Transform Coding

National Chiao Tung University Chun-Jen Tsai

11/24/2014

Transform Domain Data Analysis

- Given an invertible transform A, the entropy of a source \mathbf{x} does not change subject to A, i.e. $A \mathbf{x}$ has the same entropy as \mathbf{x}.
- However, there are several reasons why we want to perform lossy compression on $A \mathbf{x}$, instead of \mathbf{x} :
- Input data sequence can be interpreted with more insights
- Input data possibly are de-correlated in transform domain
- The original time-ordered sequence of data can be decomposed into different categories

Example: Height-Weight Data (1/3)

\square The height-weight data pair tends to cluster alone the line $x_{h}=2.5 x_{w}$. A rotation transform

$$
A=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right), \quad \phi=68.02^{\circ},
$$

can simplify the data representation :

Example: Height-Weight Data (2/3)

\square If we set θ_{1} to zeros for all the data pairs, and transform the data back to $x_{h}-x_{w}$ domain, we have the reconstruction errors as follows:

Original data		
Height	Weight	
65	170	
75	188	
60	150	
70	170	
56	130	
80	203	
68	160	
50	110	
40	80	
50	153	
69	148	
62	140	
76	164	
64	-120	

Reconstructed data

Height	Weight
68	169
75	188
60	150
68	171
53	131
81	203
65	162
45	112
34	84
60	150
61	151
57	142
67	168
50	125

Example: Height-Weight Data (3/3)

\square Note that, in original data, both x_{h} and x_{w} have nonnegligible variances, however, for θ_{0} and θ_{1}, only θ_{0} has large variance
V Variance (or energy) of a source and its information has a positive relation; larger source variance, higher entropy

- For Gaussian source, the differential entropy is $\left(\log _{2} \pi e \sigma^{2}\right) / 2$.
- The error introduced into the reconstructed sequence of $\{x\}$ is equal to the error introduced into the transform-domain sequence $\{\theta\}$.

Transform Coding Principle

- Transform step:
- The source $\left\{x_{n}\right\}$ is divided into blocks of size N. Each block is mapped into a transform sequence $\left\{e_{n}\right\}$ using a reversible mapping
- Most of the energy of the transformed block was contained in few elements of the transformed values
- Quantization step:
- The transformed sequence is quantized based on the following strategy:
- The desired average bit rate
- The statistics of the various transformed elements
- The effect of distortion on the reconstructed sequence
[Entropy coding step:
- The quantized data are entropy-coded using Huffman, AC, or other techniques

Transform Formulation

\square For media coding, only linear transforms are used

- The forward transform can be denoted by

$$
\theta_{n}=\sum_{i=0}^{N-1} x_{i} a_{n, i} .
$$

- The inverse transform is

$$
x_{n}=\sum_{i=0}^{N-1} \theta_{i} b_{n, i} .
$$

- The selection of N is application-specific
- Complexity of transform is lower for small N
- Large N adapts to fast-changing statistics badly
- Large N produces better resolution in transform domain

2-D Forward Transform

- For 2-D signals $X_{i, j}$, a general linear 2-D transform of block size $N \times N$ is given as

$$
\Theta_{k, l}=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} x_{i, j} a_{i, j, k, l} .
$$

If separable transform is used; the formulation can be simplified to

$$
\Theta_{k, l}=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} a_{k, i} x_{i, j} a_{j, l}=\sum_{i=0}^{N-1} a_{k, i}\left(\sum_{j=0}^{N-1} x_{i, j} a_{j, l}\right) \text {. }
$$

- In matrix form, the separable transform becomes

$$
\Theta=A \boldsymbol{X} A^{T} .
$$

Orthonormal Transform

\square All the transforms used in multimedia compression are orthonormal transforms. Thus, $A^{-1}=A^{T}$. In this case, $\Theta=A \boldsymbol{X} A^{T}$ becomes $\Theta=A \boldsymbol{X} A^{-1}$.

- Orthonormal transforms are energy preserving

$$
\begin{aligned}
\sum_{i=0}^{N-1} \theta_{i}^{2} & =\theta^{T} \theta=(\mathbf{A} \mathbf{x})^{T} \mathbf{A} \mathbf{x} \\
& =\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\sum_{n=0}^{N-1} x_{n}^{2}
\end{aligned}
$$

Energy Compaction Effect

- The efficiency of a transform depends on how much energy compaction is provided by the transform
- The amount of energy compaction can be measured by the ratio of the arithmetic mean of the variances to their geometric means:

$$
G_{T C}=\frac{\frac{1}{N} \sum_{i=0}^{N-1} \sigma_{i}^{2}}{\left(\Pi_{i=0}^{N-1} \sigma_{i}^{2}\right)^{\frac{1}{N}}},
$$

where σ_{i}^{2} is the variance of the i th coefficients.

Decomposition of 1-D Input

Transform decomposes an input sequence into components with different characteristics. If

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right],
$$

input $\mathbf{x}=\left[x_{1}, x_{2}\right]$, the transformed output is

$$
A \mathbf{x}=\left[\frac{\left(x_{1}+x_{2}\right)}{\sqrt{2}}, \frac{\left(x_{1}-x_{2}\right)}{\sqrt{2}}\right] .
$$

The first transformed component computes the average (i.e. low-pass) behavior of the input sequence, while the $2^{\text {nd }}$ component captures the differential (i.e. high-pass) behavior of the input.

Decomposition of 2-D Input

If A in previous example is used for 2-D transform and X is a 2-D input, we have $X=A^{T} \Theta A$:

$$
\begin{aligned}
{\left[\begin{array}{ll}
x_{00} & x_{01} \\
x_{10} & x_{11}
\end{array}\right] } & =\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\theta_{00} & \theta_{01} \\
\theta_{10} & \theta_{11}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
\theta_{00}+\theta_{01}+\theta_{10}+\theta_{11} & \theta_{00}-\theta_{01}+\theta_{10}-\theta_{11} \\
\theta_{00}+\theta_{01}-\theta_{10}-\theta_{11} & \theta_{00}-\theta_{01}-\theta_{10}+\theta_{11}
\end{array}\right] \\
& =\theta_{00} \alpha_{0,0}+\theta_{01} \alpha_{0,1}+\theta_{10} \alpha_{1,0}+\theta_{11} \alpha_{1,1},
\end{aligned}
$$

where $\alpha_{i, j}$ is the outer product of i th and j th rows of A.
\square How do you interpret $\theta_{0,0}, \ldots, \theta_{1,1}$?

- $\theta_{0,0}$ is the DC coefficient, and other $\theta_{i, j}$ are AC coefficients.

Karhunen-Loeve Transform (KLT)

\square KLT consists of the eigenvectors of the autocorrelation matrix: $[R]_{i, j}=E\left[X_{n} X_{n+1 i-j]}\right]$.
\square KLT minimizes the geometric means of the variance of the transform coefficients \rightarrow provides maximal $G_{T C}$

- Issues with KLT
- For non-stationary inputs, the autocorrelation function is time varying; computation of KLT is relatively expensive
- KLT matrix must be transmitted to the decoder
- If the input statistics change slowly, and the transform size can be kept small, the KLT can be useful

Example: KLT

For $N=2$, the autocorrelation matrix for a stationary process is

$$
R=\left[\begin{array}{ll}
R_{x x}(0) & R_{x x}(1) \\
R_{x x}(1) & R_{x x}(0)
\end{array}\right],
$$

The eigenvectors of R are

$$
v_{1}=\left[\begin{array}{l}
\alpha \\
\alpha
\end{array}\right], v_{2}=\left[\begin{array}{c}
\beta \\
-\beta
\end{array}\right] .
$$

With orthonormal constraint, the transform matrix is

$$
\mathbf{K}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

Discrete Cosine Transform

- DCT is derived from the Discrete Fourier Transform (DFT) by first perform an even-function extension to the input data, then compute its DFT:
- Only real number operations are required
- Better energy compaction than DFT

DCT

DCT Formulation

- The rows of DCT matrix is composed of cosine functions of different frequencies:

$$
[C]_{i, j}=\left\{\begin{array}{lc}
\sqrt{\frac{1}{N}} \cos \frac{(2 i+1) j \pi}{2 N} & i=0, j=0,1, \ldots, N-1 \\
\sqrt{\frac{2}{N}} \cos \frac{(2 i+1) j \pi}{2 N} & i=1, \ldots, N-1, j=0,1, \ldots, N-1
\end{array} .\right.
$$

- The inner product of the input signal with each row of the matrix is the projection of the input signal onto a cosine function of fixed frequency
- The larger N is, the better the frequency resolution is

Basis Functions of 8-Point DCT

E Each column of the DCT matrix is a basis function:

Basis Images of 8-Point 2-D DCT

- DCT can be extended to a 2-D transform:

Performance of DCT

- For Markov sources with high correlation coefficient ρ,

$$
\rho=\frac{E\left[x_{n} x_{n+1}\right]}{E\left[x_{n}^{2}\right]},
$$

the compaction ability of DCT is close to that of KLT
\square As many sources can be modeled as Markov sources with high values for ρ, DCT is the most popular transform for multimedia compression

Discrete Walsh-Hadamard Trans.

- The Hadamard transform is defined by an $N \times N$ matrix H with the property $H H^{T}=N I$.
- Simple to compute while still separate low frequency from high frequency components of the input data
- The Hadamard matrix is recursively defined as:

$$
H_{2 N}=\left[\begin{array}{cc}
H_{N} & H_{N} \\
H_{N} & -H_{N}
\end{array}\right] \text {, and } H_{1}=[1] .
$$

- The DWHT transform matrix is obtained by
- Normalize the matrix by $1 / N^{1 / 2}$ so that it is orthonormal
- Re-arrange the rows according to number of sign changes

Coding of Transform Coefficients

- Different transform coefficients should be quantized and coded differently based on the amount of information it carries
- Information is related to the variance of each coefficients
\square The bit allocation problem tries to determine the level of quantizer to use for different transform coefficients
- The Lagrange multiplier optimization technique is often used to solve the optimal bit allocation

Lagrange Multiplier

\square A constrained optimization problem tries to minimize a cost function $f(x, y)$ subject to some constraints on the parameter x and $y: g(x, y)=c$

- The Lagrange cost function is defined as follows:

$$
J(x, y, \lambda)=f(x, y)-\lambda \cdot\|g(x, y)-c\|^{2} .
$$

\square Solution: solve

$$
\nabla_{x, y, \lambda} J(x, y, \lambda)=0
$$

Rate-Distortion Optimization (1/3)

If the rate per coefficient is R and the rate per k th coefficient is R_{k}, then

$$
R=\frac{1}{M} \sum_{k=1}^{M} R_{k},
$$

where M is the number of transform coefficients
\square The error variance for the k th quantizer $\sigma_{r_{k}}^{2}$, is related to the k th input variance $\sigma \theta_{k}^{2}$, by:

$$
\sigma_{r_{k}}^{2}=\alpha_{k} 2^{-2 R_{k}} \sigma_{\theta_{k}}^{2},
$$

where α_{k} depends on input distribution and quantizer

- The total reconstruction error is given by

$$
\sigma_{r}^{2}=\sum_{k=1}^{M} \alpha_{k} 2^{-2 R_{k}} \sigma_{\theta_{k}}^{2} .
$$

Rate-Distortion Optimization (2/3)

\square The objective of the bit allocation procedure is to find R_{k} to minimize σ_{r}^{2} subject to total rate constraint R.

- If we assume that α_{k} is a constant α for all k, we can set up the minimization problem in terms of Lagrange multipliers as

$$
J=\alpha \sum_{k=1}^{M} 2^{-2 R_{k}} \sigma_{\theta_{k}}^{2}-\lambda\left(R-\frac{1}{M} \sum_{k=1}^{M} R_{k}\right) .
$$

- Taking the derivative of J with respect to R_{k} and setting it to zero, we obtain the expression for R_{k} :

$$
R_{k}=\frac{1}{2} \log _{2}\left(2 \alpha \ln 2 \sigma_{\theta_{k}}^{2}\right)-\frac{1}{2} \log _{2} \lambda
$$

Rate-Distortion Optimization (3/3)

\square Substituting R_{k} to the expression for R, we have:

$$
\lambda=\prod_{k=1}^{M}\left(2 \alpha \ln 2 \sigma_{\theta_{k}}^{2}\right)^{\frac{1}{m}} 2^{-2 R} .
$$

- Therefore, the individual bit allocations for each transform coefficients is:

$$
R_{k}=R+\frac{1}{2} \log _{2} \frac{\sigma_{\theta_{k}}^{2}}{\prod_{k=1}^{M}\left(\sigma_{\theta_{k}}^{2}\right)^{\frac{1}{4}}} .
$$

- Note that R_{k} may not be integers or positive numbers
- Negative R_{k} 's are set to zero
- Positive R_{k} 's are reduced to a smaller integer value

Zonal Sampling

Z Zonal sampling is a simple bit allocation algorithm:

1. Compute $\sigma_{\theta_{k}}{ }^{2}$ for each coefficient.
2. Set $R_{k}=0$ for all k and set $R_{b}=M R$, where R_{b} is the total number of bits available for distribution.
3. Sort the variances $\left\{\sigma_{\theta_{k}}^{2}\right\}$ Suppose $\sigma_{\theta_{m}}{ }^{2}$ is the maximum.
4. Increment R_{m} by 1 , and divide $\sigma_{\theta_{m}}{ }^{2}$ by 2.
5. Decrement R_{b} by 1 . If $R_{b}=0$, then stop; otherwise, go to 3 .

Bit allocation map for an 8×8 transform							
8	7	5	3	1	1	0	0
7	5	3	2	1	0	0	0
4	3	2	1	1	0	0	0
3	3	2	1	1	0	0	0
2	1	1	1	0	0	0	0
1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Threshold Coding

- Another bit allocation policy is called threshold coding
- Arrange the transform coefficients in a line
- The first coefficient is always coded
- For remaining coefficients
- If the magnitude is smaller than a threshold, it is skipped
- If the magnitude is larger than a threshold, its quantized value and the number of skipped coefficients before it is coded
\square Zigzag scan is often used for 2-D to 1-D mapping

JPEG Image Compression

- A standard defined by ISO/IEC JTC1/SC 29/WG 1 in 1992
- The official IS number is IS 10918-1, which defines the input to the decoder (a.k.a. the elementary stream), and how the decoder reconstructs the image
- The popular file format JFIF for JPEG elementary stream is defined in 10918-5
There are several new image coding standards that are incompatible to the old JPEG, but still bearing the JPEG name
- Wavelet-based JPEG-2000 (IS 15444-1)
- High quality lossless/lossy JPEG-XR (IS 29199-2)

JPEG Initial Processing

\square Color space RGB $\rightarrow Y C_{B} C_{R}$ mapping
\square Chroma channel 4:2:2 sub-sampling

- Level shifting: assume each pixel has p-bit, then each pixel $x_{i, j}=x_{i, j}-2^{p-1}$
\square Split pixels into 8×8 blocks
- If image size is not a multiple of 8 , extra rows/columns are padded to achieve multiple of 8
- Padded data is discarded after decoding

JPEG 8×8 DCT Transform

\square Forward DCT is applied to each 8×8 block

JPEG Quantization

- Midtread quantization is used; the step size for each coefficients is from an 8×8 quantization matrix Q, e.g.,

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

- Quantized values are called "labels." For input coefficient $\theta_{i j}$, we have

$$
l_{i j}=\left\lfloor\frac{\theta_{i j}}{Q_{i j}}+0.5\right\rfloor .
$$

JPEG Quantization Example

- Quantization controls the entropy of the image
- Quantization matrices reflect image quality
- A scalar number (quality factor) is often used as quantization matrix multiplier to control image quality

θ_{00}| 39.88 | 6.56 | -2.24 | 1.22 |
| ---: | ---: | ---: | ---: |
| -102.43 | 4.56 | 2.26 | 1.12 |
| 37.77 | 1.31 | 1.77 | 0.25 |
| -5.67 | 2.24 | -1.32 | -0.81 |

Q_{00}| 16 | 11 | 10 | 16 |
| :--- | :--- | :--- | :--- |
| 12 | 12 | 14 | 19 |
| 14 | 13 | 16 | 24 |
| 14 | 17 | 22 | 29 |

$$
l_{00}=\left\lfloor\theta_{00} / Q_{00}+0.5\right\rfloor=\lfloor 39.88 / 16+0.5\rfloor=\lfloor 2.99\rfloor=2
$$

Entropy Coding

\square DC/AC coefficients are coded differently

- DCs are coded using
- Differential coding + Huffman coding
- Each DC difference is coded using a Huffman prefix plus a fixed length suffix
- ACs are coded using
- Run-Length coding + Huffman coding

DC Difference Code Table

| Difference
 category
 (VLC-code
 as prefix) | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | | | 0 | | |

AC RLE Code Table

$\square A C$ is zigzag scanned into a 1-D sequence
\square Each non-zero coefficient is coded using a Z/C codeword plus a sign bit S
■ Z - number of zero run before the label

- C - label magnitude
- EOB is used to signal the end of each block
- ZRL is used to signal 15 consecutive zeros

Z / C	Codeword	Z / C	Codeword	\cdots	Z / C	Codeword
$0 / 0(\mathrm{EOB})$	1010			\cdots	$\mathrm{~F} / 0(\mathrm{ZRL})$	11111111001
$0 / 1$	00	$1 / 1$	1100	\cdots	$\mathrm{~F} / 1$	111111111110101
$0 / 2$	01	$1 / 2$	11011	\cdots	$\mathrm{~F} / 2$	1111111111110110
$0 / 3$	100	$1 / 3$	1111001	\cdots	$\mathrm{~F} / 3$	1111111111110111
$0 / 4$	1011	$1 / 4$	111110110	\cdots	$\mathrm{~F} / 4$	1111111111111000
$0 / 5$	11010	$1 / 5$	11111110110	\cdots	$\mathrm{~F} / 5$	1111111111111001

JPEG Coding Example

- A good example from Wikipedia:

83,261 bytes
compression ratio 2.6:1

15,138 bytes
compression ratio 15:1

4,787 bytes compression ratio 46:1

