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ABSTRACT
We explore in this paper the problem of dynamic data and
channel allocations with the number of communication chan-
nels and the number of data items given. It is noted that
the combined use of broadcast and on-demand channels can
utilize the bandwidth effectively for data dissemination in
a mobile computing environment. We first derive the an-
alytical models of the expected delays when the data are
requested through the broadcast and on-demand channels.
Then, we transform this problem into to a guided search
problem. In light of the theoretical properties derived, we
devise an algorithm based on binary interpolation search,
referred to as algorithm BIS, to obtain solutions of high
quality efficiently. In essence, algorithm BIS is guided to
explore the solution space with higher likelihood to be the
optimal first, thereby leading to an efficient and effective
search. It is shown by our simulation results that the solu-
tion obtained by algorithm BIS is of very high quality and
is in fact very close to the optimal one. Sensitivity analysis
on several parameters, including the number of data items
and the number of communication channels, is conducted.

Keywords
Data dissemination, dynamic data and channel allocation,
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1. INTRODUCTION
In a mobile computing environment, a mobile user with a

power-limited mobile computer can access various informa-
tion via wireless communication. Applications such as stock
activities, traffic reports and weather forecast have become
increasingly popular in recent years [24][25]. It is noted that
mobile computers use small batteries for their operations
without directly connecting to any power source, and the
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bandwidth of wireless communication is in general limited.
As a result, an important design issue in a mobile system
is to conserve the energy and communication bandwidth of
a mobile unit while allowing mobile users of the ability to
access information from anywhere at anytime [4][6][13][19].

In order to conserve the energy and communication band-
width of a mobile computing system, a data delivery archi-
tecture in which a server continuously and repeatedly broad-
casts data to a client community through a single broadcast
channel was proposed in [1]. In a push-based information
system, a server generates a broadcast program to broad-
cast data to mobile users. This broadcast channel is also
referred to as a broadcast disk from which mobile users can
retrieve data [1]. The mobile users need to wait for the
data of interest to appear on the broadcast channel, and
the corresponding waiting time is called the expected de-
lay of that data item. One objective of designing proper
data allocation in the broadcast disks is to reduce the aver-
age expected delay of data items. The research issues have
attracted a considerable amount of attention, including on-
demand broadcast [2][3], data indexing [10][12] and client
cache management [23][26][27]. In addition, a significant
amount of research effort has been elaborated on developing
the index mechanisms [17][21] and data allocation schemes
[18][20] in multiple broadcast channels.

In addition to broadcast mode, channels can operate in
an on-demand mode in which a client explicitly sends data
requests to retrieve the data items of interest. The ma-
jor advantage of data broadcast is its scalability since the
performance of the system does not depend on the num-
ber of clients listening to the broadcast channels. However,
the performance degrades as the number of data items be-
ing broadcast increases. It has been shown that the com-
bined use of the broadcast and on-demand channels can uti-
lize bandwidth more efficiently for data dissemination [14].
Hence, the problem of channel allocation is to partition a
given total number of communication channels into broad-
casting ones and on-demand ones.

In this paper, we study the problem of dynamic data and
channel allocation. Consider the illustrative example shown
in Figure 1. Assume that the data items Ri, 1 ≤ i ≤ 15, are
of the same size and are sorted by their access frequencies.
The number of channels in this example is assumed to be
four. In the beginning, two channels are assigned as broad-
cast channels and the other two are on-demand ones. Five



R1 R2

R3 R4 R5

On-demand Channel

On-demand Channel

Broadcast
Channels

R6-R15

(a)

R1 R2

R3 R4 R5

On-demand Channel

On-demand Channel

Broadcast
Channels

R7-R15

R6

(b)

R1 R2

R3 R4 R5

On-demand Channel

Broadcast
Channels

R10-R15

R6 R7 R8 R9

(c)

Figure 1: An example scenario of dynamic data and channel allocation

data items are put in broadcast channels and the broadcast
program is shown in Figure 1a. When the data request rate
increases, R6 is moved from the on-demand channel to the
broadcast channel.1 This will reduce the data request rate
to on-demand channels and the expected waiting time in
on-demand channels is hence reduced. The broadcast pro-
gram is then rescheduled and the new broadcast program is
shown in Figure 1b. If the data request rate keeps increas-
ing, as shown in Figure 1c, one channel is re-assigned to be
a broadcast one and three data items (R7, R8 and R9) are
moved from on-demand channels to broadcast channels. As
the partition of broadcast and on-demand channels varies,
the number of data items in those channels changes accord-
ingly, showing the dynamic characteristics of this data and
channel allocation problem.

Explicitly, we explore in this paper the problem of dy-
namic data and channel allocations with the number of com-
munication channels and the number of data items given.
Gathering the access frequencies of data items is another
research issue, since clients do not explicitly send data re-
quests when the data items of interest are put in broadcast
channels. Research works [9][28] in gathering or estimating
the data access frequencies in broadcast channels can com-
plement our work. We first describe the analytical models
of broadcast and on-demand channels. Then, we transform
this problem into to a guided search problem. In light of
theoretical properties derived, we devise an algorithm based
on binary interpolation search, referred to as algorithm BIS,
to obtain the solutions of high quality efficiently. In essence,
algorithm BIS is guided to explore the solution space with
higher likelihood to be the optimal first, thereby leading to
an efficient and effective search. It is shown by our simula-
tion results that the solution obtained by algorithm BIS is
of very high quality and is in fact very close to the optimal
one. Sensitivity analysis on several parameters, including
the number of data items and the number of communica-
tion channels, is conducted. Moreover, algorithm BIS is of
very good scalability which is particularly important for its
practical use in a mobile computing environment.

We mention in passing that the authors of [22] provide
an adaptive algorithm to allocate data items on broadcast
and on-demand channels with a fixed ratio for on-demand
and broadcast bandwidth. In [15], the optimal channel al-
location is calculated when the access delay of data items is
formulated. The work in [16] is designed to keep the load of

1The criterion for data movement will be given in Section 3
later.

on-demand channels in a predetermined region and to shuffle
the loads among broadcast and on-demand channels when
so proper. Both works [15] and [16] employed flat broad-
cast programs which broadcast data items with the same
frequencies. In contrast, algorithm BIS employs a binary
interpolation search technique to dynamically partition the
channels into broadcast and on-demand ones in accordance
with the incoming requests.

The rest of this paper is organized as follows. In Section
2 we briefly describe the problem and analytical models of
broadcast and on-demand channels. In Section 3, we trans-
form the data and channel allocation problem into a search
problem and develop an efficient algorithm. The perfor-
mance evaluation of the proposed algorithm is presented in
Section 4. This paper concludes in Section 5.

2. PROBLEM DESCRIPTION
To facilitate the presentation of this paper, some prelimi-

naries are given in this section. We first describe the system
architecture and the problem of data and channel allocation
in Section 2.1. The analytical models of broadcast channels,
on-demand channels and the overall expected delay of the
system are provided in Section 2.2.

2.1 System Description and Problem Formu-
lation

In our companion work [18], without considering the use of
on-demand channels, we explored the problem of generating
hierarchical broadcast programs with the number broadcast
channels given. Specifically, we transformed the problem of
generating hierarchical broadcast programs into the one of
constructing a data allocation tree with variant-fanout. The
depth of the data allocation tree corresponds to the num-
ber of broadcast channels, and those leaf nodes in the same
level of the data allocation tree correspond to those data
items to be put in the same broadcast channel. The work
in [18] devised two algorithms, OPT and VFK , to generate
broadcast program. Algorithm OPT is an A∗-like algorithm
which is able to generation the optimal broadcast program.
VFK is a greedy, heuristic algorithm can efficiently obtain
a hierarchical broadcast program.

Denote the total number of data items as n, and data
items as Ri, 1 ≤ i ≤ n. Naturally, the nB frequently ac-
cessed data items are placed in broadcast channels and the
other nO = n − nB data items are in on-demand channels.
Let K = KB + KO represent the total number of channels
where KB and KO are the numbers of broadcast and on-
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Figure 2: The architecture of a data dissemination
system

demand channels, respectively. The size of each data item
is assumed to be equal.2 The problem of generating broad-
cast programs for KB broadcast channels can be viewed as a
discrete minimization problem: Given a set of nB data items
with their access probabilities, partition them into KB parts
so that the average expected delay of all data items is min-
imized. Note that once KB is decided, KO follows. Such a
minimization problem is known to be NP-hard [5].

Figure 2 shows the architecture of a data dissemination
system. We assume that each data item is the same size
and read-only [16]. Without knowing the placement of the
requested data item, a mobile user has to send a data item
request via on-demand channels. If the requested data item
is placed in an on-demand channel, the server will reply the
data item directly. If the data item is in a broadcast chan-
nel, the server replies the broadcast information such as the
channel frequencies, the data identifiers, the data index in-
formation, and other auxiliary information [15]. After re-
ceiving the broadcast channel access information, the client
will listen to the broadcast channel and wait for the request
data item. If a client already has the broadcast information
and the requested data item is placed in broadcast chan-
nels, this client does not send a data request to servers via
on-demand channels unless the broadcast information is ex-
pired or invalidated.

With the above model, the problem of data and channel
allocation we consider in this paper is formulated as follows:

Problem of data and channel allocation: Given K
broadcast channels, n data items and their access frequen-
cies, we shall do the following tasks so that the average ex-
pected delay of all data items is minimized.

1. Determine the numbers of broadcast and on-demand
channels (i.e., KB and KO), where K = KB + KO.

2. Determine the numbers of data items allocated to broad-
cast and on-demand channels (i.e., nB and nO), where
n = nB + nO.

3. Construct the broadcast program in the KB broadcast
channels with the nB most frequently accessed data
items.

2.2 Analytical Models
2Note that this assumption is made for ease of presentation,
and is not a restriction for the use of the algorithm proposed.

Table 1: Description of symbols
Description Symbol

Number of channels K
Number of broadcast channels KB

Number of on-demand channels KO

Number of data items n
Number of data items in broadcast channels nB

Number of data items in on-demand channels nO

The jth data item Rj

The access frequency of data item Rj Pr(Rj)
The size of each data item s
The size of each data request r
The channel bandwidth b
The data request rate λ
Avg. service time per on-demand channel 1

µ

2.2.1 Broadcast Channels
Since there is more than one data broadcast program for

given KB and nB , we use WB(KB , nB) to represent the min-
imal expected delay when the requested data item is put in
broadcast channels. Let C(K1, n1) be a configuration where
KB = K1 and nB = n1. The optimal broadcast program
can be obtained by executing one broadcast program gener-
ation algorithm.

2.2.2 On-demand Channels
Let WO(KO, nO) denote the expected delay when the re-

quested data item is in on-demand channels. Let P n
O(nO)

be the probability that the requested data item is in on-
demand channels when there are nO data items placed in
on-demand channels. We assume that the arrival process of
data item requests is a Poisson process with the arrival rate
λ. It follows that the arrival process of requests received
by on-demand channels is also a Poisson process with ar-
rival rate λO = P n

O(nO)λ. Same as in [11], we assume the
queueing buffer is infinite. Thus, the on-demand channels
are modeled as an M/M/c queueing system [8] with the ar-
rival rate λO, the service rate µ and the channel number c.
The average service time is then 1

µ
. Table 1 describes the

symbols used in this paper. Let the sizes of data items and
data requests be s and r, respectively. Hence, the average
service time of on-demand channels can be formulated as:

µ =
b

s + r
.

Omitting the equation manipulation which can be found in
[8], the average expected delay of the on-demand channels
(i.e., the M/M/c queueing system where c = KO) when
ρ < 1 is

Average expected delay

=
1

µ
+

�
rc

c!(cµ)(1− ρ)2

�
p0, where (1)

ρ =
λO

cµ
, r =

λO

µ
, and p0 =

 
c−1X
n=0

rn

n!
+

rc

c!(1− ρ)

!−1

.

2.2.3 Overall Expected Delay
The probability that a client requests a data item in the

broadcast channels is P n
B(nB) =

PnB
i=1 Pr(Ri). On the other
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Figure 3: Trade-off for dynamic data dissemination

hand, the probability that a client requests a data item in
the on-demand channels is P n

O(nO) =
Pn

i=n−nO+1 Pr(Ri) =

1−PnB
i=1 Pr(Ri) = 1−P n

B(nB). The minimal expected delay
of a data dissemination system can then be formulated as
follows:

Woptimal(K, n)

= min
0≤KB≤K,0≤nB≤n

{W (KB , nB)}, where (2)

W (KB , nB)

= P n
B(nB)×WB(KB , nB) + (P n

O(nO))×WO(KO, nO)

= P n
B(nB)×WB(KB , nB) +

(1− P n
B(nB))×WO(K −KB , n− nB).

With KB predetermined, Figure 3 shows the relationship
among W (KB , nB), WB(KB , nB) and WO(KB , nB). Note
that WO(KB , nB) increases exponentially when nO increases
(i.e., nB decreases). It is evident that with too few data
items in broadcast channels, the volume of requests at the
servers may increase beyond their capacity, making the ser-
vice practically infeasible. On the other hand, the change of
the response time for the broadcast data is smoother than
that for the on-demand data since the expected delay is pro-
portional to the number of data items allocated to broad-
cast channels. In this study, the data dissemination scheme
designed will determine the proper KB and nB with the ob-
jective of minimizing the average expected delay of all data
items.

3. BIS: SOLUTION MAPPING ON BROAD-
CAST AND ON-DEMAND CHANNELS

In this section, we devise an algorithm based on the ana-
lytical results in Section 2.2. In Section 3.1, we first trans-
form the problem of data and channel allocation into a
search problem. A generic algorithm to solve this search
problem is also derived. Then, an efficient algorithm based
on binary interpolation search is devised in Section 3.2.

3.1 Problem Transformation
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Figure 4: A generic framework of a combined use of
broadcast and on-demand channels

Given K and n, for an arbitrary configuration C(KB , nB),
WB(KB , nB) can be obtained by executing a generation al-
gorithm for broadcast programs, and WO(K −KB , n− nB)
can be calculated by the analytical model of on-demand
channels. As a result, the problem can be transformed into
a search problem: to find the configuration with the min-
imal expected delay by searching all given configurations
C(KB , nB), where 0 ≤ KB ≤ K and 0 ≤ nB ≤ n. Fig-
ure 4 shows the generic framework of algorithms to solve
the problem of data and channel allocation. In this paper,
since on-demand channels are modeled as an M/M/c queue-
ing system, the expected delay of on-demand channels can
be derived by Equation (1). The search strategy determines
the set of configurations to be checked. Note that some
configurations can be pruned by the following properties:

Property 1 All configurations that 1 ≤ KB ≤ K − 1 and
nB < KB are pruned since those configurations will not be
the optimal.

Proof: Consider an arbitrary configuration C which 1 ≤
KB ≤ K − 1 and nB < KB . Since nB < KB , at least one
broadcast channel does not be contain any data item. We
can get another configuration C′ by reassigning the broad-
cast channel(s) without any data item in on-demand chan-

nel(s). P n
B is equal to P

′n
B since no data item is reassigned.

Since these reassigned broadcast channels contain no data
item, the expected delays in broadcast channels of C and C′

are equal (i.e., WB = W ′
B). Since C′ has more on-demand

channels than C, W ′
O is smaller than WO. By Equation (2),

we have W ′ < W , and as a result, C is not the optimal since
C′ is better than C. Q.E.D.

Analogously, we have the following property.

Property 2 All configurations that nB = n and KB <
K are pruned, since those configurations will not be the
optimal.

Omitting straightforward proofs, we also have the follow-
ing three properties.

Property 3 All configurations that KB = 0 and nB > 0
are pruned, since if there is no broadcast channel, neither is
the data in the broadcast mode.

Property 4 All configurations that KO = 0 and nO > 0
are pruned, since if there is no on-demand channel, neither
is the data in the on-demand mode.



Property 5 All configurations that ρ = λO
KOµ

≥ 1 are pruned.

When ρ of an M/M/c queueing system is larger than or
equal to 1, the system is unstable. That is, the expected
delay does not converge and will increase drastically as time
advances.

3.2 Binary Interpolation Search
In light of analytical models and problem transformation

described, we devise algorithm BIS to minimize the overall
expected delay. BIS is a greedy algorithm to find the sub-
optimal solution of the solution space. In essence, algorithm
BIS is guided to explore the solution space with higher like-
lihood to be the optimal first. A configuration C(K1, n1)
is the local optimal in KB = K1 when W (K1, n1 − 1) ≥
W (K1, n1) and W (K1, n1 + 1) ≥ W (K1, n1). The function
LocalOptimalCheck presented below is employed to deter-
mine whether the input configuration is the local optimal.

Function LocalOptimalCheck(KB , nB)

1: Calculate(KB ,nB − 1)
2: Calculate(KB ,nB + 1)
3: if (W (KB , nB − 1) < W (KB , nB)) then
4: return MINUS
5: else if (W (KB , nB + 1) < W (KB , nB)) then
6: return PLUS
7: else /* W (KB , nB − 1) ≥ W (KB , nB) and

W (KB , nB + 1) ≥ W (KB , nB) */
8: return LOCALOPTIMAL
9: end if

Procedure Calculate(KB ,nB)

1: Calculate and store WB(KB , nB) and the
corresponding broadcast program by employed
broadcast program generation algorithm if they had
not been calculated

2: Calculate and store WO(K −KB , n− nB) by Equation
(1) if it had not been calculated

3: Calculate and store W (KB , nB) by Equation (2) if it
had not been calculated

LocalOptimalCheck(K1, n1) returns LOCALOPTIMAL to no-
tify BIS to search another value of KB when the input con-
figuration C(K1, n1) is the local optimal. Otherwise, it re-
turns MINUS to show that W (K1, n1 − 1) < W (K1, n1) and
the search strategy will check another value of nB < n1.
Similarly, if LocalOptimalCheck(K1, n1) returns PLUS, the
search strategy will check another value of nB > n1.

Note that each invocation of LocalOptimalCheck will cause
at least one execution of the broadcast program generation
algorithm. That is costly. Predicting the local optimal solu-
tion is able to reduce the number of invocation of LocalOpti-
malCheck, thus reducing the total execution time. Suppose
that the prediction algorithm predicts that C(K1, n2) has
the high probability to be the local optimal when KB = K1.
LocalOptimalCheck will then check whether W (K1, n2) is
the local optimal. If W (K1, n2) is the local optimal, BIS
will search another value of KB . Otherwise, BIS repeats
the similar procedure until the configuration predicted by
local optimal prediction algorithm is indeed the local opti-
mal (i.e., LocalOptimalCheck returns LOCALOPTIMAL).

Denote the approximation of WB(KB , nB) and W (KB , nB)
as W ′

B(KB , nB) and W ′(KB , nB), respectively. Consider an
arbitrary configuration C(K1, n1). Suppose that LocalOpti-
malCheck(K1, n1) returns MINUS. In the beginning, the pre-
diction algorithm checks whether W ′(K1, n2−1) ≥ W ′(K1, n2)
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Figure 5: Execution scenario of the function
LocalOptimalPrediction in BIS

where n2 = n1 − 1. If W ′(K1, n2 − 1) ≥ W ′(K1, n2),
LocalOptimalPrediction reports n2 as the predicted place
of the local optimal. Otherwise, it checks another n2 =
n1 − 2 and repeats the similar procedure until W ′(K1, n2 −
1) ≥ W ′(K1, n2). Then, LocalOptimalPrediction reports
C(K1, n2) as the possible configuration of the local optimal
solution. The function LocalOptimalPrediction is as follows.

Function LocalOptimalPrediction(KB , nB , α)

1: repeat
2: nB ← nB + α
3: Calculate W ′(KB , nB) and W ′(KB , nB + α) by

Equation 3
4: until (W ′(KB , nB + α) ≥ W ′(KB , nB))
5: return nB

Figure 5 shows the method to calculate W ′
B(KB , nB) and

W ′(KB , nB) by interpolation. Suppose that BIS selects
an configuration C(K1, n1) and LocalOptimalCheck(K1, n1)
returns MINUS since W (K1, n1 − 1) < W (KB , n1). The
W ′

B(K1, n2) is obtained by the interpolation of WB(K1, n1)
and WB(K1, n1−1). Therefore, we have the following equa-
tion:

W ′
B(K1, n2)

n2 − n1
=

WB(K1, n1 + α)−WB(K1, n1)

α
, where

α =

�
1 : if LocalOptiamCheck(K1, n1) returns PLUS

-1 : if LocalOptiamCheck(K1, n1) returns MINUS

Solving the above equation, we have W ′
B(K1, n2) as:

W ′
B(K1, n2) =

1

α
×(n2−n1)×(WB(K1, n1+α)−WB(K1, n1))

With W ′
B(K1, n2), W ′(K1, n2) can be obtained by the fol-

lowing equation:

W ′(K1, n2)

= P n
B(n2)×W ′

B(K1, n2) +

(1− P n
B(n2))×WO(K −K1, n− n2) (3)

The detailed steps of algorithm BIS are shown below.
The complexity of the algorithm BIS depends on the used
broadcast program generation algorithm and the accuracy
of LocalOptimalPrediction. If VFK is used, the complexity



Table 2: System parameters used in the simulation
Parameters Values

Channel bandwidth (b) 8000 bps
Data item size (s) 1000 bytes
Data request size (r) 10 bytes
Data request rate for each user 1/sec
Number of mobile users (N) 100
Parameter of Zipf distribution (θ) 2

of average case is the product of O(K log n) and the com-
plexity of VFK .

Algorithm BIS
Input: The data items sorted by their access frequencies
and the number of communication channels.
Output: The number of broadcast channels and
on-demand channels, the number of data items within
broadcast and on-demand channels, and the resulting
broadcast program.
1: Construct the solution space and prune configurations

according to the properties 1-5
2: Mark the unavailable configurations (i.e., KB > K or

K < 0 or nB > n or nB < 0) as calculated and set
WB(KB , nB), WO(K −KB , n− nB) and W (KB , nB)
to be ∞.

3: for all pruned configuration C(KB , nB) do
4: Set WB(KB , nB), WO(K −KB , n− nB), and

W (KB , nB) to be ∞ and mark them as calculated
5: end for
6: for (KB ← 0 to K) do
7: Let nB be the middle of un-pruned configurations
8: Calculate(KB , nB)
9: while

(LocalOptimalCheck(KB , nB)6=LOCALOPTIMAL) do
10: if (LocalOptimalCheck(KB , nB)=PLUS) then
11: n′B ← LocalOptimalPrediction(KB , nB , 1)
12: else /* LocalOptimalCheck(i, j)=MINUS */
13: n′B ← LocalOptimalPrediction(KB , nB ,−1)
14: end if
15: end while
16: Keep track of the optimal

Woptimal(K, n) ← W (KB , nB), the corresponding
configuration C(KB , nB) and broadcast program in
the broadcast disk array.

17: end for

4. PERFORMANCE EVALUATION
In order to evaluate the performance improvement achieved

by algorithm BIS, we have designed a simulation model of
a data dissemination system which is described in Section
4.1. To compare the quality of solutions of all algorithms,
two experiments are conducted and compared in Section 4.2.
The impact of employing BIS is evaluated in Section 4.3.

4.1 Simulation Model
Similarly to the work in [15], we set the system parameters

as shown in Table 2. Also, the access frequency of ith data

item is assumed to be Pr(Ri) =
( 1

i
)θPn

j=1( 1
j
)θ where θ is the

parameter of the Zipf distribution [7]. The access frequencies
become increasing skewed as θ increases. Let N denote the
number of mobile users. The total request arrival rate λ is
equal to N since the request arrival rate for each client is
one per second. The simulator is coded in C++.

To compare the effect of BIS on the quality of solutions
and execution time, we conduct two experiments with the
values of n and K varied. Flat broadcast program (denoted
as FLAT), which allocates data items within broadcast chan-
nels with equal appearance frequencies, is also implemented
in order to evaluate the benefit of using hierarchical broad-
cast program. For each configuration, since the optimal
broadcast program can be obtained by OPT, the optimal
data and channel allocation can be obtained by collecting
all optimal broadcast program of all possible configurations
and taking the optimal one among them. In addition to
BIS, we also implement the exhaustive search (abbreviated
as ES) for comparison purposes.

4.2 Comparison of Quality of Solutions
Figure 6a and 6b show the expected delays of (1) ES with

OPT, (2) BIS with OPT, (3) ES with VFK and (4) BIS
with VFK on these two experiments. As shown in Figure 6,
the expected delays of all algorithms employing hierarchical
broadcast generation program are better than those employ-
ing FLAT broadcast program in all experiments, showing
the advantage of using hierarchical broadcast program gen-
eration algorithms. The solutions obtained by VFK-based
algorithms are close to OPT-based algorithms because the
results of VFK are close to OPT. It is seen that the solu-
tions obtained by algorithm BIS are all of very high quality.
In fact, in our experiments, the solutions of BIS-based algo-
rithms are all equal to the solutions of ES-based.

4.3 The Effect of BIS
Figures 7 and 8 show the execution time of each algorithm

with the values of n and K varied, respectively. The execu-
tion times of all algorithms are proportional to the size of
solution space. The size of solution space increases as the n
and K increase since the size of the solution space is propor-
tional to K × n. Since the execution times of ES-based al-
gorithms are more sensitive to the size of the solution space
than the BIS-based algorithms, BIS-based algorithms are
more scalable when the values of K and n become large.

In all, we observed that (1) the execution time of BIS-
based algorithms is much faster than that of ES-based algo-
rithms when the same broadcast program generation algo-
rithm is employed, and (2) BIS-based algorithms are more
scalable than ES-based algorithms.

5. CONCLUSIONS
In this paper, we explored the problem of dynamic data

and channel allocation with the number of communication
channels and the number of data items given. We first de-
rived the analytical models of the expected delay on broad-
cast and on-demand channels. Then, we transformed this
problem into to a guided search problem. In light of the the-
oretical properties derived, we devised algorithm BIS based
on binary interpolation search to obtain solutions of high
quality efficiently. Our simulation results showed that the
solution of our algorithm is of very high quality and is in
fact very close to the optimal one. Sensitivity analysis on
several parameters, including the number of data items and
the number of communication channels, was conducted.
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Figure 6: The expected delay with the value of (a) n and (b) K varied
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