

Quantization Problem Formulation

□ Input:

- *X* random variable
- $f_X(x)$ probability density function (pdf)

□ Output:

- $\{b_i\}_{i=0..M}$ decision boundaries
- $\{y_i\}_{i=1..M}$ reconstruction levels
- Discrete processes are often approximated by continuous distributions
 - Example: Laplacian model of pixel differences
 - If source is unbounded, then the first and the last decision boundaries = $\pm \infty$ (they are often called "saturation" values)

Quantization Error

 \Box If the quantization operation is denoted by $Q(\cdot)$, then

$$Q(x) = y_i \quad \text{iff} \quad b_{i-1} < x \le b_i.$$

The mean squared quantization error (MSQE) is then

$$\sigma_q^2 = \int_{-\infty}^{\infty} (x - Q(x))^2 f_X dx$$
$$= \sum_{i=1}^{M} \int_{b_{i-1}}^{b_i} (x - y_i)^2 f_X dx$$

Quantization error is also called quantization noise or quantizer distortion, e.g., additive noise model:

The SNR of Quantization
For *n*-bit uniform quantization of an uniform source of
$$[-X_{max}, X_{max}]$$
, the SNR is $6.02n$ dB, where $n = \log_2 M$:
 $10\log_{10}\left(\frac{\sigma_s^2}{\sigma_q^2}\right) = 10\log_{10}\left(\frac{(2X_{max})^2}{12} \cdot \frac{12}{\Delta^2}\right)$
 $= 10\log_{10}\left(\frac{(2X_{max})^2}{12} \frac{12}{\left(\frac{2X_{max}}{M}\right)^2}\right) = 10\log_{10} M^2$
 $= 20\log_{10} 2^n = 6.02n$ dB.

Example: Quantization of Sena

Darkening and contouring effects of quantization

8 bits / pixel

1 bits / pixel

2 bits / pixel

3 bits / pixel

Quantization of Non-uniform Sources

□ Given a non-uniform source, x ∈[-100, 100],
 P(x∈ [-1, 1]) = 0.95, and we want to design an 8-level (3-bit) quantizer.

 \Box A naïve approach uses uniform quantizer ($\Delta = 25$):

 95% of sample values represented by only two numbers: -12.5 and 12.5, with a maximal quantization error of 12.5 and minimal error of 11.5

 \Box If we use $\Delta = 0.3$ (two end-intervals would be huge)

 Max error is now 98.95 (i.e. 100 – 1.05), however, 95% of the time the error is less than 0.15

Solving for Optimum Step Sizes

 \Box Given an $f_X(x)$ and M, we can solve for Δ numerically:

$$\frac{d\sigma_q^2}{d\Delta} = -\sum_{i=1}^{\frac{M}{2}-1} (2i-1) \int_{(i-1)\Delta}^{i\Delta} \left(x - \frac{2i-1}{2} \Delta \right) f_X(x) dx$$
$$- (M-1) \int_{\left(\frac{M}{2}-1\right)\Delta}^{\infty} \left(x - \frac{M-1}{2} \Delta \right) f_X(x) dx = 0.$$

\Box Optimal uniform quantizer Δ for different sources:

Alphabet Size	Uniform		Gaussian		Laplacian	
	Step Size	SNR	Step Size	SNR	Step Size	SNR
2	1.732	6.02	1.596	4.40	1.414	3.00
4	0.866	12.04	0.9957	9.24	1.0873	7.05
6	0.577	15.58	0.7334	12.18	0.8707	9.56
8	0.433	18.06	0.5860	14.27	0.7309	11.39
10	0.346	20.02	0.4908	15.90	0.6334	12.81
12	0.289	21.60	0.4238	17.25	0.5613	13.98
14	0.247	22.94	0.3739	18.37	0.5055	14.98
16	0.217	24.08	0.3352	19.36	0.4609	15.84
32	0.108	30.10	0.1881	24.56	0.2799	20.46

 \rightarrow if there is a mismatch, larger than "optimum" Δ gives better performance \rightarrow 3-bit quantizer is too coarse

Forward Adaptive Quantization (FAQ)

- □ Choosing analysis block size is a major issue
- Block size too large
 - Not enough resolution
 - Increased latency

Block size too small

- More side channel information
- Assuming a mean of zero, signal variance is estimated by

$$\hat{\sigma}_{q}^{2} = \frac{1}{N} \sum_{i=0}^{N-1} x_{n+i}^{2}.$$

□ The multipliers are symmetric:

$$\blacksquare \ M_0 = M_4, \, M_1 = M_5, \, M_2 = M_6, \, M_3 = M_7$$

Example: Jayant Quantizer

$$\square M_0 = M_4 = 0.8, M_1 = M_5 = 0.9$$

$$\square M_2 = M_6 = 1.0, M_3 = M_7 = 1.2, \Delta_0 = 0.5$$

$$\square \text{ Input: } 0.1, -0.2, 0.2, 0.1, -0.3, 0.1, 0.2, 0.5, 0.9, 1.5$$

n	Δ_n	Input	Output Level	Output	Error	Update Equation
0	0.5	0.1	0	0.25	0.15	$\Delta_1 = M_0 \times \Delta_0$
1	0.4	-0.2	4	-0.2	0.0	$\Delta_2 = M_4 \times \Delta_1$
2	0.32	0.2	0	0.16	0.04	$\Delta_3 = M_0 \times \Delta_2$
3	0.256	0.1	0	0.128	0.028	$\Delta_4 = M_0 \times \Delta_3$
4	0.2048	-0.3	5	-0.3072	-0.0072	$\Delta_5 = M_5 \times \Delta_4$
5	0.1843	0.1	0	0.0922	-0.0078	$\Delta_6 = M_0 \times \Delta_5$
6	0.1475	0.2	1	0.2212	0.0212	$\Delta_7 = M_1 \times \Delta_6$
7	0.1328	0.5	3	0.4646	-0.0354	$\Delta_8 = M_3 \times \Delta_7$
8	0.1594	0.9	3	0.5578	-0.3422	$\Delta_9 = M_3 \times \Delta_8$
9	0.1913	1.5	3	0.6696	-0.8304	$\Delta_{10} = M_3 \times \Delta_9$
10	0.2296	1.0	3	0.8036	0.1964	$\Delta_{11} = M_3 \times \Delta_{10}$
11	0.2755	0.9	3	0.9643	0.0643	$\Delta_{12} = M_3 \times \Delta_{11}$

Non-uniform Quantization

- For uniform quantizer, decision boundaries are determined by a single parameter Δ.
- We can certainly reduce quantization errors further if each decision boundaries can be selected freely

pdf-optimized Quantization

 \Box Given $f_X(x)$, we can try to minimize MSQE:

$$\sigma_q^2 = \sum_{i=1}^M \int_{b_{i-1}}^{b_i} (x - y_i)^2 f_X(x) dx.$$

□ Set derivative of σ_q^2 w.r.t. y_j to zero and solve for y_j , we have:

$$y_{j} = \frac{\int_{b_{j-1}}^{b_{j}} x f_{X}(x) dx}{\int_{b_{j-1}}^{b_{j}} f_{X}(x) dx}. \longrightarrow \int_{f_{X}}^{y_{j}} \text{ is the center of mass of } f_{X}(x) dx$$

If y_i are determined, the b_i 's can be selected as:

$$b_j = (y_{j+1} + y_j)/2.$$

 \Box Begin with j = 1, we want to find b_1 and y_1 by

$$y_1 = \int_{b_0}^{b_1} x f_X(x) dx \Big/ \int_{b_0}^{b_1} f_X(x) dx.$$

□ Pick a value for y_1 (e.g. $y_1 = 1$), solve for b_1 and compute y_2 by

$$y_2 = 2b_1 + y_1,$$

and b_2 by

$$y_2 = \int_{b_1}^{b_2} x f_X(x) dx \Big/ \int_{b_1}^{b_2} f_X(x) dx.$$

 \Box Continue the process until all $\{b_i\}$ and $\{y_i\}$ are found

Lloyd-Max Algorithm (3/3)

□ If the initial guess of y_1 does not fulfills the termination condition:

$$|y_{M/2} - \hat{y}_{M/2}| \le \varepsilon,$$

where

$$\hat{y}_{M/2} = 2b_{M/2-1} + y_{M/2-1},$$

$$y_{M/2} = \int_{b_{M/2-1}}^{b_{M/2}} xf_X(x)dx / \int_{b_{M/2-1}}^{b_{M/2}} f_X(x)dx.$$

we must pick a different y_1 and repeat the process.

Example: *pdf*-Optimized Quantizers

□ We can achieve gain over the uniform quantizer

Levels	b_i	Gaussian y _i	SNR	b_i	Laplacian _{Yi}	SNR
4	0.0 0.9816	0.4528 1.510	9.3 dB (9.24)	0.0 1.1269	0.4196 1.8340	7.54 dB (7.05)
6	0.0 0.6589 1.447	0.3177 1.0 1.894	12.41 dB (12.18	0.0 0.7195 3) 1.8464	0.2998 1.1393 2.5535	10.51 dB (9.56)
8	0.0 0.7560 1.050 1.748	0.2451 0.6812 1.3440 2.1520	14.62 dB (14.27	0.0 0.5332 1.2527) 2.3796	0.2334 0.8330 1.6725 3.0867	12.64 dB (11.39

□ Non-uniform quantizers also suffer mismatch effects.

To reduce the effect, one can use an adaptive nonuniform quantizer, or an adaptive uniform quantizer plus companded quantization techniques

Variance mismatch on a 4-bit Laplacian non-uniform quantizer.

□ The compressor function:

$$c(x) = \begin{cases} 2x & \text{if } -1 \le x \le 1\\ \frac{2x}{3} + \frac{4}{3} & x > 1\\ \frac{2x}{3} - \frac{4}{3} & x < -1 \end{cases}$$

□ The uniform quantizer: step size $\Delta = 1.0$

□ The expander function:

$$c^{-1}(x) = \begin{cases} \frac{x}{2} & \text{if } -2 \le x \le 2\\ \frac{3x}{2} - 2 & x > 2\\ \frac{3x}{2} + 2 & x < -2 \end{cases}$$

The equivalent non-uniform quantizer

Entropy Coding of Quantizer Outputs

- □ The levels of the quantizer is the alphabet of entropy coders, for *M*-level quantizer, FLC needs log₂*M* bits per output
- Example of VLC coded output of minimum MSQE quantizers:
 - Note: non-uniform quantizer has higher entropies since high probability regions uses smaller step sizes

Number of Levels	Ga	aussian	La	Laplacian	
	Uniform	Nonuniform	Uniform	Nonuniform	
4	1.904	1.911	1.751	1.728	
6	2.409	2.442	2.127	2.207	
8	2.759	2.824	2.394	2.479	
16	3.602	3.765	3.063	3.473	
32	4.449	4.730	3.779	4.427	

The Linde-Buzo-Gray Algorithm

- 1. Start with an initial set of reconstruction values $\{Y_i^{(0)}\}_{i=1..M}$ and a set of training vectors $\{X_n\}_{n=1..N}$. Set k = 0, $D^{(0)} = 0$. Select threshold ε .
- 2. The quantization regions $\{V_i^{(k)}\}_{i=1..M}$ are given by

 $V_j^{(k)} = \{X_n: d(X_n, Y_i) < d(X_n, Y_j), \forall j \neq i\}, i = 1, 2, ..., M.$

- 3. Compute the average distortion $D^{(k)}$ between the training vectors and the representative value
- 4. If $(D^{(k)} D^{(k-1)})/D^{(k)} < \varepsilon$, stop; otherwise, continue
- 5. Let k = k + 1. Update $\{Y_i^{(k)}\}_{i=1..M}$ with the average value of each quantization region $V_i^{(k-1)}$. Go to step 2.

Impact of Training Set

The training sets used to construct the codebook have significant impact on the performance of VQ

Images quantized at 0.5 bits/pixel, codebook size 256

