Problem 4.

a)

$$H = \sum_{i=1}^{5} P(a_i) \log P(a_i) = 1.817684 \text{bits}$$

b)

If we sort the probabilities in descending order, we can see that the two letters with the lowest probabilities are a₂ and a₄. These will become the leaves on the lowest level of the binary tree. The parent node of these leaves will have a probability of 0.9. If we consider parent node as a letter in a reduced alphabet then it will be one of the two letters with the lowest probability: the other one being a₁. Continuing in this manner, we get the binary tree shown in Figure 1. and the code is

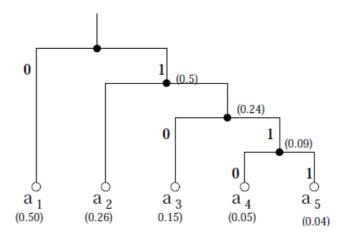


Figure 1: Huffman code for the five-letter alphabet.

```
\begin{array}{cccc} a_1 & 110 \\ a_2 & 1111 \\ a_3 & 10 \\ a_4 & 1110 \\ a_5 & 0 \end{array}
```

c) $l_{avg} = 0.15 \times 3 + 0.04 \times 4 + 0.26 \times 2 + 0.05 \times 4 + 0.5 \times 1 = 1.83 \text{bits/symbol}.$

Problem 5.

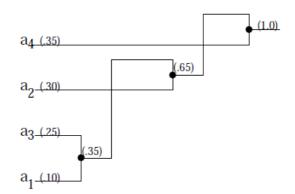


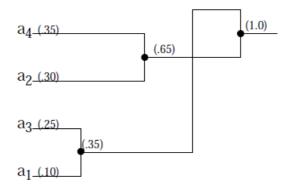
Figure 2: Huffman code for the four-letter alphabet in Problem 5.

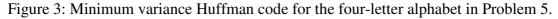
- a) The Huffman code tree is shown in Figure 2. The code is
 - $\begin{array}{rrrr} a_1 & 011 \\ a_2 & 01 \\ a_3 & 010 \\ a_4 & 1 \end{array}$

The average length of the code is $0.1 \times 3 + 0.3 \times 2 + 0.25 \times 3 + 0.35 \times 1 = 2$ bits/symbol.

- b) Huffman code tree is shown in Figure 3. The code is
 - $a_1 \quad 01 \\ a_2 \quad 11 \\ a_3 \quad 00 \\ a_4 \quad 10$

The average length of the code is obviously 2 bits/symbol.





While the average length of the codeword is the same for both codes, that is they are both equally efficient in terms of rate. However, the second code has a variance of zero for the code lengths. This means that we would not have any problems with buffer control if we were using this code in a communication system. We cannot make the same assertion about the first code.

Problem 6.

Examining the Huffman code generated in Problem 4 (not 3!) along with the associated probabilities, we have

a_1	110	0.15
a_2	1111	0.04
a_3	10	0.26
a_4	1110	0.05
a_5	0	0.50

The proportion of zeros in a given sequence can be obtained by first computing the

probability of observing a zero in a codeword $\sum_{k=1}^{5} P(0|a_k) P(a_k)$ and then dividing that by the average length of a codeword. The probability of observing a zero in a codeword is

 $1 \times 0.15 + 0 \times 0.04 + 1 \times 0.26 + 1 \times 0.05 + 1 \times 0.50 = 0.96.$

0.96/1.83 = 0.52. Thus, the proportion of zeros is close to a half. If we examine Huffman codes for sources with dyadic probabilities, we would find that the proportion is exactly a half. Thus, the use of a Huffman code will not lead to inefficient channel usage.

Problem 10.

a)	Message	$a_2a_1a_3a_2a_1a_2$
	Transmitted binary sequence	1010001011
	Received binary sequence	0010001011
	Decoded sequence	$a_4 a_4 a_2 a_2$

Depending on how you count, the errors five characters are received in error before the first correctly decoded character.

b)	Transmitted binary sequence Received binary sequence	001011001000 101011001000
	Decoded sequence	$a_1 a_1 a_3 a_2 a_1 a_2$
Only a single character is received in error.		

c)	Message	$a_2 a_1 a_3 a_2 a_1 a_2$
	Transmitted binary sequence	1010001011
	Received binary sequence	1000001011
	Decoded sequence	$a_2 a_3 a_4 a_2 a_2$

four characters are received in error before the first correct character.

For the minimum variance code the situation is different

Message	$a_2a_1a_3a_2a_1a_2$
Transmitted binary sequence	001011001000
Received binary sequence	000011001000
Decoded sequence	$a_2 a_2 a_3 a_2 a_1 a_2$

Again, only a single character is received in error.

Problem 13.

First iteration:

Letter	Probability
a_1	0.7
a_2	0.2
a_3	0.1

Second iteration:

Letter	Probability
a_2	0.2
a_3	0.1
$a_1 a_1$	0.49
$a_1 a_2$	0.14
a_1a_3	0.07

Final iteration:

Code
000
001
010
011
100
101
110