
KACU: K-means with Hardware Centroid-Updating
Wei-Chuan Liu, Jiun-Long Huang† and Ming-Syan Chen

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan, ROC

†Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan, ROC

E-mail: weichuan@arbor.ee.ntu.edu.tw, jlhuang@csie.nctu.edu.tw, mschen@cc.ee.ntu.edu.tw

Abstract— In this paper, we propose a framework, KACU
(standing for K-means with hArdware Centroid Updating), to
enhance the speed of K-means clustering algorithm by integrating
a hardware centroid updating mechanism into the procedure
of continuous K-means algorithm. To facilitate performance
measurement, KACU is implemented in a commercial Field
Programmable Gate Array (abbreviated as FPGA) device. The
experimental results show that KACU is able to achieve consid-
erably higher performance.

I. I NTRODUCTION

Data mining is the process of extracting features, discov-
ering patterns and clustering data from large volumes of raw
data. For conducting such data archives, there is a growing
need for rapid processing ability. In many algorithms of
data mining, a great amount of computing power is spent
on some specific routines with repeated computation. For
these algorithms, dramatic speedups can often be obtained
with specialized hardware. Although processing can also be
accelerated by adopting a more sophisticated algorithm or
heuristic ones, these algorithms are often too complicated to be
implemented in hardware. Fortunately, it is sometimes possible
to combine software and hardware designs in such a way
that each complements the other, and the final implementation
is able to achieve higher speedup than a hardware-only or
software-only solution [8]. Utilizing the concept of HW/SW
co-design is a trend to accelerate applicable algorithms. With
the incremental development of reconfigurable hardware, and
in particular the commercial FPGA [1][9], it creates a new
scope for the design space, changes the view on algorithmic
problem solving and has the advantage of being extremely
powerful for many applications.

In this paper we design a specific hardware solution to ac-
celerate the processing speed of K-means clustering algorithm.
Clustering has been recognized as an important unsupervised
learning problem which deals with finding a structure from a
collection of unlabeled data. A loose definition of clustering is
the process of grouping objects into clusters whose members
are similar in some way. The most popular clustering algorithm
is K-means due to its simplicity. In [4], the authors applied
HW/SW co-processing technique on a hybrid processor for
K-means algorithm. In that processor, a systolic process array
was designed to speedup the mutual distance calculation loop
which is the most time consuming operation in standard K-

means algorithm. In this paper, we consider a variant of K-
means algorithm, named continuous K-means [3], in which
faster convergence is generally achieved when the centroids
are updated on the fly. We apply systolic process array into our
design and embed the updating scheme in the flow of pipeline.
Therefore, the procedure of centroid updating becomes a
number of stages in pipeline and can be accomplished as fast
as possible to meet the data arrival rate.

The rest of this paper is organized as follows. The prelim-
inaries of hardware enhanced mining are given in Section 2.
The proposed hardware solution of K-means is described in
Section 3. Experiment results are shown in Section 4. Finally,
this paper concludes with Section 5.

II. PRELIMINARIES

Hardware enhancement is sometimes thought as a brute
force approach to speed up algorithms. However, implement-
ing an algorithm in hardware is not a trivial task, and usually
requires more effort than implementing in software. Further-
more, not all algorithms can be efficiently implemented in
pure hardware, since implementing an algorithm in hardware
includes a different set of design strategies than implementing
the same algorithm in software. For example, a software
implementation may intend to employ intelligent branching
to avoid some computation. But in hardware, it is often at-
tempted to simplify the fundamental operations, like the MAC
instruction in DSP, to accelerate the calculations and to provide
more parallelism. Mapping these functions, such as file I/O,
outer loop management and other house-keeping tasks, onto
hardware is time-consuming and usually not profitable in terms
of speedup. It is better to use hardware to unroll an inner
loop for the maximum data flow. The granularity of pipeline
is considered as well. The pipeline of hardware is achieved
in register level while there is only limited instruction level
pipelining in software implementations on traditional CPU-
based frameworks.

III. KACU: K- MEANS WITH HARDWARE CENTROID

UPDATING

A. K-means Algorithm

Basically, K-means is a partition-based algorithm to group
objects based on certain features intoK number of clusters.
The grouping is done by minimizing the distance between



Algorithm Standard K-means

1: closet centroid[] ← rand();
2: while (object move 6= 0) do
3: object move ← 0;
4: ACC[] ← 0;
5: NUM [] ← 0;
6: for (i = 0 to n) do
7: min distance ← MAXINT ;
8: for (j = 0 to k) do
9: dist ← calculate distance betweenobject[i] and

centroid[j];
10: if (dist ≤ min distance) then
11: min distance ← dist;
12: closest centroid[i] ← j;
13: object move = 1;
14: for (i = 0 to n) do
15: ACC[closest centroid[i]]+ = object[i];
16: NUM [closest centroid[i]] + +;
17: for (j = 0 to k) do
18: centroid[j] ← ACC[j]

NUM [j] ;

Fig. 1. Standard K-means algorithm

each data object and the corresponding cluster centroid. The
standard K-means algorithm is shown in Figure1. First, in
line 1, we randomly chooseK values as the initial cluster
centroids. Second, from line 6 to 13, each object is assigned
to the cluster to which the object is the most similar, based on
the mean value of the objects in the cluster. Then, the centriods
are updated from line 14 to 18, i.e. calculate the mean value
of the objects for each cluster. Finally, K-means stops when
no more new assignment occurs. Specifically, there are two
major phases in K-means, i.e.mutual distance calculation
(line 6-13) andcentroid updating(line 14-18). While being
updating after all objects are completely scanned in standard
K-means algorithm, the centroids can be updated on the fly as
well in continuous K-means [3] in which faster convergence is
generally achieved. Formally, centroids are recomputed after
each new assignment. That is, centroids must be updated when
a new object arrives. Unfortunately, efficiently updating the
centroids on the fly is difficult. The number of iterations is
reduced due to faster convergence, but overall execution time
may increase due to the massive routine incurred from frequent
centroid updating. Consequently, in [7], in order to achieve
the best performance, the authors presented the block updates
approach which recomputed the centroids as long asB objects
are reassigned. How to choose the value ofB is a case by case
question.B =

√
N , whereN is the quantity of object data,

is suggested in [7].

B. Motivation

As our study, there are some researches to develop hardware
accelerators for K-means, such as [2][4][5] and [6]. In [2],

 

0% 20% 40% 60% 80% 100%

10

25

100

2500

10000

B

Ratio

mutual distance calculation
centroid updating

Fig. 2. Clock consumption ratio between the two procedures, mutual distance
calculation and centroid updating, in different B. (After applying SPA, quantity
of data=10000, dimension of data=2 and K=4)

the authors proposed an a pixel comparison device based on
K-means clustering algorithm. Although they are the first to
address the acceleration framework of K-means with dedicated
hardware, the brute force hardware design is not suitable for
the implementations in practical applications. Recently, there
is one effective design proposed in [4] and the heart of the
proposed design is systolic process array (abbreviated as SPA)
which employed massive parallel concept and independent
character of data to accelerate the processing speed. However,
while mentioned two designs are in the light of the most time-
consuming task, mutual distance calculation, in standard K-
means, centroid updating would become a very heavy task in
“continuous K-means” algorithm.

Referring to Figure 2, when SPA is applied, the most part
of time consumption in continuous K-means algorithm is the
procedure of centroid updating instead of the procedure of
mutual distance calculation. In view of this, we propose a
framework to accelerate the speed of continuous K-means
algorithm. To the best of our knowledge, we are the first
to implement a hardware centroid-updating in continuous K-
means algorithm. This feature distinguishes our work from
others.

C. Hardware Design

Procedures, including mutual distance calculation and cen-
troid updating, are all mapped to hardware implementation.
The block diagram of the framework, KACU, is shown in
Figure 3. The SPA can perform mutual distance calculation
and the other design is used to execute the centroid updating
process. With pipeline architecture, the control in KACU
receives one data object and its closet centroid once. Then the
control will add the value of the data object into its closest
centroid’s accumulator. Finally, a new centroid is generated
and stored as a temporary. Note that although a centroid is
recomputed while an object data arrives, it does not mean
the centroids change all the time. The centroids update only
when getting a command from CPU. Furthermore, due to
pipeline construction, we only need a divider because only
one centroid changes at a time. Traditionally, the results of
each data object have to be returned to CPU after passing the



Control

ACC ACC ACC

DIV

CEN.

TEMP

Object Data

Closest
Centroid

CEN.

TEMP

CEN.

TEMP

SPA

Object Data

Fig. 3. Block diagram of KACU

process of mutual distance calculating. Our design does not
need the return trip. Specifically, the procedure of centroid
updating is accomplished by a dedicated hardware instead
of CPU, so the communication overhead caused by returning
results can be left out. After exploiting this simple hardware,
we find that the time consumption of centroid updating can
almost be ignored, as opposite to that of other procedure.
Therefore, KACU is best suitable for continuous K-means
algorithm which involves massive updating.

IV. PERFORMANCESTUDY

The hardware is implemented and verified with Altera’s de-
sign software QuartusII and is executed on an Altera’s Stratix
device with a NiosII 50MHz CPU and 16MB of SDRAM.
Software implementation of the algorithm is executed on the
same device. The synthetic dataset has ten thousands data
objects with Gaussian distribution and be grouped into five
clusters.

The following experiments are conducted to compare the
clock consumption between SPA with software centroid up-
dating and KACU, both in continuous K-means algorithm.
Note that the number of iterations depends on the method used
for initialization. Therefore, the clock number we measured is
for one iteration only. First we see the comparing result in
different B, i.e. period of centroid updating, in Figure 4. In
most case, KACU is four times faster than SPA. Especially
in very small value ofB, the number of updating increases
explosively but our proposed KACU can conduct in a constant
time level. This result shows that KACU is more scalable than
SPA.

We use five datasets with differentD, i.e. dimension, to
estimate the influence of dimension. The result is presented
in Figure 5. Because KACU can update centroids in parallel
form, the number of dimensions only affects the performance
slightly. Oppositely, SPA with software centroid updating will
be significantly impacted.

V. CONCLUSIONS

In this paper, we have proposed a novel paradigm to
enhance algorithm in the field of data mining research and

0
2
4
6
8

10
12
14
16
18

500 100 50 25 10
B (period of centroid updating)

m
il

lio
n 

of
 c

lo
ck

 c
yc

le SPA

KACU

Fig. 4. The number of clock cycles needed for different B. (quantity of
data=10000, K=4, dimension=2)

0

5

10

15

20

25

30

2 3 4 5 6
D (number of dimension)

m
ill

io
n 

of
 c

lo
ck

 c
yc

le SPA

KACU

Fig. 5. The number of clock cycles needed for different D. (quantity of
data=10000, K=4, B=100)

implemented successfully in commercial FPGA. The idea is
to integrate an updating mechanism into a number of stages
in pipeline to reduce a considerable processing time. From
numerous experiments, our proposed framework can reach
outstanding performance in different parameters. The KACU
framework can accelerate with maximum speedup achieved of
5.6 speedup over the SPA with software centroid updating.

REFERENCES

[1] Altera Corporation. http://www.altera.com.
[2] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski. Algorithmic

Transformations in the Implementation of K-means Clustering on Re-
configurable Hardware. InProceedings of the 2001 ACM/SIGDA 9th
International Symposium on Field Programmable Gate Arrays, pages
103–110, 2001.

[3] V. Faber. Clustering and the Continuous k-Means Algorithm.Los Alamos
Science, 22:138–144, 1994.

[4] M. Gokhale, J. Frigo, K. McCabe, J. Theiler, C. Wolinski, and D. Lave-
nier. Experience with a Hybrid Processor: K-means Clustering.The
Journal of Supercomputing, 26(2):131–148, 2003.

[5] M. Leeser, J. Theiler, M. Estlick, and J. J. Szymanski. Design Tradeoffs
in a Hardware Implementation of the K-means Clustering Algorithm.
In Proceedings of the 1st IEEE Sensor Array and Multichannel Signal
Processing Workshop, pages 520–524, 2000.

[6] B. Maliatski and O. Y. Pecht. Hardware-Driven Adaptive K-means
Clustering for Real-Time Video Imaging.IEEE Transactions on Circuits
System and Video Technology, 15(1):164–166, 2005.

[7] C. Ordonez. Clustering Binary Data Streams with K-means. InProceed-
ing of the 8th ACM Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 12–19, 2003.

[8] J. Theiler, J. Frigo, M. Gokhale, and J. J. Szymanski. Co-design of
Software and Hardware to Implement Remote Sensing Algorithms. In
Proceeding of SPIE, pages 86–99, 2001.

[9] Xilinx Corporation. http://www.xilinx.com.


