Name: _____

ID: _____

#

Note: 20 points for each problem.

1. Suppose we have a source with a probability model $P = \{p_0, p_1, \dots, p_m\}$ and entropy H_P . Suppose we have another source with probability model $Q = \{q_0, q_1, \dots, q_m\}$ and entropy H_Q , where

$$q_i = p_i, i = 0, 1, \dots, j - 2, j + 1, \dots, m$$

and

 $q_j = q_{j-1} = (p_j + p_{j-1})/2.$

How is H_Q related to H_P (greater, equal, or less)? Prove your answer. [Solution]

Problem 4.

$$H_Q - H_P = -\sum_{i=1}^m q_i \log_2 q_i + \sum_{i=1}^m p_i \log_2 p_i$$

= $-q_{j-1} \log_2 q_{j-1} - q_j \log_2 q_j + p_{j-1} \log_2 p_{j-1} + p_j \log_2 p_j$

Given a function

$$f_a(x) = -x \log x - (a - x) \log(a - x)$$

we can easily show that $f_a(x)$ is maximum for $x = \frac{a}{2}$ Let

$$p_{j-1} + p_j = c$$

then

$$q_{j-1} = q_j = \frac{c}{2}$$

Then

$$H_Q - H_P = -\frac{c}{2} \log_2 \frac{c}{2} - \frac{c}{2} \log_2 \frac{c}{2} + p_j \log_2 p_j + (c - p_j) \log_2 (c - p_j)$$
(1)
$$= f_c(\frac{c}{2}) - f_c(p_j)$$

$$\ge 0$$

Therefore $H_Q \ge H_P$.

2. A source has symbol probabilities p(a) = 0.4, p(b) = 0.1, p(c) = 0.3, and p(d) = 0.2.

a) Find a Huffman code for the source.

b) Design a 4-bit Tunstall code for the source.

[Solution]

a)

Symbol	Step 1	Step 2	Step 3	Code
а	0.4	0.4	0.6	1
С	0.3 —	→ 0.3	∕•0.4 ∫	00
d	0.2	• 0.3		010
b	0.1 5			011

b)

Initial list: Letter Prob.Second iteration: Letters Prob. b 0.1 c 0.3 d 0.2Second iteration: Letter Prob. b 0.1 c 0.3 d 0.2First iteration: Letters Prob. b 0.1 c 0.3 d 0.2First iteration: c 0.3 d 0.2 aa 0.16 ab 0.04 ac 0.12 ad 0.08 c 0.3 d 0.2 aa 0.16 ab 0.04 ac 0.12 ad 0.08 bc 0.1 cc 0.03 cc 0.09 cd 0.06 caa 0.048 cab 0.012 cac 0.036 cad 0.024	Third ite Letter b aa ab ac ad cb cc cd da db dc dd caa cab cac cad	eration: Prob. 0.1 0.16 0.04 0.12 0.08 0.03 0.09 0.06 0.08 0.02 0.06 0.04 0.04 0.048 0.012 0.036 0.024	Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	
---	--	--	--	--

3. Given a number *a* in the interval [0, 1) with an *n*-bit binary representation $[b_1b_2...b_n]$, show that for any other number *b* to have a binary representation with $[b_1b_2...b_n]$ as the prefix, *b* has to lie in the interval $[a, a + 1/2^n)$.

[Solution]

The number *a* can be expressed as:

$$a = b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \ldots + b_n \cdot 2^{-n}.$$

If *b* also has a binary representation $[b_1b_2...b_n]$ as prefix, then

$$b = b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \ldots + b_n \cdot 2^{-n} + b_{n+1} \cdot 2^{-(n+1)} + \ldots$$

Therefore,

$$b - a = b_{n+1} \cdot 2^{-(n+1)} + \dots$$

Obviously $b - a \ge 0$ and $b \ge a$.

On the other hand,

$$\begin{split} b - a &= b_{n+1} 2^{-(n+1)} + b_{n+2} 2^{-(n+2)} + \dots \\ &\leq 2^{-(n+1)} + 2^{-(n+2)} + \dots \\ &< \frac{1}{2^n}. \end{split}$$

Therefore, $b < a + 1/2^n$.

Introduction to Multimedia Compression – Midterm

11/13/2014

4. A sequence is encoded using the LZW algorithm and the initial dictionary shown in the following table.

Index	Entry		
1	a		
2	С		
3	r		
4	у		
5	Δ		

The output of the LZW encoder is the following sequence: 1, 5, 2, 1, 3, 5, 9, 3, 1, 4, 7. Please decode the message.

[Solution]

The decoded dictionary is:

T 1	
Index	Entry
1	а
2	С
2 3 4	r
4	У
5	Δ
6	aД
7	Δc
8	ba
9	ar
10	rД
11	Δa
12	arr
13	ra
14	ay
15	yД

The decoded message is $a \Delta car \Delta array \Delta c$.

5. We try to encode the sequence $cat \Delta ate \Delta hat$ using *ppma* with maximal context length N = 1 and an integer arithmetic code with a word length of 6. The alphabet set is $\{h, e, t, a, c, \Delta\}$. Assume that we have finished encoding of $cat \Delta ate \Delta$ and obtained the following context table:

order	context	symbol occurrence counts						Total	
		h	е	t	а	С	Δ	< <i>ESC</i> >	
1	С	0	0	0	1	0	0	1	2
	а	0	0	2	0	0	0	1	3
	t	0	1	0	0	0	1	1	3
	Δ	0	0	0	1	0	0	1	2
	е	0	0	0	0	0	1	1	2
0	/	0	1	2	2	1	2	1	9
-1	/	1	1	1	1	1	1	0	6

#

Note that in the context table, the cumulative count is calculated from left-to-right. For example, the zero-order context has cumulative count as follows: h = 0, e = 1, t = 3, a = 5, c = 6, and $\Delta = 8$. The transmitted sequence after encoding of *cat* $\Delta ate\Delta$ is 11000011111101100000100 and the current lower and upper bounds are l = 011100 and u = 110011. Please encode the next letter *h* and write down the newly transmitted bits for *h* and the updated lower and upper bounds.

Hint: For an integer AC implementation, the message interval can be updated by:

$$l^{(n)} = l^{(n-1)} + \lfloor (u^{(n-1)} - l^{(n-1)} + 1) \times cum_count(x_n - 1)/total_count \, \rfloor,$$

$$u^{(n)} = l^{(n-1)} + \lfloor (u^{(n-1)} - l^{(n-1)} + 1) \times cum_count(x_n)/total_count \, \rfloor - 1.$$

[Solution]

No *h* in 1st order context of Δ , encode $\langle ESC \rangle$, l = 101000, and $u = 110011 \rightarrow E_2$ scale. Transmitted sequence: ****<u>1</u>. Updated bounds: l = 010000, $u = 100111 \rightarrow E_3$ scale. Updated bounds: l = 000000, u = 101111, E_3 count = 1. No 0 order context for *h*, encode $\langle ESC \rangle$, l = 101010, $u = 101111 \rightarrow E_2$ scale. Transmitted sequence: ****<u>110</u>. Updated bounds: l = 010100, u = 011111, E_3 count = $0 \rightarrow E_1$ scale. Transmitted sequence: ****<u>1100</u>. Updated bounds: l = 101000, $u = 111111 \rightarrow E_2$ scale. Transmitted sequence: ****<u>11001</u>. Updated bounds: l = 010000, u = 111111. Use -1 order context to encode *h*, l = 010000, $u = 010111 \rightarrow E_1 + E_2 + E_1$ scales. Transmitted sequence: ****<u>11001010</u>. Updated bounds: l = 000000, u = 111111.