An Object-Oriented Architecture Supporting Web Application Testing

Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang

{jjyang,jlhuang,fjwang} @csie.nctu.edu.tw

Computer Science and Information Engineering

National Chiaotung University
Hsinchu City , Taiwan 300

Abstract

The flexibility and rich application frameworks of Web model
make Web applications more prevalent in both Internet and
Intranet environments. Programmers enjoy various of Web
application frameworks whose support ranging from simple
user interactions based on plain client-server model, to
complicated distributed-object computations based on CORBA.
The variety gives user the flexibility to decide a proper
framework, and leads to the demands of new supporting tools
and testing framework to test and maintain Web applications.
This paper presents an architecture containing several
supporting tools which enhance traditional software testing
architecture to fit common Web application frameworks. The
architecture suits current Web models and reuses several
software patterns and architectures from traditional testing
environments. In addition, a prototype Web application testing
environment is constructed for demonstration.

1. Introduction

Web model and its related improvement give Web
application designers flexibility at choosing proper
development products for their implementation. Current
developers of large Web application do not have sufficient and
powerful tools to debug or test their Web applications. Existing
‘Web testing tools on Internet are usually made for verifying the
syntax in HTML documents, checking the hyperlink integrity
in a set of HTML documents, testing GUI components
embedded in browsers, and measuring the performance of the
Web application. Few products support overall Web
applications testing. [10] and [11] test the software components
such as Java Applet and ActiveX objects which are embedded
in the Web pages. {6] helps justify the result shown on the Web
browser's window by matching text patterns or pixel-level
comparison. [8] checks the documents for syntax and
compatibility to popular Web browsers.

The paper presents a software architecture integrates several
conventional testing tools. The architecture extends these
traditional software testing architectures and software patterns
[51 [9] to ease the description and design of Web-application
testing tasks. The integration of Web-testing components can
reduce the insufficiency of independent Web testing tools
mentioned above for complicated Web application testing.
Constructing a testing environment for Web applications to
demonstrates the reuse of the software architecture. With
object-oriented technique, the architecture itself provides a

0-7695-0368-3/99 $10.00 © 1999 IEEE

122

William. C. Chu
chu@cis.thu.edu.tw

Computer Information Science
Tunghai University
Taichung City, Taiwan 400

clear picture of software components for reuse including tool
reuse, architecture reuse, etc.

This rest of the paper is organized as follows. Section 2
discusses the issues of Web application testing based on
traditional testing techniques and popular Web application
development models. Section 3 presents the software
architecture which accommodates the tools to Web software
testing environment. Section 4 demonstrates a prototyped
testing environment constructed under the architecture. Finally,
section 5 gives a concluding remark.

2. Specializing Application Architectures to
Test Web Application

2.1 Software Architectures for Software Testing

The architectures for software testing environment have
been studies for years. Traditional software testing
environments are evaluated and divided into the following five
subsystems {2] [7]: (1) test development, (2) test measurement,
(3) test execution, (4) test failure analysis, and (5) test
management. {1] summarizes the software architecture reuse
approaches in several aspects such as abstraction and
integration. Abstraction comes from application domain and is
realized by defining objects and their operations in domain
language while integration is to integrate different domain
components into a single application.

A testing environment for Web applications can be viewed
as a specialization of traditional software testing environment.
The architecture which supports testing of Web applications
can be obtained from existing architecture of software testing
environment, by specializing the architecture and introducing
some new domain components which support the testing tasks
for Web applications. Traditional software testing architecture
has done well in dividing a testing system into subsystems
recursively till domain primitives. When extending the Web
testing architecture from traditional one, Both the abstraction
and integration aspects can be considered. In the aspect of
abstraction, the effort might be devoted to construct Web-
related domain components (primitives) which help to describe
Web-related testing operations. In the integration aspect, an
object-oriented approach for the architecture is suitable for
integrating domain components to perform specific tasks in the
testing environment.

2.2 Constituents of Web Applications

Before discussing how to test Web applications, Web model

provides application platforms or application designers with
several locations to place code for Web computation and
alternative mechanisms to solve particular missions. Figure 1
depicts the typical constituents of the Web application.

Wob
Browser

Waeb
Swrver

Dstadase

(nnr\.

aam -~28-"

"Gatoway
Intertace, Datsbase Ascuss
(can Protecel

Datadase Aseess
Proteonl

Figure 1. Constituents of typical Web applications

The Web browser is capable of retrieving hyper-text
documents, as requested by the application users, from the
Web server via HTTP protocol. It renders the hyper-text
document in HTML (Hyper-Text Markup Language) format on
the screen. Contemporary Web browsers also embed Java
virtual machine and Java Script interpreter to execute the Java
Applets or Java Scripts specified in the documents. Additional
information processor such as Netscape Communicator’s plug-
in modules and Microsoft Explorer’s ActiveX objects, which
are browser-loadable software modules, can extend browser’s
functionality.

HTTP daemon is placed at the Web server to accept the
HTTP requests from the browsers. According to Web server’s
configuration, it may forward the request to (1) document
retriever for serving stored HTML documents, Java Applets, or
multimedia files, or (2) to other information processor on the
Web server, such as CGI programs for dynamically generated
HTML documents and contents. Web servers are sometimes
equipped with information processor, e.g. Apache Module, or
Active Server Page Engine to perform the computation defined
in augmented HTML documents before sending them to
browsers.

Protocols convey command, document or executable
between information processor. HTTP is used for
communication between Web browsers and Web servers. The
CGl is a standard for external gateway programs to interface
with information servers such as HTTP servers. It forwards
both input data and output HTML document for Web browser
and CGI programs running on Web server. De facto database
access interface such as ODBC or JDBC connect Web servers
and database servers. Communication between roles of Web
application components may also flow through plain TCP
sockets, Java RMI, or CORBA. These emerging protocols are
more suitable for developing distributed Web application in
object-oriented technologies.

The placement of constituents in Web model can divide Web
application constituents into three major tiers: Web browser
tier, Web server tier, and database server tier. The information
process in the application is passed through each tier. The user
interaction is performed at the Web-browser tier. The program
logic computation is performed at the Web server tier. The
database operation is done at the database-server tier. Hence,
the Web application model is also known as a three-tier
application architecture. When the database server tier is
omitted, it is known as a two-tier application model.

2.3 Domain Components for Web Application

123

Testing

Several approaches have been selectively used by Web
application developers to construct Web applications according
to user interaction and program logic. Followings are typical
and combinable scenarios in Web application construction:

(1) Applications which consist of augmented HTML
documents: Augmented HTML documents are processed
at server-side by processor ranging from macro processor
(e.g. Apache’s server-side include) to embedded script (e.g.
Microsoft Active Server Page, Server-side JavaScript).

(2) Applications that contain scripts running at client-side:
Scripts written in JavaScript or VB Script are executed by
the browser to perform user interaction and data validation.

(3) Applications which are originally developed in traditional
languages such as C++ or Perl, and interact with Web
client through CGI: Legacy applications equip themselves
with Web features by adding modules to receive requests
and reply results through CGI (or its derivative — ISAPI
and NSAPI).

(4) Applications that apply HTTP-cookie to implement
session-semantic in Web environments: cookies are sent
back and forth between Web server and browser to track
session status and variables.

(5) Applications that connect to database servers: Applications
on Web servers mainly use SQL statements and ODBC to
communicate with database servers.

To perform Web application testing with respect to above
application scenarios, domain components might be included
to testing environment as the primitives, to help describe
testing tasks. The domain components (tools) suggested by
authors are listed in terms of subsystems of the Web
application testing architecture and shown in section 3.

3. Architecture of Web Testing Environment

[2] proposed an architecture for traditional software testing
environments, and it is well evaluated in [7]. We extend this
architecture for testing of Web applications testing as described
in this section.

3.1 The Architecture

According to the architecture in [2], a software testing
environment consists of five subsystems. With the growth of
Web application techniques, more and more Web programming
styles (e.g. ASP, JavaScript) have been proposed. These
programming styles introduce several new techniques which
were not used in conventional software. For example, one
document may contain several code fragments written in
different programming languages, and these fragments may be
interpreted in different tiers such as browser, server,
database, ...etc. Therefore, one Web application should be
analyzed at browser, server, even database tire, and the
corresponding analysis services for different programming
languages are also needed. We add a new subsystem named
Source Document Analysis into above architecture to handle
the testing problems introduced by these new programming
styles. Figure 2 shows an overview of this architecture, where
solid lines indicate data flow.

Test Measurement T:;"y:“:' le-{ Test Execution
Subsystem s Subsystem
‘Test Management Subsystem

Figure 2. Architecture of Web Application Testing

Environment
3.2 Source Document Analysis Subsystem,
SDAS
Different programming approaches applied for Web

application developments have different characteristics. For
example, server side programming is focused on database
accesses and able to generate documents to Web browser
according to the result of database queries. Client side
programming is focused on GUI representation and
manipulation in Web browser. A programming approach may

need a distinct programming language, which is associated.

with a set of tools, such as Server-Side Script Interpreter,
Client-Side Script Interpreter, HTML Analyzer, and so forth.

Analyzer
GetLinks()

Script Analyzer
getControlFlow()

Server-Side Script Analyzer

getSessionVariableList()

server-side script, and client-side script at the same time.
Analyzers are designed to extract hyperlinks in three
parts respectively.

3.3 Test Management Subsystem, TMS

Testing (and validation) deals with many artifacts which
may be created during earlier development phase(s) or even
validation phase [2]. Compared with traditional software, Web
applications involve additional roles for Web such as Web
server and browser, and additional control mechanisms such as
cookie and session. Therefore, testing on Web applications is
different (and might be more complicated than) on traditional
software, and the test artifact management (e.g. manipulation
of test cases) is more important. TMS works as the warehouse
of other subsystem to provide testing artifact management. It
contains Application Information Repository and Test
Suite/Case Repository, where each repository has its own
manager to handle repository manipulation.

A testing model [3] is used to describe some behavior of
Web applications and the corresponding information such as
control flow and data flow is stored in Application Information
Repository. Test Suite/Case Repository stores test suites (and
cases) which include test data, execution path, execution result,
test report, and so forth. TMS provides a set of repository
access interfaces and separates the interfaces from their
implementations, With these access interfaces, other
subsystems can create, manipulate, delete and query
Repositories without concerning their implementations. In
TMS, Manager pattern [9] is applied to achieve this goal.

Figure 4 is the architecture of TMS based on Manager
pattern. To manipulate test suites or cases, the client subsystem
sends request messages to Test Suite/Case Manager, which
then loads or creates the Test Case objects correspondingly.
After manipulation, client subsystem can use the Test Case
object directly. Since the client subsystem is not related to the
implementation of Test Suite/Case Repository, the former does
not need modification when testers change the implementation
of the latter. The implementation of Application Information
Manager is similar to that of Test Suite/Case Manager.

Figure 3. The Class Diagram of Source Document Analysis
Subsystem

Figure 3 is the class diagram of these tools. All tools
designed to analyze the source documents and extract some
information (e.g. hyperlink) are called Analyzer. There are two
categories of Analyzers for Internet software developed, HTML
Analyzer and Script Analyzer. HTML Analyzer processes
HTML fragments in source documents to extract information
such as CGI From. Script Analyzer is used to process the
embedded script fragments and extract information such as
control flow of these script fragments. Script Analyzer is
divided into two categories, Client-Side Script Analyzer and
Server-Side Script Analyzer, according to the location which
the script fragments are interpreted. Client-Side Script
Analyzer handles the script fragments which are interpreted in
Web browser, and Server-Side Script Analyzer handles the
script fragments which interpreted in Web server.

1. SDAS extracts information such as control flow from
source documents, and sends them to TMS. Control flow
is useful in software testing. {4] and [3] proposed
methods to construct control flow of Web applications
based on the hyperlink relations between source
documents. A source document may contain HTML,

124

Clicat Test Suite/Case Test Case !
e Test $
Subsystem [—ust | Mendeel > collection of Test = i
task collection of Test Steps test data
Cases nitializel) 2etUri()
create() destroy() getTesiData()}
search(} potoFirstSien()
retire() nexiStep()
we
Chont Application
Subsysem || "ypaset i f"Conrol Flow
ok . collection of 22
collection of information
Application getEntryNode()}
Information initialize{)
v — destroy() owsim b Dats Flow
create()
scarch() RoioFinsSient) dara
" nextStep()
. retiee()] 2etVarinfol)

Figure 4. Test Management Subsystem

3.4 Test Development Subsystem, TDS

TDS allows testers to manipulate test suites and cases by
generating creates test cases automatically, or constructing
them manually based on application information generated
from SDAS. After receiving the user’s instructions, TDS will
send these requests to TMS to execute these requests.

TDS contains five tools, Test Case Generator (TCG), Test
Suite/Case Maintenance Tool (TSCMT), Test Case Recorder
(TCR), Test Case Composer (TCC), and Test Case Viewer
(TCV). For a Web application, TCG generates test cases
automatically under a testing criterion such as all-statements,
all-branches coverage, ...etc. Test Data Definition Grammar is
a context-free grammar, which is designed for testers to
describe the specification test data. Test data for these test
cases are generated based on specification. Figure 5 shows an
example fragment of Test Data Definition Grammar. All non-
terminal symbols are starting with $. In this example, the test
data of $StudentID can be generated as uB8617535,
U8217045, ...etc.

$Student ID>$IDPrefix+$Num+$Num+ $Num+S$SNu
m+$Num+$Num+$Num

$IDPrefix->u|U

$Num-=>0{1|2[3|4|5]|6(7]8]9

Figure 5. An Example fragment of Test Data Definition
Language

There are at least two problems in automatic test data
generation. The first problem is that the generated test cases
may not be practical. Figure 6 is an example test model. Based
on all-statement coverage criterion, three test cases in Figure 7
may be generated. In this example, the test data in N1 may
cause N4 not to contain a hyperlink to N5, and the test case 3 is
impractical. The second problem is that not all significant
scenarios are covered by generated test cases. In this example,
an execution path of N1->N4->N3->N5 may be significant
scenario that is used in real case, but it is not covered by the
test cases generated.

N1

N2 N3 N4

Figure 6. An Example Test Model

Test Cases No. Execution Path
1 N1->N2-)N5
2 N1-DN3-DON5
3 N1->N4-ON5S

Figure 7. Test Cases Generated from Test Model in Figure 6

TSCMT provides functions to help tester for manipulating
test suites/cases to solve the first problem introduced by TCG.
These functions include test suite/case editing, deleting,
reviewing and so on. After test cases are generated, testers can
review these test cases with TCV, a graphic tool to view the
test cases, and make modification or even deletion for these
test cases with TSCMT.

TCR creates test cases semi-automatically to help solve the
second problem discussed above. A desired test case, which is
not generated by TCG, can be created with TCR. On the other

125

hand, tester can use Web browser to execute a Web application,
and TCR can record the execution scenario and translate it to
test case. There are at least two subclasses of TCR: Data Input
Sequence Recorder (DISR) and GUI Event Recorder (GUIER).
Figure 8 shows a class diagram of 7est Case Recorder. DISR
records the execution sequences and the data entered in CGI
form by testers, and constructs test cases. DISR contains two
modules, HTTP Bridge and HTTP Analyzer. HTTP Bridge
captures the HTTP communication between Web server and
browser. The captured communication is analyzed by HTTP
Analyzer to construct test cases. The HTTP Header Analyzer
analyzes the header of HTTP communication to extract the
value of CGI form inputs. The HTML Analyzer analyzes the
HTML part to extract the information about CGI form (e.g. the
name of CGI form input). Then, HTTP Header Analyzer and
HTML Analyzer send the result of analysis to Test Case
Constructor to construct test cases.

Test Case
Recorder
SetName()
StrartRec()
StopRec()
CreateCase(

)

Figure 8. The Class Diagram of Test Case Recorder

[12] addressed that more applications have been built with
complex graphical user interfaces (GUI), and the testing for
GUI-based system is getting more important to validate the
behavior of GUI. Web application is treated as a GUI-based
system when the behavior of GUI is concemed only. GUIER
records the user-caused GUI events about Web application
(mouse movement, button clicking...) by intercepting the
events between application and operating system to construct
test cases. It is suitable to test ActiveX controls and Java
Applets

TCC is an editing tool that provides test case modification
capability, and can be used to refine existing test cases and
create test cases manually. It is another solution for the second
problem introduced by TCC. If testers are familiar with Web
application and testing environment, they can develop test
cases manually by writing test script using TCC.

3.5 Test Execution Subsystem, TCE

Test Case Executor executes test cases automatically or
manually by following the parameters specified by the tester
and retrieving the appropriate information from Test
Suite/Case Repository. Each execution is verified by Test
Oracle or the tester to determine whether the execution
matches the specification of Web application. In conventional
software testing environments, test data are filled into tested
software via standard input (stdin). Web application has two
kinds of test data, the user-input data and the user-caused GUI
events. Data Filler and GUI Event Generator are designed to
fil the test data to the Web application automatically,
respectively.

set $URLBase http://dsslnt/webapp/
set SURL1 *login.html"

#set variables URL1, URL2
set $SURL2 "checkLogin.asp*
------- HTTP requests begin
HTTPGet S$URL1

#login.html contains a form with two
#fields user and pass

set $forml.user “user001*"

set $forml.pass "wrongPass"
#user001 login with wrongPass
HTTPPost $URL2, $forml

#expect an HTTP-redirect command,
#which redirect the browser

#to errorMessage.html

expect URL "errorMessage.html®

press button “Reload*

press link “Registration”
move mouse 400 400
selact listc “File” “Open”
expect FORM

Text "User Name"
Text “"Age" "23"

expect GRAPHIC *resultl.bmp"”

"Sharon"

Figure 9. A Test Script Sample

Figure 9 shows a test script sample and the key word is
represented by bold font. The key word set is used to
indicate the user-input data. For example, set
$forml.user “user001” represents that the user has
entered user001 in text field user with form forml, and
the Data Filler will fill this text field while executing this line.
Some key words such as press and move represent the user-
caused events. For example, when the user press the button
Reload, and the GUI Event Generator will generate a button
clicked event to this button while executing this line.

GUI Event Generator

executeCommand()

send user-cause
event to

L

Test Script Interpreter

fetchNextLine()
analyze()
dispatchCommand() [Neorg user-input

| data to

Data Filler
executeCommand()

Test Script
nextLine()

Figure 10. The Class Diagram of Test Execution Subsystem

Figure 10 shows the class diagram of TES. The Test Script
Interpreter analyzes the Test Script and dispatches the
commands to Data Filler or GUI Event Generator for
execution. These targets are command-oriented, i.e. different
commands (types) are sent to different target. For example,
press and move are commands for user-caused events, and
they are sent to GUI Event Generator.

3.6 Test Failure Analysis Subsystem, TFAS

Test Failure Analysis includes behavior validation and the

126

analysis of test execution pass/failure statistics {7]. The Test
Oracle analyzes the execution results of test cases, determines
which of them are correct, and generates the Test Failure
Report of these test cases. The Test Suite Summary Generator
reads all test cases and test results belonging to one test suite,
and generates Test Suite Summary indicates what percentage of
test cases passing the test.

Expectation part in test script is used to specify the expected
results of test cases, and the content in expectation part is used
by Test Oracle to determine the correctness of results. Based
on the correctness definition of test results, we summarize that
there are three kinds of Test Oracles: URL Oracle, Form Field
Oracle, and Graphic Oracle. URL Oracle assumes that one
test result is correct if the URL of the returned Web page
matches the expected URL of the test case. It is suitable for the
static Web pages whose representation of this page will not
change. Form Field Oracle assumes that one test result is
correct if the value of each form field or table cell matches the
expected value. It is suitable for the dynamic Web pages whose
representation depends on the result of database queries.
Graphic Oracle assumes that one test result is correct if the
graphical representation matches the expected one. It is the
strictest definition and generally is done by pixel comparison,
and is suitable for ActiveX and Java Applet testing.

In Figure 9, there are three distinct expectation parts starting
with key word expect. The first expectation URL Oracle part
indicates that after executing HTTPPost command, the URL
of retumed Web page is errorMessage . html. The second
expectation Form Field Oracle part indicates that the returned
page contains two CGI form inputs with Text type. Besides,
their names are User Name and Age, and their values are
Sharon and 23, respectively. The third expectation
Graphical Oracle part indicates that the returned page is the
same as the resultl.bmp.

Test Oracle

isCorrect()
getEmorMsg()

setErrorCond()

Figure 11. The Class Diagram of Test Failure Analysis
Subsystem

Figure 11 shows the class diagram of TFAS. If the validation
of Test Result, created by TES, is performed by Test Oracle, it
will analyze the Test Result and create Test Failure Report to
represent the validation result. If the validation is performed by
tester, he can use Test Report Composer to create Test Failure
Report. After a set of test cases are executed and validated,
tester can use Test Suite Summary Generator to summarize test
suite to see how many test cases pass the validation, which test
cases fail in the validation, etc.

3.7 Test Measurement Subsystem, TMES

TMES includes test coverage measurement and analysis.
Test Coverage Analyzer is designed to measure whether and
how much of a test criterion is adequately satisfied. In
traditional software white-box testing, programs are modeled
to control or data flow, and the coverage is the percentage of
statements that a set of test cases is covered if the all-
statements criterion is used. In [3], Web pages or programming
modules are modeled as statements, and hyperlinks are
modeled as execution flow in traditional software testing. The
coverage criterion in conventional software testing can also be
applied here. However, As the evolution of Web application
development techniques, one Web page in browser side may
represent one programming module in server side. There also
contains a control flow in one programming module, and the
definition of test coverage mentioned above can not be applied
in this situation.

4. Applying the Architecture

Based on this architecture, we implemented a prototype of
Web application testing environment to demonstrate its
practicality discussed in section 2.4. Figure 12 is an overview
of the Web application testing environment. Tools inside the
tool set are controlled through the WWW control interface, to
which authorized Web browsers can connect via HTTP.

Tasting Envirenment
Controlling

Browss

Figure 12. The Web Application Testing Environment

TCR is used to create test cases by testers semi-
automatically. Before starting TCR, testers should specify the
port of TCR and the name of the created test case. After
pressing the button OK, the TCR is ready to record. Then,
testers set the proxy property of Web browser to the TCR, and
activate the Web application with Web browser. The execution
scenario and input data are recorded by TCR. After pressing
button Finishing Recording, TCR will store recorded data as
test cases.

TCC is an editor to refine existing test cases, and creates test
cases manually. To specify test cases in a more flexible way,
testers can resort to handcrafting test scripts by themselves.
Because the testing environment stores the outcome of test
case recorders and test case generators in the test repository in
the form of test scripts, test designers can change test cases by
modifying test scripts using TCC.

In test cases execution, the Test Case Executor interprets
designated test scripts, and sends corresponding HTTP
requests according to the content of test script. The test results

of test execution are stored in the testing log of Test Suite/Case
Repository, from which the Test Report Composer summarizes
testing reports.

5. Conclusion and Future Work

In this paper, we proposed a reusable architecture to
construct Web application testing environments by extending a
well-evaluated architecture and applying some design patterns.
The architecture contains six subsystems, and the testing
processes (e.g. test case generation) can be achieved with the
cooperation of these subsystems. To demonstrate the usability
of this architecture, a prototyped Web application testing
environment is built.

Although many facets in Web applications are discussed,
there are still some facets which is popular in Web application
development but not mentioned. For example, many Web
applications such as online ordering system are associated with
a database, and many users’ behaviors will cause the database
accesses. We are now focusing on these issues and propose a
set of components to handle the interactions between Web
server and database.

Reference:

1] Charles W. Krueger, “Software Reuse”, ACM
Computer Surveys, page 131-183, June 1992,

[2] Debra J. Richardson, “TAOS: Testing with Analysis and
Oracle Support”, International Symposium on Software
Testing and Analysis, page 138-153, March 1994,

[3] Ji-Tzay Yang, Jiun-Long Huang, and Feng-Jian Wang,
“A Tool Set to Support Web Application Testing”,
International Computer Symposium, December 1998.

{4] Chia-Lin Hsu and Feng-Jian Wang, “A Web Database
Application Model for Software Maintenance”,
National Chiao-Tung Univertisy, Master Thesie, 1998.

(31 Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, “Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1994,

[6] Mercury Interactive Corp., “Visual Web Site
Management — Mecury Interactives’s Astra
SiteManager”, in http:/fwww. merc-

7N Nancy S. Eickelmann and Debra J. Richardson, “An
Evaluation of Software Test Environment Architectures”,
International Conference on Software Engineering,
page 353-364, March 1996.
[81 Rational Software, “Visual Test 4.0 White Paper”, in
Jf ional /products/visual inf
. o o =
9] Reboert Martin, Dirk Riehle, and Frank Buschmann,
Pattern Languages of Program Design 3, Addison-
Wesley, 1998.
[10] Sun Microsystems, “SunTest Suite”, in
[11] Softbridge Inc., “Web
[12] Thomas Ostrand, Aaron Anodide, Herbert Foster, and
Tarak Goradia, “A Visual Test Development
Environment for GUI Systems”, International
Symposium on Software Testing and Analysis, page
82-92, March 1998.

Analyst”, in

127

