Problem 2. Given the sequence cat Δ ate $\Delta h a t$, encode the sequence using $p p m a$ algorithm with $N=1$ and an adaptive arithmetic coder. Assuming a six-letter alphabet $\{h, e, t, a, c, \Delta\}$.

Assume the word length of the AC is 6 . Thus, initially $l=000000$ and $u=111111$.

The Final context table after encoding all letters is:

order	context	symbol occurrence counts							Total
		h	e	t	a	c	Δ	<ESC>	
1	c	0	0	0	1	0	0	1	2
	a	0	0	3	0	0	0	1	4
	t	0	1	0	0	0	1	1	3
	Δ	1	0	0	1	0	0	1	3
	e	0	0	0	0	0	1	1	2
	h	0	0	0	1	0	0	1	2
0	1	1	1	3	3	1	2	1	12
-1	/	1	1	1	1	1	1	0	6

Symbol 1: c
No $1^{\text {st }}$-order or zero order contexts yet, go directly to -1 order context.
Use -1 order context to encode $c, l=101010$, and $u=110100 \rightarrow E_{2}$ scale.
Transmitted sequence: 1.
Updated bounds: $l=010100, u=101001 \rightarrow E_{3}$ scale.
Updated bounds: $l=001000, u=110011, E_{3}$ count $=1$.

Symbol 2: a
No $1^{\text {st }}$-order context of c yet, goes directly to 0 order context.
Encode $\langle E S C>, l=011110$, and $u=110011$.
Use -1 order context to encode $a, l=101001$, and $u=101011 \rightarrow E_{2}$ scale.
Transmitted sequence: 110.
Updated bounds: $l=010010, u=010111, E_{3}$ count $=0 \rightarrow E_{1}$ scale.
Transmitted sequence: 1100.
Updated bounds: $l=100100, u=101111 \rightarrow E_{2}$ scale.
Transmitted sequence: 11001.
Updated bounds: $l=001000, u=011111 \rightarrow E_{1}$ scale.
Transmitted sequence: 110010.
Updated bounds: $l=010000, u=111111$.

Symbol 3: t
No $1^{\text {st }}$-order context of a yet, goes directly to 0 order context.
Encode $\langle E S C\rangle, l=110000$, and $u=111111 \rightarrow E_{2}$ scale twice.
Transmitted sequence: 11001011.
Updated bounds: $l=000000, u=111111$.

Use -1 order context to encode $t, l=010101$, and $u=011111 \rightarrow E_{1}+E_{2}$ scales.
Transmitted sequence: 1100101101.
Updated bounds: $l=010100, u=111111$.

Symbol 4: Δ
No $1^{\text {stt }}$-order context of t yet, goes directly to 0 order context.
Encode $\langle E S C\rangle, l=110101$, and $u=111111 \rightarrow E_{2}$ scale twice.
Transmitted sequence: 110000111 .
Updated bounds: $l=010100, u=111111$.
Use -1 order context to encode $\Delta, l=111000, u=111111 \rightarrow E_{2}$ scale three times.
Transmitted sequence: 110000111111.
Updated bounds: $l=000000, u=111111$.

Symbol 5: a
No $1^{\text {st }}$-order context of Δ yet, goes directly to 0 order context.
Use 0 order context to encode $a, l=001100$, and $u=011000 \rightarrow E_{1}$ scale.
Transmitted sequence: 1100001111110.
Updated bounds: $l=011000, u=110001$.

Symbol 6: t
Use 1st order context of a to encode $t, l=011000$, and $u=100100 \rightarrow E_{3}$ scale.
Updated bounds: $l=010000, u=101001, E_{3}$ count $=1 \rightarrow E_{3}$ scale.
Updated bounds: $l=000000, u=110011, E_{3}$ count $=2$.

Symbol 7: e
No e in $1^{\text {st }}$ order context of t, encode $\langle E S C>, l=011010$, and $u=110011$.
Encode $\langle E S C\rangle$ for 0 order context, $l=110000$, and $u=110011 \rightarrow E_{2}$ scale twice.
Transmitted sequence: 11000011111101100 .
Updated bounds: $l=000000, u=001111, E_{3}$ count $=0 \rightarrow E_{1}$ scale twice.
Transmitted sequence: 1100001111110110000 .
Updated bounds: $l=000000, u=111111$.
Use -1 order context to encode $e, l=001010$, and $u=010100 \rightarrow E_{1}$ scale.
Transmitted sequence: 11000011111101100000 .
Updated bounds: $l=010100, u=101001 \rightarrow E_{3}$ scale.
Updated bounds: $l=000000, u=110011, E_{3}$ count $=1$.

Symbol 8: Δ
No $1^{\text {st }}$-order context of e yet, goes directly to 0 order context.
Use 0 order context to encode $\Delta, l=100111, u=101100 \rightarrow E_{2}$ scale.
Transmitted sequence: 1100001111110110000010 .
Updated bounds: $l=001110, u=011001, E_{3}$ count $=0 \rightarrow E_{1}$ scale.

Transmitted sequence: 11000011111101100000100 .
Updated bounds: $l=011100, u=110011$.

Symbol 9: h
No h in the $1^{\text {st }}$ order context of Δ, encode $<E S C>$ using the conditional probabilities of the context $\Delta, l=101000$, and $u=110011 \rightarrow E_{2}$ scale.
Transmitted sequence: 110000111111011000001001 .
Updated bounds: $l=010000, u=100111 \rightarrow E_{3}$ scale.
Updated bounds: $l=000000, u=101111, E_{3}$ count $=1$.
No 0 order context for h, encode $\langle E S C\rangle, l=101010, u=101111 \rightarrow E_{2}$ scale.
Transmitted sequence: 11000011111101100000100110 .
Updated bounds: $l=010100, u=011111, E_{3}$ count $=0 \rightarrow E_{1}$ scale.
Transmitted sequence: 110000111111011000001001100 .
Updated bounds: $l=101000, u=111111 \rightarrow E_{2}$ scale.
Transmitted sequence: 1100001111110110000010011001.
Updated bounds: $l=010000, u=111111$.
Use -1 order context to encode $h, l=010000, u=010111 \rightarrow E_{1}+E_{2}+E_{1}$ scales.
Transmitted sequence: 1100001111110110000010011001010 .
Updated bounds: $l=000000, u=111111$.

Symbol 10: a
No $1^{\text {st }}$-order context of h yet, create an entry for context ' h ', then go directly to 0 order context.

Use 0 order context to encode $a, l=011001$, and $u=011111 \rightarrow E_{1}+E_{2}+E_{2}$ scales.
Transmitted sequence: 1100001111110110000010011001010011.
Updated bounds: $l=001000, u=111111$.

Symbol 11: t
Use $1^{\text {st }}$-order context of a to encode $t, l=001000, u=101100$.

We transmit the lower bound to signal the final letter t.
Transmitted sequence: 1100001111110110000010011001010011001000 .

Problem 4. A sequence is encoded using the Burrows-Wheeler transform. Given $L=$ elbkkee, and index $=5$ (we start counting from 1, not 0), find the original sequence.

The decoded sequence is kelebek.

