

- Given an invertible transform A, the entropy of a source x does not change subject to A, i.e. Ax has the same entropy as x.
- □ However, there are several reasons why we want to perform lossy compression on *A***x**, instead of **x**:
 - Input data sequence can be interpreted with more insights
 - Input data possibly are de-correlated in transform domain
 - The original time-ordered sequence of data can be decomposed into different categories

Example: Height-Weight Data (2/3)

□ If we set θ_1 to zeros for all the data pairs, and transform the data back to $x_h - x_w$ domain, we have the reconstruction errors as follows:

Original data

Reconstructed data

Height Weight		Height	Weight	
65	170	68	169	
75	188	75	188	
60	150	60	150	
70	170	68	171	
56	130	53	131	
80	203	81	203	
68	160	65	162	
50	110	45	112	
40	80	34	84	
50	153	60	150	
69	148	61	151	
62	140	57	142	
76	164	67	168	
64	120	50	125	

Example: Height-Weight Data (3/3)

- □ Note that, in original data, both x_h and x_w have nonnegligible variances, however, for θ_0 and θ_1 , only θ_0 has large variance
- Variance (or energy) of a source and its information has a positive relation; larger source variance, higher entropy

• For Gaussian source, the differential entropy is $(\log_2 \pi e \sigma^2)/2$.

□ The error introduced into the reconstructed sequence of $\{x\}$ is equal to the error introduced into the transform-domain sequence $\{\theta\}$.

□ For media coding, only linear transforms are used

The forward transform can be denoted by

$$\theta_n = \sum_{i=0}^{N-1} x_i a_{n,i}.$$

The inverse transform is

$$x_n = \sum_{i=0}^{N-1} \theta_i b_{n,i}.$$

 \Box The selection of *N* is application-specific

- Complexity of transform is lower for small N
- Large N adapts to fast-changing statistics badly
- Large *N* produces better resolution in transform domain

2-D Forward Transform
a For 2-D signals
$$X_{i,j}$$
, a general linear 2-D transform of block size $N \times N$ is given as

$$\Theta_{k,l} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} x_{i,j} a_{i,j,k,l}.$$
b If separable transform is used; the formulation can be simplified to

$$\Theta_{k,l} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} a_{k,i} x_{i,j} a_{j,l} = \sum_{i=0}^{N-1} a_{k,i} \left(\sum_{j=0}^{N-1} x_{i,j} a_{j,l} \right).$$
c In matrix form, the separable transform becomes

$$\Theta = AXA^{T}.$$

$$= \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{x} = \sum_{n=0}^{N-1} x_n^2.$$

- The efficiency of a transform depends on how much energy compaction is provided by the transform
- The amount of energy compaction can be measured by the ratio of the arithmetic mean of the variances to their geometric means:

$$G_{TC} = rac{rac{1}{N} \sum_{i=0}^{N-1} \sigma_i^2}{\left(\prod_{i=0}^{N-1} \sigma_i^2\right)^{rac{1}{N}}},$$

where σ_i^2 is the variance of the *i*th coefficients.

Note: The wider the spread of σ_i^2 w.r.t. their arithmetic mean, the smaller the value of the geometric mean will be \rightarrow better energy compaction!

Decomposition of 1-D Input

Transform decomposes an input sequence into components with different characteristics. If

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix},$$

input $\mathbf{x} = [x_1, x_2]$, the transformed output is

$$A\mathbf{x} = \left[\frac{(x_1 + x_2)}{\sqrt{2}}, \frac{(x_1 - x_2)}{\sqrt{2}}\right]$$

The first transformed component computes the average (i.e. low-pass) behavior of the input sequence, while the 2nd component captures the differential (i.e. high-pass) behavior of the input.

□ If *A* in previous example is used for 2-D transform and *X* is a 2-D input, we have $X = A^T \Theta A$:

$$\begin{bmatrix} x_{00} & x_{01} \\ x_{10} & x_{11} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \theta_{00} & \theta_{01} \\ \theta_{10} & \theta_{11} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} \theta_{00} + \theta_{01} + \theta_{10} + \theta_{11} & \theta_{00} - \theta_{01} + \theta_{10} - \theta_{11} \\ \theta_{00} + \theta_{01} - \theta_{10} - \theta_{11} & \theta_{00} - \theta_{01} - \theta_{10} + \theta_{11} \end{bmatrix}$$
$$= \theta_{00} \alpha_{0,0} + \theta_{01} \alpha_{0,1} + \theta_{10} \alpha_{1,0} + \theta_{11} \alpha_{1,1},$$

where $\alpha_{i,j}$ is the outer product of *i*th and *j*th rows of *A*. \Box How do you interpret $\theta_{0,0}, \ldots, \theta_{1,1}$?

• $\theta_{0,0}$ is the DC coefficient, and other $\theta_{i,j}$ are AC coefficients.

Karhunen-Loeve Transform (KLT)

- □ KLT consists of the eigenvectors of the autocorrelation matrix: $[R]_{i,j} = E[X_n X_{n+|i-j|}].$
- □ KLT minimizes the geometric means of the variance of the transform coefficients \rightarrow provides maximal G_{TC}
- Issues with KLT
 - For non-stationary inputs, the autocorrelation function is time varying; computation of KLT is relatively expensive
 - KLT matrix must be transmitted to the decoder
 - If the input statistics change slowly, and the transform size can be kept small, the KLT can be useful

□ For N = 2, the autocorrelation matrix for a stationary process is

$$R = \begin{bmatrix} R_{xx}(0) & R_{xx}(1) \\ R_{xx}(1) & R_{xx}(0) \end{bmatrix},$$

The eigenvectors of R are

$$v_1 = \begin{bmatrix} \alpha \\ \alpha \end{bmatrix}, \quad v_2 = \begin{bmatrix} \beta \\ -\beta \end{bmatrix}.$$

With orthonormal constraint, the transform matrix is

$$\mathbf{K} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Performance of DCT

 \Box For Markov sources with high correlation coefficient ρ ,

$$\rho = \frac{E[x_n x_{n+1}]}{E[x_n^2]},$$

the compaction ability of DCT is close to that of KLT

As many sources can be modeled as Markov sources with high values for ρ, DCT is the most popular transform for multimedia compression

Coding of Transform Coefficients

- Different transform coefficients should be quantized and coded differently based on the amount of information it carries
 - Information is related to the variance of each coefficients
- □ The bit allocation problem tries to determine the level of quantizer to use for different transform coefficients
- The Lagrange multiplier optimization technique is often used to solve the optimal bit allocation

Rate-Distortion Optimization (1/3)

□ If the rate per coefficient is *R* and the rate per *k*th coefficient is R_k , then

$$R=\frac{1}{M}\sum_{k=1}^M R_k,$$

where *M* is the number of transform coefficients

□ The error variance for the *kth* quantizer $\sigma_{r_k}^2$, is related to the *kth* input variance $\sigma_{\theta_k}^2$, by:

$$\sigma_{r_k}^2 = \alpha_k 2^{-2R_k} \sigma_{\theta_k}^2,$$

where α_k depends on input distribution and quantizer \Box The total reconstruction error is given by

$$\sigma_r^2 = \sum_{k=1}^M \alpha_k 2^{-2R_k} \sigma_{\theta_k}^2.$$

- □ The objective of the bit allocation procedure is to find R_k to minimize σ_r^2 subject to total rate constraint R.
- □ If we assume that α_k is a constant α for all k, we can set up the minimization problem in terms of Lagrange multipliers as

$$J = \alpha \sum_{k=1}^{M} 2^{-2R_k} \sigma_{\theta_k}^2 - \lambda \left(R - \frac{1}{M} \sum_{k=1}^{M} R_k \right).$$

□ Taking the derivative of *J* with respect to R_k and setting it to zero, we obtain the expression for R_k :

$$R_k = \frac{1}{2}\log_2(2\alpha \ln 2\sigma_{\theta_k}^2) - \frac{1}{2}\log_2\lambda.$$

Rate-Distortion Optimization (3/3)

 \Box Substituting R_k to the expression for R, we have:

$$\lambda = \prod_{k=1}^{M} \left(2\alpha \ln 2\sigma_{\theta_k}^2 \right)^{\frac{1}{M}} 2^{-2R}.$$

Therefore, the individual bit allocations for each transform coefficients is:

$$R_{k} = R + \frac{1}{2} \log_{2} \frac{\sigma_{\theta_{k}}^{2}}{\prod_{k=1}^{M} (\sigma_{\theta_{k}}^{2})^{\frac{1}{M}}}.$$

- Negative R_k 's are set to zero
- Positive R_k 's are reduced to a smaller integer value

Zonal Sampling

□ Zonal sampling is a simple bit allocation algorithm:

- 1. Compute $\sigma_{\theta_k}^2$ for each coefficient.
- 2. Set $R_k = 0$ for all k and set $R_b = MR$, where R_b is the total number of bits available for distribution.
- 3. Sort the variances $\{\sigma_{\theta_k}^2\}$ Suppose $\sigma_{\theta_m}^2$ is the maximum.
- 4. Increment R_m by 1, and divide $\sigma_{\theta_m^2}$ by 2.
- 5. Decrement R_b by 1. If $R_b = 0$, then stop; otherwise, go to 3.

						-	
8	7	5	3	1	1	0	0
7	5	3	2	1	0	0	0
4	3	2	1	1	0	0	0
3	3	2	1	1	0	0	0
2	1	1	1	0	0	0	0
1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Bit allocation map for an 8×8 transform

Another bit allocation policy is called threshold coding

- Arrange the transform coefficients in a line
- The first coefficient is always coded
- For remaining coefficients
 - If the magnitude is smaller than a threshold, it is skipped
 - If the magnitude is larger than a threshold, its quantized value and the number of skipped coefficients before it is coded

□ Zigzag scan is often used for 2-D to 1-D mapping

 \Box Color space RGB $\rightarrow YC_BC_R$ mapping

□ Chroma channel 4:2:2 sub-sampling

□ Level shifting: assume each pixel has *p*-bit, then each pixel $x_{i,j} = x_{i,j} - 2^{p-1}$

□ Split pixels into 8×8 blocks

- If image size is not a multiple of 8, extra rows/columns are padded to achieve multiple of 8
- Padded data is discarded after decoding

JPEG 8×8 DCT Transform

□ Forward DCT is applied to each 8×8 block

Entropy Coding

DC/AC coefficients are coded differently

- DCs are coded using
 - Differential coding + Huffman coding
 - Each DC difference is coded using a Huffman prefix plus a fixed length suffix
- ACs are coded using
 - Run-Length coding + Huffman coding

DC Difference Code Table

Differe catego (VLC-c as pref	nce ry code iix)	value in each category (FLC-code as suffix)				
· ·						
0			0			
1			-1	1		
2		-3	-2	2	3	
3	-7		-4	4		7
4	-15		-8	8		15
5	-31		-16	16		31
6	-63		-32	32		63
7	-127	•••	-64	64		127
8	-255	•••	-128	128		255
9	-511	•••	-256	256	•••	511
10	-1,023	•••	-512	512	•••	1,023
11	-2,047	•••	-1,024	1,024	•••	2,047
12	-4,095	•••	-2,048	2,048		4,095
13	-8,191	•••	-4,096	4,096	•••	8,191
14	-16,383		-8,192	8,192		16,383
15	-32,767	•••	-16,384	16,384		32,767
16			32,768			

AC RLE Code Table

- □ AC is zigzag scanned into a 1-D sequence
- □ Each non-zero coefficient is coded using a Z/C codeword plus a sign bit *S*
 - Z number of zero run before the label
 - *C* label magnitude
 - EOB is used to signal the end of each block
 - ZRL is used to signal 15 consecutive zeros

Z/C	Codeword	Z/C	Codeword	•••	Z/C	Codeword
0/0 (EOB)	1010				F/0 (ZRL)	1111111001
0/1	00	1/1	1100		F/1	1111111111110101
0/2	01	1/2	11011		F/2	11111111111110110
0/3	100	1/3	1111001		F/3	11111111111110111
0/4	1011	1/4	111110110		F/4	11111111111111000
0/5	11010	1/5	11111110110		F/5	11111111111111001
:	:	:	:		:	

JPEG Coding Example

□ A good example from Wikipedia:

83,261 bytes compression ratio 2.6:1

15,138 bytes compression ratio 15:1

4,787 bytes compression ratio 46:1