Introduction to Multimedia Compression - Midterm

Name: \qquad ID: \qquad

Note: 20 points for each problem.

1. Suppose we have a source with a probability model $P=\left\{p_{0}, p_{1}, \ldots, p_{m}\right\}$ and entropy H_{P}.

Suppose we have another source with probability model $Q=\left\{q_{0}, q_{1}, \ldots, q_{m}\right\}$ and entropy H_{Q}, where

$$
q_{i}=p_{i}, i=0,1, \ldots, j-2, j+1, \ldots, m
$$

and

$$
q_{j}=q_{j-1}=\left(p_{j}+p_{j-1}\right) / 2 .
$$

How is H_{Q} related to H_{P} (greater, equal, or less)? Prove your answer.

[Solution]

Problem 4.

$$
\begin{aligned}
H_{Q}-H_{P} & =-\sum_{i=1}^{m} q_{i} \log _{2} q_{i}+\sum_{i=1}^{m} p_{i} \log _{2} p_{i} \\
& =-q_{j-1} \log _{2} q_{j-1}-q_{j} \log _{2} q_{j}+p_{j-1} \log _{2} p_{j-1}+p_{j} \log _{2} p_{j}
\end{aligned}
$$

Given a function

$$
f_{a}(x)=-x \log x-(a-x) \log (a-x)
$$

we can easily show that $f_{a}(x)$ is maximum for $x=\frac{a}{2}$ Let

$$
p_{j-1}+p_{j}=c
$$

then

$$
q_{j-1}=q_{j}=\frac{c}{2}
$$

Then

$$
\begin{align*}
H_{Q}-H_{P} & =-\frac{c}{2} \log _{2} \frac{c}{2}-\frac{c}{2} \log _{2} \frac{c}{2}+p_{j} \log _{2} p_{j}+\left(c-p_{j}\right) \log _{2}\left(c-p_{j}\right) \tag{1}\\
& =f_{c}\left(\frac{c}{2}\right)-f_{c}\left(p_{j}\right) \\
& \geq 0
\end{align*}
$$

Therefore $H_{Q} \geq H_{P}$.
2. A source has symbol probabilities $p(a)=0.4, p(b)=0.1, p(c)=0.3$, and $p(d)=0.2$.
a) Find a Huffman code for the source.
b) Design a 4-bit Tunstall code for the source.

[Solution]

a)

Symbol	Step 1	Step 2	Step 3	Code
a	0.4	0.4	0.6	1
c	0.3	$\longrightarrow 0.3$	0.4	00
d	0.2	0.3		010
b	0.1			011

b)

Initial list:	
Letter	Prob.
a	0.4
b	0.1
c	0.3
d	0.2

First iteration:	
Letters	Prob.
b	0.1
c	0.3
d	0.2
$a a$	0.16
$a b$	0.04
$a c$	0.12
$a d$	0.08

Second iteration:	
Letter	Prob.
b	0.1
d	0.2
$a a$	0.16
$a b$	0.04
$a c$	0.12
$a d$	0.08
$c b$	0.03
$c c$	0.09
$c d$	0.06
$c a a$	0.048
$c a b$	0.012
$c a c$	0.036
$c a d$	0.024

Third iteration:		
Letter	Prob.	Code
b	0.1	0000
$a a$	0.16	0001
$a b$	0.04	0010
$a c$	0.12	0011
$a d$	0.08	0100
$c b$	0.03	0101
$c c$	0.09	0110
$c d$	0.06	0111
$d a$	0.08	1000
$d b$	0.02	1001
$d c$	0.06	1010
$d d$	0.04	1011
$c a a$	0.048	1100
$c a b$	0.012	1101
$c a c$	0.036	1110
$c a d$	0.024	1111

3. Given a number a in the interval $[0,1)$ with an n-bit binary representation $\left[b_{1} b_{2} \ldots b_{n}\right]$, show that for any other number b to have a binary representation with $\left[b_{1} b_{2} \ldots b_{n}\right]$ as the prefix, b has to lie in the interval $\left[a, a+1 / 2^{n}\right.$).

[Solution]

The number a can be expressed as:

$$
a=b_{1} \cdot 2^{-1}+b_{2} \cdot 2^{-2}+\ldots+b_{n} \cdot 2^{-n} .
$$

If b also has a binary representation $\left[b_{1} b_{2} \ldots b_{n}\right]$ as prefix, then

$$
b=b_{1} \cdot 2^{-1}+b_{2} \cdot 2^{-2}+\ldots+b_{n} \cdot 2^{-n}+b_{n+1} \cdot 2^{-(n+1)}+\ldots
$$

Therefore,

$$
b-a=b_{n+1} \cdot 2^{-(n+1)}+\ldots
$$

Obviously $b-a \geq 0$ and $b \geq a$.
On the other hand,

$$
\begin{aligned}
b-a & =b_{n+1} 2^{-(n+1)}+b_{n+2} 2^{-(n+2)}+\ldots \\
& \leq 2^{-(n+1)}+2^{-(n+2)}+\ldots \\
& <\frac{1}{2^{n}} .
\end{aligned}
$$

Therefore, $b<a+1 / 2^{n}$.

Introduction to Multimedia Compression - Midterm

4. A sequence is encoded using the LZW algorithm and the initial dictionary shown in the following table.

Index	Entry
1	a
2	c
3	r
4	y
5	Δ

The output of the LZW encoder is the following sequence: $1,5,2,1,3,5,9,3,1,4,7$. Please decode the message.

[Solution]

The decoded dictionary is:

Index	Entry
1	a
2	c
3	r
4	y
5	Δ
6	$a \Delta$
7	Δc
8	$b a$
9	$a r$
10	$r \Delta$
11	Δa
12	$a r r$
13	$r a$
14	$a y$
15	$y \Delta$

The decoded message is a
5. We try to encode the sequence cat Δ ate $\Delta h a t$ using ppma with maximal context length $N=1$ and an integer arithmetic code with a word length of 6 . The alphabet set is $\{h, e, t, a, c, \Delta\}$. Assume that we have finished encoding of cat Aate Δ and obtained the following context table:

order	context	symbol occurrence counts							Total
		h	e	t	a	c	Δ	<ESC $>$	
	c	0	0	0	1	0	0	1	2
	a	0	0	2	0	0	0	1	3
1	t	0	1	0	0	0	1	1	3
	Δ	0	0	0	1	0	0	1	2
	e	0	0	0	0	0	1	1	2
					1	2	2	1	2
1	1	9							
0	$/$	0	1	1	1	1	1	1	0
-1	$/$	1							

Note that in the context table, the cumulative count is calculated from left-to-right. For example, the zero-order context has cumulative count as follows: $h=0, e=1, t=3, a=5, c=6$, and $\Delta=8$.
The transmitted sequence after encoding of cat Aate Δ is 11000011111101100000100 and the current lower and upper bounds are $l=011100$ and $u=110011$. Please encode the next letter h and write down the newly transmitted bits for h and the updated lower and upper bounds.
Hint: For an integer AC implementation, the message interval can be updated by:

$$
\begin{aligned}
& l^{(n)}=l^{(n-1)}+\left\lfloor\left(u^{(n-1)}-l^{(n-1)}+1\right) \times \text { cum_count }\left(x_{n}-1\right) / \text { total_count }\right\rfloor, \\
& u^{(n)}=l^{(n-1)}+\left\lfloor\left(u^{(n-1)}-l^{(n-1)}+1\right) \times \text { cum_count }\left(x_{n}\right) / \text { total_count }\right\rfloor-1 .
\end{aligned}
$$

[Solution]
No h in $1^{\text {st }}$ order context of Δ, encode $\langle E S C\rangle, l=101000$, and $u=110011 \rightarrow E_{2}$ scale.
Transmitted sequence: ${ }^{* * * *} \underline{1}$.
Updated bounds: $l=010000, u=100111 \rightarrow E_{3}$ scale.
Updated bounds: $l=000000, u=101111, E_{3}$ count $=1$.
No 0 order context for h, encode $\langle E S C\rangle, l=101010, u=101111 \rightarrow E_{2}$ scale.
Transmitted sequence: ${ }^{* * * *} \underline{110}$.
Updated bounds: $l=010100, u=011111, E_{3}$ count $=0 \rightarrow E_{1}$ scale.
Transmitted sequence: ${ }^{* * * * \underline{1100} .}$
Updated bounds: $l=101000, u=111111 \rightarrow E_{2}$ scale.
Transmitted sequence: $* * * * 11001$.
Updated bounds: $l=010000, u=111111$.
Use -1 order context to encode $h, l=010000, u=010111 \rightarrow E_{1}+E_{2}+E_{1}$ scales.
Transmitted sequence: ${ }^{* * * *} \underline{11001010}$.
Updated bounds: $l=000000, u=111111$.

