Web Application Architecture

The Web browser is capable of retrieving hyper-text documents,
as requested by the application users, from the Web server via
HTTP protocol. It renders the hyper-text document in HTML
(Hyper-Text Markup Language) format on the screen.
Contemporary Web browsers also embed Java VM and
interpreter to execute the Java Applets or Java Scripts specified
in the documents. The browser also allows users to extend its
functionality by installing additional software modules such as
Netscape Communicator’s plug-in modules and Microsoft
Explorer’s ActiveX objects.
The Web server has a frontend (HTTP daemon) to accept the
HTTP requsets from the browsers. Accroding to the server’s
configuration, it may directly serve the stored HTML documents,
Java Applets, or multimedia files, or forwards the requests to
CGI programs, by which the HTML documents to be returned
are generated dynamically. Some Web servers also have
modules [4][11] to interprete the augmented HTML documents
before sending them to browsers.
In advanced Web applications, components in Web browsers
may communicate with other components in the Web servers
with protocols which are not HTTP. For example, components in
the browser can communicate with standalone network
application servers which run at the server-side by network
sockets, Java RMI (remote method invocation), or CORBA.
These emerging protocols are more fitting when developing
distributed Web application in object-oriented technology.

2.2. Programming at Web Clients
Web client programming focuses on the visual presentation and
user interaction. The program guides the user to input data and
validates user’s input before submitting it to the Web server. The
following is a simple interaction which is written in HTML and
embedded JavaScript. It requires users to enter username and
civic ID in the text fields of a HTML form, and then press the
‘login’ button. It also validates the civic ID format, which

consists of a leading alphabet, followed by a digit 1 or 2, then
followed by eight digits. If the validation fails, the checking
function returns false to disallow the data sumbission.

<form action=guard.cgi method=post
onSubmit="return check(this);>

UserName: <input type=text name=uname
value=YourName>

CivicID: <input type=text name=cid
value=A123456789>

<input type=submit value=login>
</form>

<script>
function check(t)
{
var reg=/[a-zA-Z][1-2]\d{8}/ ;
if (reg.test(t.cid.value) == false) {
alert("Illegal Civic ID format");
return false;

}
return true;

}
</script>

Figure 2. Programming the Web Browser
For more complicated interaction, software compnents such as
Java Applets or Active X objects can be embedded in Web pages.
Script languages such as JavaScript or VBScript can be applied
to glue the components.

2.3. Programming at Web Servers
Besides deploying static documents on the Web servers,
desingers write augmented HTML documents or CGI programs
to achieve more functionalities by dynamically generating
HTML documents at run-time. The augmented HTML
documents are interpreted at server side by interpretation
modules such as ASP interpreter or Perl interpreter. Programs (or
scripts) within the augmented HTML documents or CGI
programs are usually passed the well-encapsulated HTTP
requests which originates from the Web browsers. They are also
provided with session managment and database connection
facilities.
For example, a Web application for transferring money between
bank accounts provides a sequence of screens. The first screen
asks the user to enter his account and password, and the
followings ask him to enter the destination account and transfer
amount. On the terminal, a sequence of replies to questions are
entered; while in the underlying system, consecutive HTTP
requests are needed to perform the interactions. The session
management provided by Web servers can help Web application
handler to make context-independent HTTP requests
context-dependent. The database connection facilities help the

application to validate the account and password and process the
money transfer.
Examples of the server technologies are Microsoft Active Server
Page(ASP) [11], Sunsoft Servlet [15] and Cold Fusion’s CFML
[1]. Database connections can be provided by Microsoft
IDC(Internet Data Connection), ADO(Active Data Object),
ODBC(Open DataBase Connection), or JDBC (Java DataBase
Connection) [16].
Testing supports at the server usually help either to test a set of
documents to check the integrity of the Web links among the
documents, or to test the CGI programs as traditional application.
However, few tools help to generate http transactions as test
cases based on the application behaviors which include
application logics performed at server side and user’s decision
made at browser side.

3. Web Application Models
In this section, a method is proposed to model the constitutents of
Web application in order to apply traditional test case generation
strategies.

3.1. Web Application Testing Tools
Software testing tools often extract information modules from
application artifacts such as requirement specification or source
codes for some testing strategies. Example modules include
control-flow graph, data-flow graph, call graph, etc. The
control-flow graph serves as a model, in which test cases are
generated based on branch and statement coverage strategies.
The data-flow graph serves as a model, where test cases are
generated based on the define-use relation of variables [14].
Extracting a proper model to test for Web-based applications
may consider the charateristics of its constituents. As discussed
in section 2, a Web application is different from those software
implemented entirely in a single language such as C. Instead, a
Web software consists of a bunch of components such as HTML
documents, ASP scripts, JavaScript, Java Applets. At the client
side, HTML and JavaScript are the subjects to be tested. At the
server side, the subjects to be tested are CGI programs which
may be implemented in C, C++, Perl, Java Servlets or ASP
scripts embedded in augmented HTML files. Consequently,
traditional (and single) testing tool seems not able to fulfill the
job for testing such applications. Web application needs specific
tools to test each interested facet instead.
To complement with other Web testing tools mentioned
previously, tools introduced in this paper are intended to support
Web application testing in terms of control flows and data flows
of Web applications. Because the Web user’s action at
browser-side and application logic executed at server-side
together determine the application’s execution path in the control
flow graph. Testing support tools which analyze server-side or
client-side activities work jointly to complete the control and data
flow testing for Web application.
In the next section, we propose a model which can easily
describe the behavior of Web applications and is easy to be
transformed into a traditional control graph or dataflow graph.

3.2. Extracting an Application Model

A Web application consists of a set of programming modules
which are executed at the servers or the browser. To build the
control flow graph for the Web application, our proposed method
maps each entity in the Web application to a component of the
control graph, i.e. nodes, branches, edges. The extended control
graph for the Web application contains the following symbols as
appeared in Figure 4: programming module (node), user branch,
application branch, hyper-link edge, HTTP-redirect edge, and
intra-module edge.
A node in the control flow graph represents a programming
module. A programming module is usually implemented in a
single file such as .html file in HTML, .cgi file in Perl, or .asp
file in ASP. There may exist a more detailed control flow graph
residing in the single programming module, but it is not
discussed when considering the inter-module control graph.
During the mapping of control flow branch, the extended model
classifies the branches into the user branch and the application
brach. The user branch models that the user selects one of
hyperlinks from the browsed document at browser side. The
application branch models that the current programming module
forwards the control to other programming modules for further
processing based on the application logic.
When a programming module M generates an HTML document
containing hyperlinks to modules M1, M2 and M3 for user’s
selection, node NM, NM1, NM2 and NM3 are created to represent
programming module M, M1, M2 and M3 respectively in the
control flow graph. In addition, an user branch symbol UB is
placed among NM, NM1, NM2 and NM3. An intra-module edge is
used to associate NM and UB. Each branch alternative from UB
to NM1, NM2 and NM3 respectively is represented by one
hyper-link edge.
When a programming module M needs to transfer the control to
module M1, M2, or M3 for furthur processing based on the
application logic, an intra-module link is used to connect the
node for module M with an application brach symbol to
represent the control transfer made by application logic. Each
application branch alternative is connected by an HTTP-redirect
edge. The name ‘HTTP-redirect’ comes from the technique
which achieves the control transfer between Web programming
modules by sending HTTP redirect command to the browser.
When a module X needs to transfer control to module Y, it sends
to the browser an HTTP-redirect command containing the URL
referring to module Y. On receiving the URL, the browser sends
a new HTTP request which invokes module Y to the server. Thus,
the application’s control transfers from module X to module Y.
For exapmle, a Web application which provides on-line food
order services contains the following programming modules:

��welcome.html : It shows the usage of the on-line order

system in the Web page. It contains an HTML link for the
customer to link to memberInfo.asp.

��memberInfo.html: The module provides an HTML form for
the user to fill in customer’s name, telephone number, and
address to which the ordered food is sent. This HTML form
is processed by the orderStart.asp as specified by “<form
action=orderStart.asp method=post>”.

��orderStart.asp: The module judges the validity of the
customer’s input, then re-directs the browser to invoke

another module availOffer.asp or incomplete.html. Namely,
after the user submit the form in memberInfo.html, next
screen in the browser is generated by availOffer.asp or
incomplete.html instead of orderStart.asp.

��incomplete.html: This module explains the reason of
incomplete customer information and contains a link to
memberInfo.html for customers to refill the information.

��availOffer.asp: The module outputs a HTML file containing
links to availDrinks.asp, availPizza.asp and confirm.asp.
The first two links guide customers to order food by
categories. The third link is clicked when customer
completes his order.

��availDrinks.asp and availPizza.asp: Several items of each
category are listed in the HTML forms for customers to
choose. The submitted form is processed by addOrder.asp.

��addOrder.asp: Add the customer’s order into a temporary
order list. It redirects the browser to the availOffer.asp for
more order.

��confirm.asp: This module commits the customer’s food
order by sending the order list to the database for further
process. It contains a hyper-link to memberInfo.html for
new order. The application finishes when no more
hyper-links invocation.

Figure 3. Programming modules for an on-line food order
application

The control flow graph in Figure 4 for the above application can
be constructed by analyzing its programming modules. In the
figure, there are two HTTP-redirect edges from orderStart.asp to
two independent modules. In other programming practices where
no http-redirect is applied, the application logic implemented in
availOffer.asp and incomplete.html are merged into one single
orderStart.asp. Hence, the node for orderStart.asp would contain
four hyper-links memberInfo.html, availDrinks.asp,
availPizza.asp and confirm.asp. The practice can reduce the
number of programming modules, hoever it still increases the
difficulties of program understanding and testing. In fact, many
links are not easily determined by simple analysis on the
programming modules. Following subsections introduce static
and dynamic analysis methods, which can obtain a control flow
graph more precisely.

3.3. A Model Obtained by Static Analysis
In static analysis, the source code of the programming modules
are analyzed to extract the inter-module relations. For Web
applications implemented in ordinary Web application
frameworks, the application logic is scattered in several files.
There are two popular approaches to specify application logic.
One is based on document content, it specifies application logic
inside some blocks of augmented HTML files. The other is based
on application logic, it specifies logic in script languages like
PERL and lets the script output the desired HTML file.

Welcome.html memberInfo.html

orderStart.asp

availOffer.asp

availDrinks.asp availPizza.asp confirm.asp

incomplete.html
User branch

HTTP redirect
edge

Hyper-link edge

Program
module (node)

Legend

App branch

Intra-module
edge

Figure 4. A sample control flow graph of Web

application
When constructing a model through static analysis, the
application designed in the content-oriented approach can be
extracted richer link information due to its format simplicity.
Analyzers can extract inter-module information from the
augmented HTML file (or HTML template) by extracting
attributes from certain HTML tags. For example, the following
fragment of an augmented HTML file can be extracted
hyper-links shown in bold-italic typeface.

…
<form action=orderStart.asp …>
…
<frame src=leftPane.html>
…
<image src=roadmap.gif usemap=#mapDef>
…
<script>
…
WindowObject.href=”foo.html”
…

</script>
…
<map name=mapDef>
<area shape=rect ... href=site1.html>
<area shape=rect ... href=site1.htm2>
<area shape=rect ... href=site1.htm3>

</map>

Figure 5. Hyperlinks inside a programming module

However, for the following fragment written in
Microsoft ASP, it is difficult to extract the five links
generated by the fragment with static analysis only. The
dynamic analysis in the next subsection can help to
extract the links generated dynamically.

<html>

<%
for i = 1 to 5
ref = “option” & i & “.html”
Response.write(“ ”

& i & “”)
next
%>

</html>

Figure 6. A sample .ASP file which needs dynamic
analysis on the Web server

3.4. A Model Obtained by Dynamic Analysis
The dynamic analysis on the Web application can extract the link
information by driving (loading) the program modules to its
interpreting engine. As mentioned above, programming modules
may be executed at servers or browsers. Supporting tools may be
desinged to analyze the following information:
(1) The link information of the programming module after the

server interpretation: For example, the ASP scripts shown in
Figure 6 contains no link information at static analysis. After
the supporting tool drives it into the server’s interpretation
engine, five links (i.e. option1.html, option2.html, ... and
option5.html) can be extracted from the interpreter’s HTML
output. A server script driving tool shown in figure 7 may be
provided to support the extraction.

(2) The link information of the programming module after the
browser interprets the client-side scripts: For example, by
drving the following JavaScript to the browser’s interpreter,
two more links (i.e. site1.html and site2.html) can be obtained.
It is similiar to case (1) but the difference is in the way to get
the links information, as shown in figure 9.

Server
Interpreted

Script

Server
Script

Intepreter

Server
Script
Driver

Control Flow
Builder

1. Script Interpretation Request

2. Retrieved script

3. Interpreted sciprt. in HTML format

4. Hyper-link information
for requested scripts

application
model

repository

5. updated link
information

Figure 7. Dynamic analysis for server interpreted scripts.

<html>

<Script>
for (i=1; i<3; i++) {
ref= “site” + i + “.html”
document.write(“ ” +

i + “”)
}

</Script>

</html>

Figure 8. Java Scripts for dynamic analysis on the Web
browser

Browser
Interpreted

Script

Client
Script

Interpreter

Client
Script
Driver

Control Flow
Builder

1. Script Interpretation Request

2. Retrieved script

3. Link information from
client script interpreter

4. Hyper-link information
for requested scripts

application
model

repository

5. updated link
information

Figure 9. Dynamic analysis on browser interpreted

scripts.
(3) The link information generated during user interaction on the

Web page: The programming module may dynamically
generate hyper-link request based on user’s interaction on the
Web page. For example, the augmented HTML file in Figure
10 allows the user to enter page number, say 7. After the user
presses the button “Go!”, the browser generates a hyper-link
page7.html and changes the browser’s content to page 7. The
type of link information extraction requires a person or

automatic GUI driving tools to drive the user interface. Thus,
a link monitor in Figure 11 can extract the link information.

<html>
<script>
function gotoPage(n)
{ document.location = "page" + n + ".html"; }

</script>
<form name=foo>
Page number to go: <input type=text

name=pageNo>
<input type=button value="Go!"

onClick='gotoPage(pageNo.value);'>
</form>
</html>

Figure 10. Hyper-link request generated based on user’s
interaction

Web
Browerser

Web
Server

Link
Monitor

application
model

repository

Control
Flow

Builder

1. HTTP request

2. Intercepted
hypter-link

requests

3. Updated
link

information

Intercepted
HTTP

requests

GUI
operation

guide

Figure 11. Analysis on hyper-links generated by user

interactions.

3.5. Generating Test Case for Web
Applications
With the application model constructed for the Web applications,
test case generation techniques based on control-flow graphs,
such as path testing, can be applied to test Web applications
directly [8][12][13]. Two path testing strategies, statement and
branch coverage, are adopted in the environment.
Practical program testing requires both the statement and branch
coverage. IEEE software test standard [2] regards the statement
coverage as the minimum testing requirement. The statement
coverage strategy requires that the generated test cases exercise
each statement in the program at least once. The branch coverage
requires that the test cases exercise every branch alternative at
least once. In the Web application testing, the term statement is
replaced with programming module.
For example, based on the statement coverage strategy, one set of
test cases generated for the sample application shown in Figure 4
are listed as the following:

TestCase# 1 2
Nodes
In
Path

-welcome
�memberInfo
�orderStart
�incomplete

-welcome
�memberInfo
�orderStart
�availOffer
�availDrinks

TestCase# 3 4
Nodes
In
Path

-welcome
�memberInfo
�orderStart
�availOffer
�availPizza

-welcome
�memberInfo
�orderStart
�availOffer
�confirm

If the branch coverage stragtegy is used to generate test cases,
more paths are included in addition to above four paths. Paths
containing edges availDrinks�availOffer, availPizza�
availOffer, and confirm�memberInfo must be included to make
every branch alternative exercised.
In addition to the two major strategies, real use cases from users
or application specifications are good sources of test cases. Test
cases from the source are more meaningful and can indicate the
commonly exectued paths. For example, if a customer of the
sample application orders both the drinks and pizza, the
following path can be considered as a test case:

-welcome � memberInfo � orderStart
� availOffer � availDrinks �

availOffer � availPizza �

availOffer � confirm

4. A Web Application Testing Environment
An application testing environment helps to automate the testing
process and integrate testing tools to support testing during the
test process. [7][21] have evaluated the architectures and
capabilities of application testing environments. The Web
application testing environment introduced here is to provide
integrated tools to support the testing requirments as mentioned
in section 3.

4.1. A Model Supporting Web Application
Testing
As shown in Figure 12, the Web testing tool set consists of
integrated tools which support application model construction,
test case composition, test case generation, and test case
execution.Tools inside the tool set are controlled through the
WWW control interface, to which authorized Web browsers can
connect via HTTP. The followings present our testing activities
and then the corresponding tool needs.
A Web application testing project is created throught the WWW
control interface. The location and related parameters of the Web
applcation under testing must be provided to proceed with
subsequent testing activities. The testing activities are grouped
into the following three major steps: (1)application model
construction (2) test case construction and composition, and (3)
test case execution.

During application model construction, it extracts the
inter-module control-flow graph of the Web application. The
server script analyzer fetches the programming modules of the
application under testing. It performs static link analysis on the
source code of these modules. It also performs dynamic link
analysis on the HTML output by interpreting the source code
with the WWW server. The client script analyzer performs
dynamic link analysis at client side by driving the WWW
browser to fetch the programming modules and interprete the
client-side scripts. Plain HTML files are regarded as special
scripts which contain no script codes. Application models, which
are the basis for automatic test case generation, are built by
server/client script analyzers mentioned above. The test
repository is responsible to store application models.

Web
Testing

Tool
Set

HTTP
Recorder/

Player

Client
Script

Analyzer

Test
Case

Composer

Sever
Script

Analyzer

Test
Case

Generator

Test
Report

Generator

Load
Tester

WWW
Control

Interface

Testing Case/ Appl Model
Repository

Test
Manager

Testing
Report

Application
Under
Testing

HTTP
traffics

WWW
ServerApplication

Browser

Testing Environment
Controlling

Brower

Figure 12. The Web Application Testing Environment

In test case construction, testing staffs prepare test cases to test
the Web application. Test case construction is performed through
WWW browsers which connect to the testing environment’s
WWW interface. In the test case construction interface, users can
browse the hierarchy and content of test cases organized by the
test case manager. To create test cases throught the composition
interface, users can apply the test case recorder, invoke test case
generator, or handcraft test scripts.
Test case recorder intercepts and records HTTP communications
between Web browsers and servers to form test cases based on
Web applications user’s real use-cases. To control the test case
recorder’s initialization, termination, and parameters such as test
case name can be done through the Web interface. The recorded
test cases are inserted into the test repository through the test
manager.

Figure 13. Initialize the test case recorder

Testcase generator generates test cases based on the testing
strategies mentioned in section 3.6. Each generated test case
contains one testing path, which consists of a sequence of URLs
to visit. If the Web application whose execution path varies in
accordance with the user’s input values of browser’s HTML form,
the composition interface would prompt the test designers to
provide proper input values which make the Web applications
execute along the intended path.

Figure 14. Test case composer : Test script editing

support

To specify test cases in a more flexible way the test case designer
can resort to handcrafting test scripts by himself. Because the
testing environment stores the outcome of test case recorders and
test case generators in the test repository in the form of test
scripts. Test desingers can change test cases by modifying test
scripts.

4.2. The Execution of Testing Cases
The following is a sample test script which describes an error
login attempt followed by a correct one. The script language
supports variable assignment, loop construct, and HTTP-related
primitives such as HTTPGet and HTTPPost. The expect is used
to verify the redirect commands sent byWeb server to the Web
browser.
#----------------------------------
Test Case Description:
user001 fails login at the first
time, and then passes at next try
#----------------------------------
#set the base directory of the
#application
set $URLBase http://dsslnt/webapp/
set $URL1 “login.html”
#set variables URL1, URL2
set $URL2 “checkLogin.asp”
#------- HTTP requests begin ------
HTTPGet $URL1
#login.html contains a form with two
#fields user and pass
set $form1.user “user001”
set $form1.pass “wrongPass”
#user001 login with wrongPass
HTTPPost $URL2, $form1
#expect an HTTP-redirect command,
#which redirect the browser
#to errorMessage.html
expect “errorMessage.html”
#errorMessage.html contains a link
#back to login.html,
#so follow the link to re-login
HTTPGet $URL1
set $form2.user “user001”
set $form2.pass “correctPass”

#user001 relogin with correctPass
HTTPPost $URL2, $form2
#expect an HTTP-redirect command,
#which redirect the user to main menu
expect “mainMenu.html”
clear $form1
clear $form2

Figure 15. A testing script sample.
In test cases execution, the test case player interpretes designated
testing scripts and sends corresponding HTTP requests. The test
results of test execution are stored in the testing log of test
repository, from which the test report generator summarizes
testing reports.
In the Web interface of the testing environment, testing staffs can
select test cases from the list for execution. They can choose to
run the test cases in batch mode or in interactive mode. In the
batch mode the test cases are executed in background without
rendering the HTML documents. The test case validation in the
mode is made by expecting some string patterns in the returned
HTML documents. However, for complicated Web applications
it needs human attention to validate the test cases.

Figure 16. Interactive test case execution. The

right-upper frame contains tested pages.
In the interactive test case execution mode, testing staffs watch
the Web pages under testing on the Web browser and control
each step of the test case execution. For each test case the control
panel of the test case player provides testing staffs with
information about the number of Web pages to be visited, the
data values to enter in HTML forms. Testing staffs lead the test
case to next step or specific step by pressing the ‘next step’
button or ‘Goto N-th step’ button at the control panel.

Figure 17. Validate the test case and fill the test
result

For Web pages requiring data input, testing staffs can request the
test case player to fill data in the form fields on the Web page by
pressing the ‘fill data’ button. The functionalities save testing
staffs from manually filling testing data or locating hyperlinks to
invoke on the Web page. It is especially useful when testing
HTML forms with lots of data fields to fill. The test case
validation is made by the testing staffs and the validation result is
inserted into the test repository for generating testing report.

Figure 18. Generated Testing Summary

4.3. Implementation of the Environment
A prototype of the testing environment and the tool set have been
developed and demonstrated. The testing center integrating tools
in the tool set by several CGI programs and Java applications.
The client script driver is written in JavaScript running at Web
browser. The server script driver is implemented as a Java
application. Hyper-link information obtained from script drivers
are analyzed by PERL to form application models. Test case
recorder/player are implemented as a Web proxy server with
additional features.
Users of the testing environment can manipulate the tools from
Java Applets embedded in Web pages. The controlling interface
implemented as Java Applet provides GUI for user interactions
and communicates with the testing center via Java RMI [17].

5. Conclusion and Future Work
This paper models the inter-module relations of Web applications
in terms of control flow graph and data flow graph. In addition, a
set of testing support tools are provided to help construct
application model by analyzing the programming modules
statically and dynamically. Test cases of the Web application can
be generated based on the application model or composed
through the test case composition interface. Automatic testing
tools such as test case player execute testing scripts to automate
Web application test, and load tester can help to understand the
performance charateristics under different load levels. The
prototype of the testing tools has been implemented and
integrated in the Web environment.
The future works includes: (1) constructing data flow model for
the Web application to apply data-flow related test case
generation strategies. (2) applying domain testing techniques to

drive the application to go through a pre-determined test path by
selecting input values from proper data ranges.

Bibliography
[1] Allaire Corp., Cold Fusion, in

http://www.allaire.com/products/COLDFUSION/.
[2] ANSI/IEEE Std 1008-1987, “IEEE Standard for Software

Unit Testing” in Collection of ANSI/IEEE standards on
software engineering, IEEE Computer Society Press,
1987.

[3] ANSI/IEEE Std 829-1983, “IEEE Standard for Software
Test Documentation” in Collection of ANSI/IEEE
standards on software engineering, IEEE Computer
Society Press, 1987.

[4] Apache Server Project, “Module mod_include”, in
http://www.apache.org/docs/ mod/mod_include.html.

[5] AutoTester Inc., AutoTester Web, in
http://www.autotester.com/.

[6] Beizer B., Software Testing Techniques, 2nd ed, Van
Nostrand Reinhold, 1990.

[7] Eickelmann N.S. and Richardson D.J., “An evaluation of
software test environment architectures”, IEEE
Proceedings of ICSE-18, p.p. 353—364, 1996.

[8] Frankl, P.G., and Weyuker, E.J., “An applicable family of
data flow testing criteria”, IEEE Transactions on Software
Engineering, Vol 14, p.p. 1483—1498, 1988.

[9] Fromme B., Web Software Testing – Challenges and
Solutions, InterWorks ’98 Conference, 1998. Also
available in http://www.interworks.org/conference/
IWorks98/sessions/sn135/paper.html

[10] Goglia, P.A., Testing Client/Server Applications, QED
Publishing Group, 1993.

[11] Homer A., et al. “Professional Active Server Pages”,
WROX publishing, 1997.

[12] Ntafos, S. C., “A comparison of some structural testing
strategies”, IEEE Transactions on Software Engineering,
Vol 14, p.p. 868—874, 1988.

[13] Rapps, S., and Weyuker, E.J., “Selecting software test data
using data flow information”, IEEE Transactions on
Software Engineering, Vol 11, p.p. 367—375, 1985.

[14] Rational Software, SQA Site Check, in
http://www.rational.com/products/sitecheck/.

[15] Sun Microsystem, Java Servlet, in
http://java.sun.com/products/java-server/servlets/
index.html.

[16] Sun Microsystem, JDBC, in
http://java.sun.com/products/jdbc/index.html

[17] Sun Microsystem, Java RMI, in
http://java.sun.com/products/jdk/rmi/index.html.

[18] Softbridge Inc., Web Analyst, in http://www.sbridge.com/.
[19] Sun Microsystem, SunTest Suite, in

http://www.sun.com/suntest.
[20] Testing and Testing Management Tools. Available in

http://www.methods-tools.com/tools/testing.html.
[21] Vogel P.A., “An Integrated General Purpose Automated

Test Environment”, ACM ISSTA ’93, p.p. 61—69, 1993.

	ICS98: Proc. of the 1998 International Computer Symposium (ICS), October 1998.

